| author | wenzelm | 
| Tue, 08 Nov 2005 10:43:08 +0100 | |
| changeset 18117 | 61a430a67d7c | 
| parent 17429 | e8d6ed3aacfe | 
| child 20245 | 54db3583354f | 
| permissions | -rw-r--r-- | 
| 10751 | 1 | (* Title : HOL/Real/Hyperreal/fuf.ML | 
| 2 | ID : $Id$ | |
| 3 | Author : Jacques D. Fleuriot | |
| 4 | Copyright : 1998 University of Cambridge | |
| 5 | 1999 University of Edinburgh | |
| 6 | ||
| 7 | Simple tactics to help proofs involving our free ultrafilter | |
| 8 | (FreeUltrafilterNat). We rely on the fact that filters satisfy the | |
| 9 | finite intersection property. | |
| 10 | *) | |
| 11 | ||
| 14299 | 12 | val FreeUltrafilterNat_empty = thm "FreeUltrafilterNat_empty"; | 
| 13 | val FreeUltrafilterNat_subset = thm "FreeUltrafilterNat_subset"; | |
| 14 | val FreeUltrafilterNat_Compl_mem = thm "FreeUltrafilterNat_Compl_mem"; | |
| 15 | val FreeUltrafilterNat_Int = thm "FreeUltrafilterNat_Int"; | |
| 16 | ||
| 10751 | 17 | local | 
| 18 | ||
| 19 | exception FUFempty; | |
| 20 | ||
| 21 | fun get_fuf_hyps [] zs = zs | |
| 22 | | get_fuf_hyps (x::xs) zs = | |
| 23 | case (concl_of x) of | |
| 24 |         (_ $ (Const ("Not",_) $ (Const ("op :",_) $ _ $
 | |
| 17429 
e8d6ed3aacfe
merged Transfer.thy and StarType.thy into StarDef.thy; renamed Ifun2_of to starfun2; cleaned up
 huffman parents: 
17298diff
changeset | 25 |              Const ("StarDef.FreeUltrafilterNat",_)))) =>  get_fuf_hyps xs
 | 
| 10751 | 26 | ((x RS FreeUltrafilterNat_Compl_mem)::zs) | 
| 27 |        |(_ $ (Const ("op :",_) $ _ $
 | |
| 17429 
e8d6ed3aacfe
merged Transfer.thy and StarType.thy into StarDef.thy; renamed Ifun2_of to starfun2; cleaned up
 huffman parents: 
17298diff
changeset | 28 |              Const ("StarDef.FreeUltrafilterNat",_)))  =>  get_fuf_hyps xs (x::zs)
 | 
| 10751 | 29 | | _ => get_fuf_hyps xs zs; | 
| 30 | ||
| 31 | fun inter_prems [] = raise FUFempty | |
| 32 | | inter_prems [x] = x | |
| 33 | | inter_prems (x::y::ys) = | |
| 34 | inter_prems (([x,y] MRS FreeUltrafilterNat_Int) :: ys); | |
| 35 | ||
| 36 | in | |
| 37 | ||
| 38 | (*--------------------------------------------------------------- | |
| 39 | solves goals of the form | |
| 40 | [| A1: FUF; A2: FUF; ...; An: FUF |] ==> B : FUF | |
| 41 | where A1 Int A2 Int ... Int An <= B | |
| 42 | ---------------------------------------------------------------*) | |
| 43 | ||
| 44 | fun fuf_tac css i = METAHYPS(fn prems => | |
| 45 | (rtac ((inter_prems (get_fuf_hyps prems [])) RS | |
| 46 | FreeUltrafilterNat_subset) 1) THEN | |
| 47 | auto_tac css) i; | |
| 48 | ||
| 49 | fun Fuf_tac i = fuf_tac (clasimpset ()) i; | |
| 50 | ||
| 51 | ||
| 52 | (*--------------------------------------------------------------- | |
| 53 | solves goals of the form | |
| 54 | [| A1: FUF; A2: FUF; ...; An: FUF |] ==> P | |
| 55 |    where A1 Int A2 Int ... Int An <= {} since {} ~: FUF
 | |
| 56 | (i.e. uses fact that FUF is a proper filter) | |
| 57 | ---------------------------------------------------------------*) | |
| 58 | ||
| 59 | fun fuf_empty_tac css i = METAHYPS (fn prems => | |
| 60 | rtac ((inter_prems (get_fuf_hyps prems [])) RS | |
| 61 | (FreeUltrafilterNat_subset RS (FreeUltrafilterNat_empty RS notE))) 1 | |
| 62 | THEN auto_tac css) i; | |
| 63 | ||
| 64 | fun Fuf_empty_tac i = fuf_empty_tac (clasimpset ()) i; | |
| 65 | ||
| 66 | ||
| 67 | (*--------------------------------------------------------------- | |
| 68 | In fact could make this the only tactic: just need to | |
| 69 | use contraposition and then look for empty set. | |
| 70 | ---------------------------------------------------------------*) | |
| 71 | ||
| 72 | fun ultra_tac css i = rtac ccontr i THEN fuf_empty_tac css i; | |
| 73 | fun Ultra_tac i = ultra_tac (clasimpset ()) i; | |
| 74 | ||
| 75 | end; |