| author | blanchet | 
| Mon, 04 Oct 2010 09:05:15 +0200 | |
| changeset 39930 | 61aa00205a88 | 
| parent 36452 | d37c6eed8117 | 
| child 39974 | b525988432e9 | 
| permissions | -rw-r--r-- | 
| 27411 | 1  | 
(* Title: HOLCF/Universal.thy  | 
2  | 
Author: Brian Huffman  | 
|
3  | 
*)  | 
|
4  | 
||
| 35794 | 5  | 
header {* A universal bifinite domain *}
 | 
6  | 
||
| 27411 | 7  | 
theory Universal  | 
| 35701 | 8  | 
imports CompactBasis Nat_Bijection  | 
| 27411 | 9  | 
begin  | 
10  | 
||
11  | 
subsection {* Basis datatype *}
 | 
|
12  | 
||
13  | 
types ubasis = nat  | 
|
14  | 
||
15  | 
definition  | 
|
16  | 
node :: "nat \<Rightarrow> ubasis \<Rightarrow> ubasis set \<Rightarrow> ubasis"  | 
|
17  | 
where  | 
|
| 35701 | 18  | 
"node i a S = Suc (prod_encode (i, prod_encode (a, set_encode S)))"  | 
| 27411 | 19  | 
|
| 30505 | 20  | 
lemma node_not_0 [simp]: "node i a S \<noteq> 0"  | 
| 27411 | 21  | 
unfolding node_def by simp  | 
22  | 
||
| 30505 | 23  | 
lemma node_gt_0 [simp]: "0 < node i a S"  | 
| 27411 | 24  | 
unfolding node_def by simp  | 
25  | 
||
26  | 
lemma node_inject [simp]:  | 
|
| 30505 | 27  | 
"\<lbrakk>finite S; finite T\<rbrakk>  | 
28  | 
\<Longrightarrow> node i a S = node j b T \<longleftrightarrow> i = j \<and> a = b \<and> S = T"  | 
|
| 35701 | 29  | 
unfolding node_def by (simp add: prod_encode_eq set_encode_eq)  | 
| 27411 | 30  | 
|
| 30505 | 31  | 
lemma node_gt0: "i < node i a S"  | 
| 27411 | 32  | 
unfolding node_def less_Suc_eq_le  | 
| 35701 | 33  | 
by (rule le_prod_encode_1)  | 
| 27411 | 34  | 
|
| 30505 | 35  | 
lemma node_gt1: "a < node i a S"  | 
| 27411 | 36  | 
unfolding node_def less_Suc_eq_le  | 
| 35701 | 37  | 
by (rule order_trans [OF le_prod_encode_1 le_prod_encode_2])  | 
| 27411 | 38  | 
|
39  | 
lemma nat_less_power2: "n < 2^n"  | 
|
40  | 
by (induct n) simp_all  | 
|
41  | 
||
| 30505 | 42  | 
lemma node_gt2: "\<lbrakk>finite S; b \<in> S\<rbrakk> \<Longrightarrow> b < node i a S"  | 
| 35701 | 43  | 
unfolding node_def less_Suc_eq_le set_encode_def  | 
44  | 
apply (rule order_trans [OF _ le_prod_encode_2])  | 
|
45  | 
apply (rule order_trans [OF _ le_prod_encode_2])  | 
|
| 30505 | 46  | 
apply (rule order_trans [where y="setsum (op ^ 2) {b}"])
 | 
| 27411 | 47  | 
apply (simp add: nat_less_power2 [THEN order_less_imp_le])  | 
48  | 
apply (erule setsum_mono2, simp, simp)  | 
|
49  | 
done  | 
|
50  | 
||
| 35701 | 51  | 
lemma eq_prod_encode_pairI:  | 
52  | 
"\<lbrakk>fst (prod_decode x) = a; snd (prod_decode x) = b\<rbrakk> \<Longrightarrow> x = prod_encode (a, b)"  | 
|
| 27411 | 53  | 
by (erule subst, erule subst, simp)  | 
54  | 
||
55  | 
lemma node_cases:  | 
|
56  | 
assumes 1: "x = 0 \<Longrightarrow> P"  | 
|
| 30505 | 57  | 
assumes 2: "\<And>i a S. \<lbrakk>finite S; x = node i a S\<rbrakk> \<Longrightarrow> P"  | 
| 27411 | 58  | 
shows "P"  | 
59  | 
apply (cases x)  | 
|
60  | 
apply (erule 1)  | 
|
61  | 
apply (rule 2)  | 
|
| 35701 | 62  | 
apply (rule finite_set_decode)  | 
| 27411 | 63  | 
apply (simp add: node_def)  | 
| 35701 | 64  | 
apply (rule eq_prod_encode_pairI [OF refl])  | 
65  | 
apply (rule eq_prod_encode_pairI [OF refl refl])  | 
|
| 27411 | 66  | 
done  | 
67  | 
||
68  | 
lemma node_induct:  | 
|
69  | 
assumes 1: "P 0"  | 
|
| 30505 | 70  | 
assumes 2: "\<And>i a S. \<lbrakk>P a; finite S; \<forall>b\<in>S. P b\<rbrakk> \<Longrightarrow> P (node i a S)"  | 
| 27411 | 71  | 
shows "P x"  | 
72  | 
apply (induct x rule: nat_less_induct)  | 
|
73  | 
apply (case_tac n rule: node_cases)  | 
|
74  | 
apply (simp add: 1)  | 
|
75  | 
apply (simp add: 2 node_gt1 node_gt2)  | 
|
76  | 
done  | 
|
77  | 
||
78  | 
subsection {* Basis ordering *}
 | 
|
79  | 
||
80  | 
inductive  | 
|
81  | 
ubasis_le :: "nat \<Rightarrow> nat \<Rightarrow> bool"  | 
|
82  | 
where  | 
|
| 30505 | 83  | 
ubasis_le_refl: "ubasis_le a a"  | 
| 27411 | 84  | 
| ubasis_le_trans:  | 
| 30505 | 85  | 
"\<lbrakk>ubasis_le a b; ubasis_le b c\<rbrakk> \<Longrightarrow> ubasis_le a c"  | 
| 27411 | 86  | 
| ubasis_le_lower:  | 
| 30505 | 87  | 
"finite S \<Longrightarrow> ubasis_le a (node i a S)"  | 
| 27411 | 88  | 
| ubasis_le_upper:  | 
| 30505 | 89  | 
"\<lbrakk>finite S; b \<in> S; ubasis_le a b\<rbrakk> \<Longrightarrow> ubasis_le (node i a S) b"  | 
| 27411 | 90  | 
|
91  | 
lemma ubasis_le_minimal: "ubasis_le 0 x"  | 
|
92  | 
apply (induct x rule: node_induct)  | 
|
93  | 
apply (rule ubasis_le_refl)  | 
|
94  | 
apply (erule ubasis_le_trans)  | 
|
95  | 
apply (erule ubasis_le_lower)  | 
|
96  | 
done  | 
|
97  | 
||
98  | 
subsubsection {* Generic take function *}
 | 
|
99  | 
||
100  | 
function  | 
|
101  | 
ubasis_until :: "(ubasis \<Rightarrow> bool) \<Rightarrow> ubasis \<Rightarrow> ubasis"  | 
|
102  | 
where  | 
|
103  | 
"ubasis_until P 0 = 0"  | 
|
| 30505 | 104  | 
| "finite S \<Longrightarrow> ubasis_until P (node i a S) =  | 
105  | 
