| 70250 |      1 | section \<open>Tries via Functions\<close>
 | 
|  |      2 | 
 | 
|  |      3 | theory Trie_Fun
 | 
|  |      4 | imports
 | 
|  |      5 |   Set_Specs
 | 
|  |      6 | begin
 | 
|  |      7 | 
 | 
|  |      8 | text \<open>A trie where each node maps a key to sub-tries via a function.
 | 
|  |      9 | Nice abstract model. Not efficient because of the function space.\<close>
 | 
|  |     10 | 
 | 
| 70262 |     11 | datatype 'a trie = Nd bool "'a \<Rightarrow> 'a trie option"
 | 
| 70250 |     12 | 
 | 
| 70266 |     13 | definition empty :: "'a trie" where
 | 
|  |     14 | [simp]: "empty = Nd False (\<lambda>_. None)"
 | 
|  |     15 | 
 | 
| 70250 |     16 | fun isin :: "'a trie \<Rightarrow> 'a list \<Rightarrow> bool" where
 | 
|  |     17 | "isin (Nd b m) [] = b" |
 | 
|  |     18 | "isin (Nd b m) (k # xs) = (case m k of None \<Rightarrow> False | Some t \<Rightarrow> isin t xs)"
 | 
|  |     19 | 
 | 
| 72912 |     20 | fun insert :: "'a list \<Rightarrow> 'a trie \<Rightarrow> 'a trie" where
 | 
| 70250 |     21 | "insert [] (Nd b m) = Nd True m" |
 | 
|  |     22 | "insert (x#xs) (Nd b m) =
 | 
| 72979 |     23 |    (let s = (case m x of None \<Rightarrow> empty | Some t \<Rightarrow> t) in Nd b (m(x := Some(insert xs s))))"
 | 
| 70250 |     24 | 
 | 
| 72912 |     25 | fun delete :: "'a list \<Rightarrow> 'a trie \<Rightarrow> 'a trie" where
 | 
| 70250 |     26 | "delete [] (Nd b m) = Nd False m" |
 | 
|  |     27 | "delete (x#xs) (Nd b m) = Nd b
 | 
|  |     28 |    (case m x of
 | 
|  |     29 |       None \<Rightarrow> m |
 | 
|  |     30 |       Some t \<Rightarrow> m(x := Some(delete xs t)))"
 | 
|  |     31 | 
 | 
| 72979 |     32 | text \<open>Use (a tuned version of) @{const isin} as an abstraction function:\<close>
 | 
| 70250 |     33 | 
 | 
| 72979 |     34 | lemma isin_case: "isin (Nd b m) xs =
 | 
|  |     35 |   (case xs of
 | 
|  |     36 |    [] \<Rightarrow> b |
 | 
|  |     37 |    x # ys \<Rightarrow> (case m x of None \<Rightarrow> False | Some t \<Rightarrow> isin t ys))"
 | 
|  |     38 | by(cases xs)auto
 | 
| 70262 |     39 | 
 | 
| 72979 |     40 | definition set :: "'a trie \<Rightarrow> 'a list set" where
 | 
|  |     41 | [simp]: "set t = {xs. isin t xs}"
 | 
| 70250 |     42 | 
 | 
|  |     43 | lemma isin_set: "isin t xs = (xs \<in> set t)"
 | 
| 72979 |     44 | by simp
 | 
| 70250 |     45 | 
 | 
|  |     46 | lemma set_insert: "set (insert xs t) = set t \<union> {xs}"
 | 
| 72979 |     47 | by (induction xs t rule: insert.induct)
 | 
|  |     48 |    (auto simp: isin_case split!: if_splits option.splits list.splits)
 | 
| 70250 |     49 | 
 | 
|  |     50 | lemma set_delete: "set (delete xs t) = set t - {xs}"
 | 
| 72979 |     51 | by (induction xs t rule: delete.induct)
 | 
|  |     52 |    (auto simp: isin_case split!: if_splits option.splits list.splits)
 | 
| 70250 |     53 | 
 | 
|  |     54 | interpretation S: Set
 | 
| 70266 |     55 | where empty = empty and isin = isin and insert = insert and delete = delete
 | 
| 70250 |     56 | and set = set and invar = "\<lambda>_. True"
 | 
|  |     57 | proof (standard, goal_cases)
 | 
| 72979 |     58 |   case 1 show ?case by (simp add: isin_case split: list.split)
 | 
| 70250 |     59 | next
 | 
| 72979 |     60 |   case 2 show ?case by(rule isin_set)
 | 
| 70250 |     61 | next
 | 
| 72979 |     62 |   case 3 show ?case by(rule set_insert)
 | 
| 70250 |     63 | next
 | 
| 72979 |     64 |   case 4 show ?case by(rule set_delete)
 | 
| 70250 |     65 | qed (rule TrueI)+
 | 
|  |     66 | 
 | 
|  |     67 | end
 |