| author | blanchet | 
| Mon, 20 Sep 2010 20:00:06 +0200 | |
| changeset 39594 | 624d6c0e220d | 
| parent 32960 | 69916a850301 | 
| child 45602 | 2a858377c3d2 | 
| permissions | -rw-r--r-- | 
| 1478 | 1  | 
(* Title: ZF/AC/Hartog.thy  | 
2  | 
Author: Krzysztof Grabczewski  | 
|
| 1123 | 3  | 
|
4  | 
Hartog's function.  | 
|
5  | 
*)  | 
|
6  | 
||
| 27678 | 7  | 
theory Hartog  | 
8  | 
imports AC_Equiv  | 
|
9  | 
begin  | 
|
| 12776 | 10  | 
|
| 24893 | 11  | 
definition  | 
12  | 
Hartog :: "i => i" where  | 
|
| 12776 | 13  | 
"Hartog(X) == LEAST i. ~ i \<lesssim> X"  | 
14  | 
||
15  | 
lemma Ords_in_set: "\<forall>a. Ord(a) --> a \<in> X ==> P"  | 
|
16  | 
apply (rule_tac X1 = "{y \<in> X. Ord (y) }" in ON_class [THEN revcut_rl])
 | 
|
17  | 
apply fast  | 
|
18  | 
done  | 
|
| 1123 | 19  | 
|
| 12776 | 20  | 
lemma Ord_lepoll_imp_ex_well_ord:  | 
21  | 
"[| Ord(a); a \<lesssim> X |]  | 
|
22  | 
==> \<exists>Y. Y \<subseteq> X & (\<exists>R. well_ord(Y,R) & ordertype(Y,R)=a)"  | 
|
23  | 
apply (unfold lepoll_def)  | 
|
24  | 
apply (erule exE)  | 
|
25  | 
apply (intro exI conjI)  | 
|
26  | 
apply (erule inj_is_fun [THEN fun_is_rel, THEN image_subset])  | 
|
27  | 
apply (rule well_ord_rvimage [OF bij_is_inj well_ord_Memrel])  | 
|
28  | 
apply (erule restrict_bij [THEN bij_converse_bij])  | 
|
| 12820 | 29  | 
apply (rule subset_refl, assumption)  | 
| 12776 | 30  | 
apply (rule trans)  | 
31  | 
apply (rule bij_ordertype_vimage)  | 
|
32  | 
apply (erule restrict_bij [THEN bij_converse_bij])  | 
|
33  | 
apply (rule subset_refl)  | 
|
34  | 
apply (erule well_ord_Memrel)  | 
|
35  | 
apply (erule ordertype_Memrel)  | 
|
36  | 
done  | 
|
37  | 
||
38  | 
lemma Ord_lepoll_imp_eq_ordertype:  | 
|
39  | 
"[| Ord(a); a \<lesssim> X |] ==> \<exists>Y. Y \<subseteq> X & (\<exists>R. R \<subseteq> X*X & ordertype(Y,R)=a)"  | 
|
| 12820 | 40  | 
apply (drule Ord_lepoll_imp_ex_well_ord, assumption, clarify)  | 
| 12776 | 41  | 
apply (intro exI conjI)  | 
42  | 
apply (erule_tac [3] ordertype_Int, auto)  | 
|
43  | 
done  | 
|
| 1123 | 44  | 
|
| 12776 | 45  | 
lemma Ords_lepoll_set_lemma:  | 
46  | 
"(\<forall>a. Ord(a) --> a \<lesssim> X) ==>  | 
|
47  | 
\<forall>a. Ord(a) -->  | 
|
48  | 
        a \<in> {b. Z \<in> Pow(X)*Pow(X*X), \<exists>Y R. Z=<Y,R> & ordertype(Y,R)=b}"
 | 
|
49  | 
apply (intro allI impI)  | 
|
50  | 
apply (elim allE impE, assumption)  | 
|
51  | 
apply (blast dest!: Ord_lepoll_imp_eq_ordertype intro: sym)  | 
|
52  | 
done  | 
|
53  | 
||
54  | 
lemma Ords_lepoll_set: "\<forall>a. Ord(a) --> a \<lesssim> X ==> P"  | 
|
55  | 
by (erule Ords_lepoll_set_lemma [THEN Ords_in_set])  | 
|
56  | 
||
57  | 
lemma ex_Ord_not_lepoll: "\<exists>a. Ord(a) & ~a \<lesssim> X"  | 
|
58  | 
apply (rule ccontr)  | 
|
59  | 
apply (best intro: Ords_lepoll_set)  | 
|
60  | 
done  | 
|
| 1123 | 61  | 
|
| 12776 | 62  | 
lemma not_Hartog_lepoll_self: "~ Hartog(A) \<lesssim> A"  | 
63  | 
apply (unfold Hartog_def)  | 
|
64  | 
apply (rule ex_Ord_not_lepoll [THEN exE])  | 
|
65  | 
apply (rule LeastI, auto)  | 
|
66  | 
done  | 
|
67  | 
||
68  | 
lemmas Hartog_lepoll_selfE = not_Hartog_lepoll_self [THEN notE, standard]  | 
|
| 1123 | 69  | 
|
| 12776 | 70  | 
lemma Ord_Hartog: "Ord(Hartog(A))"  | 
71  | 
by (unfold Hartog_def, rule Ord_Least)  | 
|
72  | 
||
73  | 
lemma less_HartogE1: "[| i < Hartog(A); ~ i \<lesssim> A |] ==> P"  | 
|
74  | 
by (unfold Hartog_def, fast elim: less_LeastE)  | 
|
75  | 
||
76  | 
lemma less_HartogE: "[| i < Hartog(A); i \<approx> Hartog(A) |] ==> P"  | 
|
77  | 
by (blast intro: less_HartogE1 eqpoll_sym eqpoll_imp_lepoll  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12820 
diff
changeset
 | 
78  | 
lepoll_trans [THEN Hartog_lepoll_selfE])  | 
| 12776 | 79  | 
|
80  | 
lemma Card_Hartog: "Card(Hartog(A))"  | 
|
81  | 
by (fast intro!: CardI Ord_Hartog elim: less_HartogE)  | 
|
| 1123 | 82  | 
|
| 1203 | 83  | 
end  |