(if P (node i a S) then node i a S else ubasis_until P a)"  | 
|
| 27411 | 106  | 
apply clarify  | 
107  | 
apply (rule_tac x=b in node_cases)  | 
|
108  | 
apply simp  | 
|
109  | 
apply simp  | 
|
110  | 
apply fast  | 
|
111  | 
apply simp  | 
|
112  | 
apply simp  | 
|
113  | 
apply simp  | 
|
114  | 
done  | 
|
115  | 
||
116  | 
termination ubasis_until  | 
|
117  | 
apply (relation "measure snd")  | 
|
118  | 
apply (rule wf_measure)  | 
|
119  | 
apply (simp add: node_gt1)  | 
|
120  | 
done  | 
|
121  | 
||
122  | 
lemma ubasis_until: "P 0 \<Longrightarrow> P (ubasis_until P x)"  | 
|
123  | 
by (induct x rule: node_induct) simp_all  | 
|
124  | 
||
125  | 
lemma ubasis_until': "0 < ubasis_until P x \<Longrightarrow> P (ubasis_until P x)"  | 
|
126  | 
by (induct x rule: node_induct) auto  | 
|
127  | 
||
128  | 
lemma ubasis_until_same: "P x \<Longrightarrow> ubasis_until P x = x"  | 
|
129  | 
by (induct x rule: node_induct) simp_all  | 
|
130  | 
||
131  | 
lemma ubasis_until_idem:  | 
|
132  | 
"P 0 \<Longrightarrow> ubasis_until P (ubasis_until P x) = ubasis_until P x"  | 
|
133  | 
by (rule ubasis_until_same [OF ubasis_until])  | 
|
134  | 
||
135  | 
lemma ubasis_until_0:  | 
|
136  | 
"\<forall>x. x \<noteq> 0 \<longrightarrow> \<not> P x \<Longrightarrow> ubasis_until P x = 0"  | 
|
137  | 
by (induct x rule: node_induct) simp_all  | 
|
138  | 
||
139  | 
lemma ubasis_until_less: "ubasis_le (ubasis_until P x) x"  | 
|
140  | 
apply (induct x rule: node_induct)  | 
|
141  | 
apply (simp add: ubasis_le_refl)  | 
|
142  | 
apply (simp add: ubasis_le_refl)  | 
|
143  | 
apply (rule impI)  | 
|
144  | 
apply (erule ubasis_le_trans)  | 
|
145  | 
apply (erule ubasis_le_lower)  | 
|
146  | 
done  | 
|
147  | 
||
148  | 
lemma ubasis_until_chain:  | 
|
149  | 
assumes PQ: "\<And>x. P x \<Longrightarrow> Q x"  | 
|
150  | 
shows "ubasis_le (ubasis_until P x) (ubasis_until Q x)"  | 
|
151  | 
apply (induct x rule: node_induct)  | 
|
152  | 
apply (simp add: ubasis_le_refl)  | 
|
153  | 
apply (simp add: ubasis_le_refl)  | 
|
154  | 
apply (simp add: PQ)  | 
|
155  | 
apply clarify  | 
|
156  | 
apply (rule ubasis_le_trans)  | 
|
157  | 
apply (rule ubasis_until_less)  | 
|
158  | 
apply (erule ubasis_le_lower)  | 
|
159  | 
done  | 
|
160  | 
||
161  | 
lemma ubasis_until_mono:  | 
|
| 30505 | 162  | 
assumes "\<And>i a S b. \<lbrakk>finite S; P (node i a S); b \<in> S; ubasis_le a b\<rbrakk> \<Longrightarrow> P b"  | 
163  | 
shows "ubasis_le a b \<Longrightarrow> ubasis_le (ubasis_until P a) (ubasis_until P b)"  | 
|
| 30561 | 164  | 
proof (induct set: ubasis_le)  | 
165  | 
case (ubasis_le_refl a) show ?case by (rule ubasis_le.ubasis_le_refl)  | 
|
166  | 
next  | 
|
167  | 
case (ubasis_le_trans a b c) thus ?case by - (rule ubasis_le.ubasis_le_trans)  | 
|
168  | 
next  | 
|
169  | 
case (ubasis_le_lower S a i) thus ?case  | 
|
170  | 
apply (clarsimp simp add: ubasis_le_refl)  | 
|
171  | 
apply (rule ubasis_le_trans [OF ubasis_until_less])  | 
|
172  | 
apply (erule ubasis_le.ubasis_le_lower)  | 
|
173  | 
done  | 
|
174  | 
next  | 
|
175  | 
case (ubasis_le_upper S b a i) thus ?case  | 
|
176  | 
apply clarsimp  | 
|
177  | 
apply (subst ubasis_until_same)  | 
|
178  | 
apply (erule (3) prems)  | 
|
179  | 
apply (erule (2) ubasis_le.ubasis_le_upper)  | 
|
180  | 
done  | 
|
181  | 
qed  | 
|
| 27411 | 182  | 
|
183  | 
lemma finite_range_ubasis_until:  | 
|
184  | 
  "finite {x. P x} \<Longrightarrow> finite (range (ubasis_until P))"
 | 
|
185  | 
apply (rule finite_subset [where B="insert 0 {x. P x}"])
 | 
|
186  | 
apply (clarsimp simp add: ubasis_until')  | 
|
187  | 
apply simp  | 
|
188  | 
done  | 
|
189  | 
||
| 
35900
 
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
 
huffman 
parents: 
35794 
diff
changeset
 | 
190  | 
subsubsection {* Take function for \emph{ubasis} *}
 | 
| 27411 | 191  | 
|
192  | 
definition  | 
|
193  | 
ubasis_take :: "nat \<Rightarrow> ubasis \<Rightarrow> ubasis"  | 
|
194  | 
where  | 
|
195  | 
"ubasis_take n = ubasis_until (\<lambda>x. x \<le> n)"  | 
|
196  | 
||
197  | 
lemma ubasis_take_le: "ubasis_take n x \<le> n"  | 
|
198  | 
unfolding ubasis_take_def by (rule ubasis_until, rule le0)  | 
|
199  | 
||
200  | 
lemma ubasis_take_same: "x \<le> n \<Longrightarrow> ubasis_take n x = x"  | 
|
201  | 
unfolding ubasis_take_def by (rule ubasis_until_same)  | 
|
202  | 
||
203  | 
lemma ubasis_take_idem: "ubasis_take n (ubasis_take n x) = ubasis_take n x"  | 
|
204  | 
by (rule ubasis_take_same [OF ubasis_take_le])  | 
|
205  | 
||
206  | 
lemma ubasis_take_0 [simp]: "ubasis_take 0 x = 0"  | 
|
207  | 
unfolding ubasis_take_def by (simp add: ubasis_until_0)  | 
|
208  | 
||
209  | 
lemma ubasis_take_less: "ubasis_le (ubasis_take n x) x"  | 
|
210  | 
unfolding ubasis_take_def by (rule ubasis_until_less)  | 
|
211  | 
||
212  | 
lemma ubasis_take_chain: "ubasis_le (ubasis_take n x) (ubasis_take (Suc n) x)"  | 
|
213  | 
unfolding ubasis_take_def by (rule ubasis_until_chain) simp  | 
|
214  | 
||
215  | 
lemma ubasis_take_mono:  | 
|
216  | 
assumes "ubasis_le x y"  | 
|
217  | 
shows "ubasis_le (ubasis_take n x) (ubasis_take n y)"  | 
|
218  | 
unfolding ubasis_take_def  | 
|
219  | 
apply (rule ubasis_until_mono [OF _ prems])  | 
|
220  | 
apply (frule (2) order_less_le_trans [OF node_gt2])  | 
|
221  | 
apply (erule order_less_imp_le)  | 
|
222  | 
done  | 
|
223  | 
||
224  | 
lemma finite_range_ubasis_take: "finite (range (ubasis_take n))"  | 
|
225  | 
apply (rule finite_subset [where B="{..n}"])
 | 
|
226  | 
apply (simp add: subset_eq ubasis_take_le)  | 
|
227  | 
apply simp  | 
|
228  | 
done  | 
|
229  | 
||
230  | 
lemma ubasis_take_covers: "\<exists>n. ubasis_take n x = x"  | 
|
231  | 
apply (rule exI [where x=x])  | 
|
232  | 
apply (simp add: ubasis_take_same)  | 
|
233  | 
done  | 
|
234  | 
||
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
30561 
diff
changeset
 | 
235  | 
interpretation udom: preorder ubasis_le  | 
| 27411 | 236  | 
apply default  | 
237  | 
apply (rule ubasis_le_refl)  | 
|
238  | 
apply (erule (1) ubasis_le_trans)  | 
|
239  | 
done  | 
|
240  | 
||
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
30561 
diff
changeset
 | 
241  | 
interpretation udom: basis_take ubasis_le ubasis_take  | 
| 27411 | 242  | 
apply default  | 
243  | 
apply (rule ubasis_take_less)  | 
|
244  | 
apply (rule ubasis_take_idem)  | 
|
245  | 
apply (erule ubasis_take_mono)  | 
|
246  | 
apply (rule ubasis_take_chain)  | 
|
247  | 
apply (rule finite_range_ubasis_take)  | 
|
248  | 
apply (rule ubasis_take_covers)  | 
|
249  | 
done  | 
|
250  | 
||
251  | 
subsection {* Defining the universal domain by ideal completion *}
 | 
|
252  | 
||
253  | 
typedef (open) udom = "{S. udom.ideal S}"
 | 
|
254  | 
by (fast intro: udom.ideal_principal)  | 
|
255  | 
||
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
256  | 
instantiation udom :: below  | 
| 27411 | 257  | 
begin  | 
258  | 
||
259  | 
definition  | 
|
260  | 
"x \<sqsubseteq> y \<longleftrightarrow> Rep_udom x \<subseteq> Rep_udom y"  | 
|
261  | 
||
262  | 
instance ..  | 
|
263  | 
end  | 
|
264  | 
||
265  | 
instance udom :: po  | 
|
266  | 
by (rule udom.typedef_ideal_po  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
267  | 
[OF type_definition_udom below_udom_def])  | 
| 27411 | 268  | 
|
269  | 
instance udom :: cpo  | 
|
270  | 
by (rule udom.typedef_ideal_cpo  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
271  | 
[OF type_definition_udom below_udom_def])  | 
| 27411 | 272  | 
|
273  | 
lemma Rep_udom_lub:  | 
|
274  | 
"chain Y \<Longrightarrow> Rep_udom (\<Squnion>i. Y i) = (\<Union>i. Rep_udom (Y i))"  | 
|
275  | 
by (rule udom.typedef_ideal_rep_contlub  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
276  | 
[OF type_definition_udom below_udom_def])  | 
| 27411 | 277  | 
|
278  | 
lemma ideal_Rep_udom: "udom.ideal (Rep_udom xs)"  | 
|
279  | 
by (rule Rep_udom [unfolded mem_Collect_eq])  | 
|
280  | 
||
281  | 
definition  | 
|
282  | 
udom_principal :: "nat \<Rightarrow> udom" where  | 
|
283  | 
  "udom_principal t = Abs_udom {u. ubasis_le u t}"
 | 
|
284  | 
||
285  | 
lemma Rep_udom_principal:  | 
|
286  | 
  "Rep_udom (udom_principal t) = {u. ubasis_le u t}"
 | 
|
287  | 
unfolding udom_principal_def  | 
|
288  | 
by (simp add: Abs_udom_inverse udom.ideal_principal)  | 
|
289  | 
||
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
30561 
diff
changeset
 | 
290  | 
interpretation udom:  | 
| 29237 | 291  | 
ideal_completion ubasis_le ubasis_take udom_principal Rep_udom  | 
| 27411 | 292  | 
apply unfold_locales  | 
293  | 
apply (rule ideal_Rep_udom)  | 
|
294  | 
apply (erule Rep_udom_lub)  | 
|
295  | 
apply (rule Rep_udom_principal)  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
296  | 
apply (simp only: below_udom_def)  | 
| 27411 | 297  | 
done  | 
298  | 
||
299  | 
text {* Universal domain is pointed *}
 | 
|
300  | 
||
301  | 
lemma udom_minimal: "udom_principal 0 \<sqsubseteq> x"  | 
|
302  | 
apply (induct x rule: udom.principal_induct)  | 
|
303  | 
apply (simp, simp add: ubasis_le_minimal)  | 
|
304  | 
done  | 
|
305  | 
||
306  | 
instance udom :: pcpo  | 
|
307  | 
by intro_classes (fast intro: udom_minimal)  | 
|
308  | 
||
309  | 
lemma inst_udom_pcpo: "\<bottom> = udom_principal 0"  | 
|
310  | 
by (rule udom_minimal [THEN UU_I, symmetric])  | 
|
311  | 
||
312  | 
text {* Universal domain is bifinite *}
 | 
|
313  | 
||
314  | 
instantiation udom :: bifinite  | 
|
315  | 
begin  | 
|
316  | 
||
317  | 
definition  | 
|
318  | 
approx_udom_def: "approx = udom.completion_approx"  | 
|
319  | 
||
320  | 
instance  | 
|
321  | 
apply (intro_classes, unfold approx_udom_def)  | 
|
322  | 
apply (rule udom.chain_completion_approx)  | 
|
323  | 
apply (rule udom.lub_completion_approx)  | 
|
324  | 
apply (rule udom.completion_approx_idem)  | 
|
325  | 
apply (rule udom.finite_fixes_completion_approx)  | 
|
326  | 
done  | 
|
327  | 
||
328  | 
end  | 
|
329  | 
||
330  | 
lemma approx_udom_principal [simp]:  | 
|
331  | 
"approx n\<cdot>(udom_principal x) = udom_principal (ubasis_take n x)"  | 
|
332  | 
unfolding approx_udom_def  | 
|
333  | 
by (rule udom.completion_approx_principal)  | 
|
334  | 
||
335  | 
lemma approx_eq_udom_principal:  | 
|
336  | 
"\<exists>a\<in>Rep_udom x. approx n\<cdot>x = udom_principal (ubasis_take n a)"  | 
|
337  | 
unfolding approx_udom_def  | 
|
338  | 
by (rule udom.completion_approx_eq_principal)  | 
|
339  | 
||
340  | 
||
| 
35900
 
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
 
huffman 
parents: 
35794 
diff
changeset
 | 
341  | 
subsection {* Universality of \emph{udom} *}
 | 
| 27411 | 342  | 
|
| 36452 | 343  | 
default_sort bifinite  | 
| 27411 | 344  | 
|
345  | 
subsubsection {* Choosing a maximal element from a finite set *}
 | 
|
346  | 
||
347  | 
lemma finite_has_maximal:  | 
|
348  | 
fixes A :: "'a::po set"  | 
|
349  | 
  shows "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> \<exists>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y"
 | 
|
350  | 
proof (induct rule: finite_ne_induct)  | 
|
351  | 
case (singleton x)  | 
|
352  | 
show ?case by simp  | 
|
353  | 
next  | 
|
354  | 
case (insert a A)  | 
|
355  | 
from `\<exists>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y`  | 
|
356  | 
obtain x where x: "x \<in> A"  | 
|
357  | 
and x_eq: "\<And>y. \<lbrakk>y \<in> A; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> x = y" by fast  | 
|
358  | 
show ?case  | 
|
359  | 
proof (intro bexI ballI impI)  | 
|
360  | 
fix y  | 
|
361  | 
assume "y \<in> insert a A" and "(if x \<sqsubseteq> a then a else x) \<sqsubseteq> y"  | 
|
362  | 
thus "(if x \<sqsubseteq> a then a else x) = y"  | 
|
363  | 
apply auto  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
364  | 
apply (frule (1) below_trans)  | 
| 27411 | 365  | 
apply (frule (1) x_eq)  | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
366  | 
apply (rule below_antisym, assumption)  | 
| 27411 | 367  | 
apply simp  | 
368  | 
apply (erule (1) x_eq)  | 
|
369  | 
done  | 
|
370  | 
next  | 
|
371  | 
show "(if x \<sqsubseteq> a then a else x) \<in> insert a A"  | 
|
372  | 
by (simp add: x)  | 
|
373  | 
qed  | 
|
374  | 
qed  | 
|
375  | 
||
376  | 
definition  | 
|
377  | 
choose :: "'a compact_basis set \<Rightarrow> 'a compact_basis"  | 
|
378  | 
where  | 
|
379  | 
  "choose A = (SOME x. x \<in> {x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y})"
 | 
|
380  | 
||
381  | 
lemma choose_lemma:  | 
|
382  | 
  "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> choose A \<in> {x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y}"
 | 
|
383  | 
unfolding choose_def  | 
|
384  | 
apply (rule someI_ex)  | 
|
385  | 
apply (frule (1) finite_has_maximal, fast)  | 
|
386  | 
done  | 
|
387  | 
||
388  | 
lemma maximal_choose:  | 
|
389  | 
"\<lbrakk>finite A; y \<in> A; choose A \<sqsubseteq> y\<rbrakk> \<Longrightarrow> choose A = y"  | 
|
390  | 
apply (cases "A = {}", simp)
 | 
|
391  | 
apply (frule (1) choose_lemma, simp)  | 
|
392  | 
done  | 
|
393  | 
||
394  | 
lemma choose_in: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> choose A \<in> A"
 | 
|
395  | 
by (frule (1) choose_lemma, simp)  | 
|
396  | 
||
397  | 
function  | 
|
398  | 
choose_pos :: "'a compact_basis set \<Rightarrow> 'a compact_basis \<Rightarrow> nat"  | 
|
399  | 
where  | 
|
400  | 
"choose_pos A x =  | 
|
401  | 
(if finite A \<and> x \<in> A \<and> x \<noteq> choose A  | 
|
402  | 
      then Suc (choose_pos (A - {choose A}) x) else 0)"
 | 
|
403  | 
by auto  | 
|
404  | 
||
405  | 
termination choose_pos  | 
|
406  | 
apply (relation "measure (card \<circ> fst)", simp)  | 
|
407  | 
apply clarsimp  | 
|
408  | 
apply (rule card_Diff1_less)  | 
|
409  | 
apply assumption  | 
|
410  | 
apply (erule choose_in)  | 
|
411  | 
apply clarsimp  | 
|
412  | 
done  | 
|
413  | 
||
414  | 
declare choose_pos.simps [simp del]  | 
|
415  | 
||
416  | 
lemma choose_pos_choose: "finite A \<Longrightarrow> choose_pos A (choose A) = 0"  | 
|
417  | 
by (simp add: choose_pos.simps)  | 
|
418  | 
||
419  | 
lemma inj_on_choose_pos [OF refl]:  | 
|
420  | 
"\<lbrakk>card A = n; finite A\<rbrakk> \<Longrightarrow> inj_on (choose_pos A) A"  | 
|
421  | 
apply (induct n arbitrary: A)  | 
|
422  | 
apply simp  | 
|
423  | 
 apply (case_tac "A = {}", simp)
 | 
|
424  | 
apply (frule (1) choose_in)  | 
|
425  | 
apply (rule inj_onI)  | 
|
426  | 
 apply (drule_tac x="A - {choose A}" in meta_spec, simp)
 | 
|
427  | 
apply (simp add: choose_pos.simps)  | 
|
428  | 
apply (simp split: split_if_asm)  | 
|
429  | 
apply (erule (1) inj_onD, simp, simp)  | 
|
430  | 
done  | 
|
431  | 
||
432  | 
lemma choose_pos_bounded [OF refl]:  | 
|
433  | 
"\<lbrakk>card A = n; finite A; x \<in> A\<rbrakk> \<Longrightarrow> choose_pos A x < n"  | 
|
434  | 
apply (induct n arbitrary: A)  | 
|
435  | 
apply simp  | 
|
436  | 
 apply (case_tac "A = {}", simp)
 | 
|
437  | 
apply (frule (1) choose_in)  | 
|
438  | 
apply (subst choose_pos.simps)  | 
|
439  | 
apply simp  | 
|
440  | 
done  | 
|
441  | 
||
442  | 
lemma choose_pos_lessD:  | 
|
443  | 
"\<lbrakk>choose_pos A x < choose_pos A y; finite A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<not> x \<sqsubseteq> y"  | 
|
444  | 
apply (induct A x arbitrary: y rule: choose_pos.induct)  | 
|
445  | 
apply simp  | 
|
446  | 
apply (case_tac "x = choose A")  | 
|
447  | 
apply simp  | 
|
448  | 
apply (rule notI)  | 
|
449  | 
apply (frule (2) maximal_choose)  | 
|
450  | 
apply simp  | 
|
451  | 
apply (case_tac "y = choose A")  | 
|
452  | 
apply (simp add: choose_pos_choose)  | 
|
453  | 
apply (drule_tac x=y in meta_spec)  | 
|
454  | 
apply simp  | 
|
455  | 
apply (erule meta_mp)  | 
|
456  | 
apply (simp add: choose_pos.simps)  | 
|
457  | 
done  | 
|
458  | 
||
459  | 
subsubsection {* Rank of basis elements *}
 | 
|
460  | 
||
461  | 
primrec  | 
|
462  | 
cb_take :: "nat \<Rightarrow> 'a compact_basis \<Rightarrow> 'a compact_basis"  | 
|
463  | 
where  | 
|
464  | 
"cb_take 0 = (\<lambda>x. compact_bot)"  | 
|
465  | 
| "cb_take (Suc n) = compact_take n"  | 
|
466  | 
||
467  | 
lemma cb_take_covers: "\<exists>n. cb_take n x = x"  | 
|
468  | 
apply (rule exE [OF compact_basis.take_covers [where a=x]])  | 
|
469  | 
apply (rename_tac n, rule_tac x="Suc n" in exI, simp)  | 
|
470  | 
done  | 
|
471  | 
||
472  | 
lemma cb_take_less: "cb_take n x \<sqsubseteq> x"  | 
|
473  | 
by (cases n, simp, simp add: compact_basis.take_less)  | 
|
474  | 
||
475  | 
lemma cb_take_idem: "cb_take n (cb_take n x) = cb_take n x"  | 
|
476  | 
by (cases n, simp, simp add: compact_basis.take_take)  | 
|
477  | 
||
478  | 
lemma cb_take_mono: "x \<sqsubseteq> y \<Longrightarrow> cb_take n x \<sqsubseteq> cb_take n y"  | 
|
479  | 
by (cases n, simp, simp add: compact_basis.take_mono)  | 
|
480  | 
||
481  | 
lemma cb_take_chain_le: "m \<le> n \<Longrightarrow> cb_take m x \<sqsubseteq> cb_take n x"  | 
|
482  | 
apply (cases m, simp)  | 
|
483  | 
apply (cases n, simp)  | 
|
484  | 
apply (simp add: compact_basis.take_chain_le)  | 
|
485  | 
done  | 
|
486  | 
||
487  | 
lemma range_const: "range (\<lambda>x. c) = {c}"
 | 
|
488  | 
by auto  | 
|
489  | 
||
490  | 
lemma finite_range_cb_take: "finite (range (cb_take n))"  | 
|
491  | 
apply (cases n)  | 
|
492  | 
apply (simp add: range_const)  | 
|
493  | 
apply (simp add: compact_basis.finite_range_take)  | 
|
494  | 
done  | 
|
495  | 
||
496  | 
definition  | 
|
497  | 
rank :: "'a compact_basis \<Rightarrow> nat"  | 
|
498  | 
where  | 
|
499  | 
"rank x = (LEAST n. cb_take n x = x)"  | 
|
500  | 
||
501  | 
lemma compact_approx_rank: "cb_take (rank x) x = x"  | 
|
502  | 
unfolding rank_def  | 
|
503  | 
apply (rule LeastI_ex)  | 
|
504  | 
apply (rule cb_take_covers)  | 
|
505  | 
done  | 
|
506  | 
||
507  | 
lemma rank_leD: "rank x \<le> n \<Longrightarrow> cb_take n x = x"  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
508  | 
apply (rule below_antisym [OF cb_take_less])  | 
| 27411 | 509  | 
apply (subst compact_approx_rank [symmetric])  | 
510  | 
apply (erule cb_take_chain_le)  | 
|
511  | 
done  | 
|
512  | 
||
513  | 
lemma rank_leI: "cb_take n x = x \<Longrightarrow> rank x \<le> n"  | 
|
514  | 
unfolding rank_def by (rule Least_le)  | 
|
515  | 
||
516  | 
lemma rank_le_iff: "rank x \<le> n \<longleftrightarrow> cb_take n x = x"  | 
|
517  | 
by (rule iffI [OF rank_leD rank_leI])  | 
|
518  | 
||
| 30505 | 519  | 
lemma rank_compact_bot [simp]: "rank compact_bot = 0"  | 
520  | 
using rank_leI [of 0 compact_bot] by simp  | 
|
521  | 
||
522  | 
lemma rank_eq_0_iff [simp]: "rank x = 0 \<longleftrightarrow> x = compact_bot"  | 
|
523  | 
using rank_le_iff [of x 0] by auto  | 
|
524  | 
||
| 27411 | 525  | 
definition  | 
526  | 
rank_le :: "'a compact_basis \<Rightarrow> 'a compact_basis set"  | 
|
527  | 
where  | 
|
528  | 
  "rank_le x = {y. rank y \<le> rank x}"
 | 
|
529  | 
||
530  | 
definition  | 
|
531  | 
rank_lt :: "'a compact_basis \<Rightarrow> 'a compact_basis set"  | 
|
532  | 
where  | 
|
533  | 
  "rank_lt x = {y. rank y < rank x}"
 | 
|
534  | 
||
535  | 
definition  | 
|
536  | 
rank_eq :: "'a compact_basis \<Rightarrow> 'a compact_basis set"  | 
|
537  | 
where  | 
|
538  | 
  "rank_eq x = {y. rank y = rank x}"
 | 
|
539  | 
||
540  | 
lemma rank_eq_cong: "rank x = rank y \<Longrightarrow> rank_eq x = rank_eq y"  | 
|
541  | 
unfolding rank_eq_def by simp  | 
|
542  | 
||
543  | 
lemma rank_lt_cong: "rank x = rank y \<Longrightarrow> rank_lt x = rank_lt y"  | 
|
544  | 
unfolding rank_lt_def by simp  | 
|
545  | 
||
546  | 
lemma rank_eq_subset: "rank_eq x \<subseteq> rank_le x"  | 
|
547  | 
unfolding rank_eq_def rank_le_def by auto  | 
|
548  | 
||
549  | 
lemma rank_lt_subset: "rank_lt x \<subseteq> rank_le x"  | 
|
550  | 
unfolding rank_lt_def rank_le_def by auto  | 
|
551  | 
||
552  | 
lemma finite_rank_le: "finite (rank_le x)"  | 
|
553  | 
unfolding rank_le_def  | 
|
554  | 
apply (rule finite_subset [where B="range (cb_take (rank x))"])  | 
|
555  | 
apply clarify  | 
|
556  | 
apply (rule range_eqI)  | 
|
557  | 
apply (erule rank_leD [symmetric])  | 
|
558  | 
apply (rule finite_range_cb_take)  | 
|
559  | 
done  | 
|
560  | 
||
561  | 
lemma finite_rank_eq: "finite (rank_eq x)"  | 
|
562  | 
by (rule finite_subset [OF rank_eq_subset finite_rank_le])  | 
|
563  | 
||
564  | 
lemma finite_rank_lt: "finite (rank_lt x)"  | 
|
565  | 
by (rule finite_subset [OF rank_lt_subset finite_rank_le])  | 
|
566  | 
||
567  | 
lemma rank_lt_Int_rank_eq: "rank_lt x \<inter> rank_eq x = {}"
 | 
|
568  | 
unfolding rank_lt_def rank_eq_def rank_le_def by auto  | 
|
569  | 
||
570  | 
lemma rank_lt_Un_rank_eq: "rank_lt x \<union> rank_eq x = rank_le x"  | 
|
571  | 
unfolding rank_lt_def rank_eq_def rank_le_def by auto  | 
|
572  | 
||
| 30505 | 573  | 
subsubsection {* Sequencing basis elements *}
 | 
| 27411 | 574  | 
|
575  | 
definition  | 
|
| 30505 | 576  | 
place :: "'a compact_basis \<Rightarrow> nat"  | 
| 27411 | 577  | 
where  | 
| 30505 | 578  | 
"place x = card (rank_lt x) + choose_pos (rank_eq x) x"  | 
| 27411 | 579  | 
|
| 30505 | 580  | 
lemma place_bounded: "place x < card (rank_le x)"  | 
581  | 
unfolding place_def  | 
|
| 27411 | 582  | 
apply (rule ord_less_eq_trans)  | 
583  | 
apply (rule add_strict_left_mono)  | 
|
584  | 
apply (rule choose_pos_bounded)  | 
|
585  | 
apply (rule finite_rank_eq)  | 
|
586  | 
apply (simp add: rank_eq_def)  | 
|
587  | 
apply (subst card_Un_disjoint [symmetric])  | 
|
588  | 
apply (rule finite_rank_lt)  | 
|
589  | 
apply (rule finite_rank_eq)  | 
|
590  | 
apply (rule rank_lt_Int_rank_eq)  | 
|
591  | 
apply (simp add: rank_lt_Un_rank_eq)  | 
|
592  | 
done  | 
|
593  | 
||
| 30505 | 594  | 
lemma place_ge: "card (rank_lt x) \<le> place x"  | 
595  | 
unfolding place_def by simp  | 
|
| 27411 | 596  | 
|
| 30505 | 597  | 
lemma place_rank_mono:  | 
| 27411 | 598  | 
fixes x y :: "'a compact_basis"  | 
| 30505 | 599  | 
shows "rank x < rank y \<Longrightarrow> place x < place y"  | 
600  | 
apply (rule less_le_trans [OF place_bounded])  | 
|
601  | 
apply (rule order_trans [OF _ place_ge])  | 
|
| 27411 | 602  | 
apply (rule card_mono)  | 
603  | 
apply (rule finite_rank_lt)  | 
|
604  | 
apply (simp add: rank_le_def rank_lt_def subset_eq)  | 
|
605  | 
done  | 
|
606  | 
||
| 30505 | 607  | 
lemma place_eqD: "place x = place y \<Longrightarrow> x = y"  | 
| 27411 | 608  | 
apply (rule linorder_cases [where x="rank x" and y="rank y"])  | 
| 30505 | 609  | 
apply (drule place_rank_mono, simp)  | 
610  | 
apply (simp add: place_def)  | 
|
| 27411 | 611  | 
apply (rule inj_on_choose_pos [where A="rank_eq x", THEN inj_onD])  | 
612  | 
apply (rule finite_rank_eq)  | 
|
613  | 
apply (simp cong: rank_lt_cong rank_eq_cong)  | 
|
614  | 
apply (simp add: rank_eq_def)  | 
|
615  | 
apply (simp add: rank_eq_def)  | 
|
| 30505 | 616  | 
apply (drule place_rank_mono, simp)  | 
| 27411 | 617  | 
done  | 
618  | 
||
| 30505 | 619  | 
lemma inj_place: "inj place"  | 
620  | 
by (rule inj_onI, erule place_eqD)  | 
|
| 27411 | 621  | 
|
622  | 
subsubsection {* Embedding and projection on basis elements *}
 | 
|
623  | 
||
| 30505 | 624  | 
definition  | 
625  | 
sub :: "'a compact_basis \<Rightarrow> 'a compact_basis"  | 
|
626  | 
where  | 
|
627  | 
"sub x = (case rank x of 0 \<Rightarrow> compact_bot | Suc k \<Rightarrow> cb_take k x)"  | 
|
628  | 
||
629  | 
lemma rank_sub_less: "x \<noteq> compact_bot \<Longrightarrow> rank (sub x) < rank x"  | 
|
630  | 
unfolding sub_def  | 
|
631  | 
apply (cases "rank x", simp)  | 
|
632  | 
apply (simp add: less_Suc_eq_le)  | 
|
633  | 
apply (rule rank_leI)  | 
|
634  | 
apply (rule cb_take_idem)  | 
|
635  | 
done  | 
|
636  | 
||
637  | 
lemma place_sub_less: "x \<noteq> compact_bot \<Longrightarrow> place (sub x) < place x"  | 
|
638  | 
apply (rule place_rank_mono)  | 
|
639  | 
apply (erule rank_sub_less)  | 
|
640  | 
done  | 
|
641  | 
||
642  | 
lemma sub_below: "sub x \<sqsubseteq> x"  | 
|
643  | 
unfolding sub_def by (cases "rank x", simp_all add: cb_take_less)  | 
|
644  | 
||
645  | 
lemma rank_less_imp_below_sub: "\<lbrakk>x \<sqsubseteq> y; rank x < rank y\<rbrakk> \<Longrightarrow> x \<sqsubseteq> sub y"  | 
|
646  | 
unfolding sub_def  | 
|
647  | 
apply (cases "rank y", simp)  | 
|
648  | 
apply (simp add: less_Suc_eq_le)  | 
|
649  | 
apply (subgoal_tac "cb_take nat x \<sqsubseteq> cb_take nat y")  | 
|
650  | 
apply (simp add: rank_leD)  | 
|
651  | 
apply (erule cb_take_mono)  | 
|
652  | 
done  | 
|
653  | 
||
| 27411 | 654  | 
function  | 
655  | 
basis_emb :: "'a compact_basis \<Rightarrow> ubasis"  | 
|
656  | 
where  | 
|
657  | 
"basis_emb x = (if x = compact_bot then 0 else  | 
|
| 30505 | 658  | 
node (place x) (basis_emb (sub x))  | 
659  | 
      (basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y}))"
 | 
|
| 27411 | 660  | 
by auto  | 
661  | 
||
662  | 
termination basis_emb  | 
|
| 30505 | 663  | 
apply (relation "measure place", simp)  | 
664  | 
apply (simp add: place_sub_less)  | 
|
| 27411 | 665  | 
apply simp  | 
666  | 
done  | 
|
667  | 
||
668  | 
declare basis_emb.simps [simp del]  | 
|
669  | 
||
670  | 
lemma basis_emb_compact_bot [simp]: "basis_emb compact_bot = 0"  | 
|
671  | 
by (simp add: basis_emb.simps)  | 
|
672  | 
||
| 30505 | 673  | 
lemma fin1: "finite {y. place y < place x \<and> x \<sqsubseteq> y}"
 | 
| 27411 | 674  | 
apply (subst Collect_conj_eq)  | 
675  | 
apply (rule finite_Int)  | 
|
676  | 
apply (rule disjI1)  | 
|
| 30505 | 677  | 
apply (subgoal_tac "finite (place -` {n. n < place x})", simp)
 | 
678  | 
apply (rule finite_vimageI [OF _ inj_place])  | 
|
| 27411 | 679  | 
apply (simp add: lessThan_def [symmetric])  | 
680  | 
done  | 
|
681  | 
||
| 30505 | 682  | 
lemma fin2: "finite (basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y})"
 | 
| 27411 | 683  | 
by (rule finite_imageI [OF fin1])  | 
684  | 
||
| 30505 | 685  | 
lemma rank_place_mono:  | 
686  | 
"\<lbrakk>place x < place y; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> rank x < rank y"  | 
|
687  | 
apply (rule linorder_cases, assumption)  | 
|
688  | 
apply (simp add: place_def cong: rank_lt_cong rank_eq_cong)  | 
|
689  | 
apply (drule choose_pos_lessD)  | 
|
690  | 
apply (rule finite_rank_eq)  | 
|
691  | 
apply (simp add: rank_eq_def)  | 
|
692  | 
apply (simp add: rank_eq_def)  | 
|
693  | 
apply simp  | 
|
694  | 
apply (drule place_rank_mono, simp)  | 
|
695  | 
done  | 
|
696  | 
||
697  | 
lemma basis_emb_mono:  | 
|
698  | 
"x \<sqsubseteq> y \<Longrightarrow> ubasis_le (basis_emb x) (basis_emb y)"  | 
|
| 34915 | 699  | 
proof (induct "max (place x) (place y)" arbitrary: x y rule: less_induct)  | 
700  | 
case less  | 
|
| 30505 | 701  | 
show ?case proof (rule linorder_cases)  | 
702  | 
assume "place x < place y"  | 
|
703  | 
then have "rank x < rank y"  | 
|
704  | 
using `x \<sqsubseteq> y` by (rule rank_place_mono)  | 
|
705  | 
with `place x < place y` show ?case  | 
|
706  | 
apply (case_tac "y = compact_bot", simp)  | 
|
707  | 
apply (simp add: basis_emb.simps [of y])  | 
|
708  | 
apply (rule ubasis_le_trans [OF _ ubasis_le_lower [OF fin2]])  | 
|
| 34915 | 709  | 
apply (rule less)  | 
| 30505 | 710  | 
apply (simp add: less_max_iff_disj)  | 
711  | 
apply (erule place_sub_less)  | 
|
712  | 
apply (erule rank_less_imp_below_sub [OF `x \<sqsubseteq> y`])  | 
|
| 27411 | 713  | 
done  | 
| 30505 | 714  | 
next  | 
715  | 
assume "place x = place y"  | 
|
716  | 
hence "x = y" by (rule place_eqD)  | 
|
717  | 
thus ?case by (simp add: ubasis_le_refl)  | 
|
718  | 
next  | 
|
719  | 
assume "place x > place y"  | 
|
720  | 
with `x \<sqsubseteq> y` show ?case  | 
|
721  | 
apply (case_tac "x = compact_bot", simp add: ubasis_le_minimal)  | 
|
722  | 
apply (simp add: basis_emb.simps [of x])  | 
|
723  | 
apply (rule ubasis_le_upper [OF fin2], simp)  | 
|
| 34915 | 724  | 
apply (rule less)  | 
| 30505 | 725  | 
apply (simp add: less_max_iff_disj)  | 
726  | 
apply (erule place_sub_less)  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
727  | 
apply (erule rev_below_trans)  | 
| 30505 | 728  | 
apply (rule sub_below)  | 
729  | 
done  | 
|
| 27411 | 730  | 
qed  | 
731  | 
qed  | 
|
732  | 
||
733  | 
lemma inj_basis_emb: "inj basis_emb"  | 
|
734  | 
apply (rule inj_onI)  | 
|
735  | 
apply (case_tac "x = compact_bot")  | 
|
736  | 
apply (case_tac [!] "y = compact_bot")  | 
|
737  | 
apply simp  | 
|
738  | 
apply (simp add: basis_emb.simps)  | 
|
739  | 
apply (simp add: basis_emb.simps)  | 
|
740  | 
apply (simp add: basis_emb.simps)  | 
|
| 30505 | 741  | 
apply (simp add: fin2 inj_eq [OF inj_place])  | 
| 27411 | 742  | 
done  | 
743  | 
||
744  | 
definition  | 
|
| 30505 | 745  | 
basis_prj :: "ubasis \<Rightarrow> 'a compact_basis"  | 
| 27411 | 746  | 
where  | 
747  | 
"basis_prj x = inv basis_emb  | 
|
| 30505 | 748  | 
(ubasis_until (\<lambda>x. x \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> ubasis)) x)"  | 
| 27411 | 749  | 
|
750  | 
lemma basis_prj_basis_emb: "\<And>x. basis_prj (basis_emb x) = x"  | 
|
751  | 
unfolding basis_prj_def  | 
|
752  | 
apply (subst ubasis_until_same)  | 
|
753  | 
apply (rule rangeI)  | 
|
754  | 
apply (rule inv_f_f)  | 
|
755  | 
apply (rule inj_basis_emb)  | 
|
756  | 
done  | 
|
757  | 
||
758  | 
lemma basis_prj_node:  | 
|
| 30505 | 759  | 
"\<lbrakk>finite S; node i a S \<notin> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)\<rbrakk>  | 
760  | 
\<Longrightarrow> basis_prj (node i a S) = (basis_prj a :: 'a compact_basis)"  | 
|
| 27411 | 761  | 
unfolding basis_prj_def by simp  | 
762  | 
||
763  | 
lemma basis_prj_0: "basis_prj 0 = compact_bot"  | 
|
764  | 
apply (subst basis_emb_compact_bot [symmetric])  | 
|
765  | 
apply (rule basis_prj_basis_emb)  | 
|
766  | 
done  | 
|
767  | 
||
| 30505 | 768  | 
lemma node_eq_basis_emb_iff:  | 
769  | 
"finite S \<Longrightarrow> node i a S = basis_emb x \<longleftrightarrow>  | 
|
770  | 
x \<noteq> compact_bot \<and> i = place x \<and> a = basis_emb (sub x) \<and>  | 
|
771  | 
        S = basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y}"
 | 
|
772  | 
apply (cases "x = compact_bot", simp)  | 
|
773  | 
apply (simp add: basis_emb.simps [of x])  | 
|
774  | 
apply (simp add: fin2)  | 
|
| 27411 | 775  | 
done  | 
776  | 
||
| 30505 | 777  | 
lemma basis_prj_mono: "ubasis_le a b \<Longrightarrow> basis_prj a \<sqsubseteq> basis_prj b"  | 
778  | 
proof (induct a b rule: ubasis_le.induct)  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
779  | 
case (ubasis_le_refl a) show ?case by (rule below_refl)  | 
| 30505 | 780  | 
next  | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
781  | 
case (ubasis_le_trans a b c) thus ?case by - (rule below_trans)  | 
| 30505 | 782  | 
next  | 
783  | 
case (ubasis_le_lower S a i) thus ?case  | 
|
| 30561 | 784  | 
apply (cases "node i a S \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)")  | 
| 30505 | 785  | 
apply (erule rangeE, rename_tac x)  | 
786  | 
apply (simp add: basis_prj_basis_emb)  | 
|
787  | 
apply (simp add: node_eq_basis_emb_iff)  | 
|
788  | 
apply (simp add: basis_prj_basis_emb)  | 
|
789  | 
apply (rule sub_below)  | 
|
790  | 
apply (simp add: basis_prj_node)  | 
|
791  | 
done  | 
|
792  | 
next  | 
|
793  | 
case (ubasis_le_upper S b a i) thus ?case  | 
|
| 30561 | 794  | 
apply (cases "node i a S \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)")  | 
| 30505 | 795  | 
apply (erule rangeE, rename_tac x)  | 
796  | 
apply (simp add: basis_prj_basis_emb)  | 
|
797  | 
apply (clarsimp simp add: node_eq_basis_emb_iff)  | 
|
798  | 
apply (simp add: basis_prj_basis_emb)  | 
|
799  | 
apply (simp add: basis_prj_node)  | 
|
800  | 
done  | 
|
801  | 
qed  | 
|
802  | 
||
| 27411 | 803  | 
lemma basis_emb_prj_less: "ubasis_le (basis_emb (basis_prj x)) x"  | 
804  | 
unfolding basis_prj_def  | 
|
| 
33071
 
362f59fe5092
renamed f_inv_onto_f to f_inv_into_f (cf. 764547b68538);
 
wenzelm 
parents: 
32997 
diff
changeset
 | 
805  | 
apply (subst f_inv_into_f [where f=basis_emb])  | 
| 27411 | 806  | 
apply (rule ubasis_until)  | 
807  | 
apply (rule range_eqI [where x=compact_bot])  | 
|
808  | 
apply simp  | 
|
809  | 
apply (rule ubasis_until_less)  | 
|
810  | 
done  | 
|
811  | 
||
| 
36176
 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 
wenzelm 
parents: 
35900 
diff
changeset
 | 
812  | 
hide_const (open)  | 
| 27411 | 813  | 
node  | 
814  | 
choose  | 
|
815  | 
choose_pos  | 
|
| 30505 | 816  | 
place  | 
817  | 
sub  | 
|
| 27411 | 818  | 
|
| 
35900
 
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
 
huffman 
parents: 
35794 
diff
changeset
 | 
819  | 
subsubsection {* EP-pair from any bifinite domain into \emph{udom} *}
 | 
| 27411 | 820  | 
|
821  | 
definition  | 
|
822  | 
udom_emb :: "'a::bifinite \<rightarrow> udom"  | 
|
823  | 
where  | 
|
824  | 
"udom_emb = compact_basis.basis_fun (\<lambda>x. udom_principal (basis_emb x))"  | 
|
825  | 
||
826  | 
definition  | 
|
827  | 
udom_prj :: "udom \<rightarrow> 'a::bifinite"  | 
|
828  | 
where  | 
|
829  | 
"udom_prj = udom.basis_fun (\<lambda>x. Rep_compact_basis (basis_prj x))"  | 
|
830  | 
||
831  | 
lemma udom_emb_principal:  | 
|
832  | 
"udom_emb\<cdot>(Rep_compact_basis x) = udom_principal (basis_emb x)"  | 
|
833  | 
unfolding udom_emb_def  | 
|
834  | 
apply (rule compact_basis.basis_fun_principal)  | 
|
835  | 
apply (rule udom.principal_mono)  | 
|
836  | 
apply (erule basis_emb_mono)  | 
|
837  | 
done  | 
|
838  | 
||
839  | 
lemma udom_prj_principal:  | 
|
840  | 
"udom_prj\<cdot>(udom_principal x) = Rep_compact_basis (basis_prj x)"  | 
|
841  | 
unfolding udom_prj_def  | 
|
842  | 
apply (rule udom.basis_fun_principal)  | 
|
843  | 
apply (rule compact_basis.principal_mono)  | 
|
844  | 
apply (erule basis_prj_mono)  | 
|
845  | 
done  | 
|
846  | 
||
847  | 
lemma ep_pair_udom: "ep_pair udom_emb udom_prj"  | 
|
848  | 
apply default  | 
|
849  | 
apply (rule compact_basis.principal_induct, simp)  | 
|
850  | 
apply (simp add: udom_emb_principal udom_prj_principal)  | 
|
851  | 
apply (simp add: basis_prj_basis_emb)  | 
|
852  | 
apply (rule udom.principal_induct, simp)  | 
|
853  | 
apply (simp add: udom_emb_principal udom_prj_principal)  | 
|
854  | 
apply (rule basis_emb_prj_less)  | 
|
855  | 
done  | 
|
856  | 
||
857  | 
end  |