| 
50087
 | 
     1  | 
(* Author: Fabian Immler, TUM *)
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
header {* Sequence of Properties on Subsequences *}
 | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
theory Diagonal_Subsequence
  | 
| 
 | 
     6  | 
imports SEQ
  | 
| 
 | 
     7  | 
begin
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
locale subseqs =
  | 
| 
 | 
    10  | 
  fixes P::"nat\<Rightarrow>(nat\<Rightarrow>nat)\<Rightarrow>bool"
  | 
| 
 | 
    11  | 
  assumes ex_subseq: "\<And>n s. subseq s \<Longrightarrow> \<exists>r'. subseq r' \<and> P n (s o r')"
  | 
| 
 | 
    12  | 
begin
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
primrec seqseq where
  | 
| 
 | 
    15  | 
  "seqseq 0 = id"
  | 
| 
 | 
    16  | 
| "seqseq (Suc n) = seqseq n o (SOME r'. subseq r' \<and> P n (seqseq n o r'))"
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
lemma seqseq_ex:
  | 
| 
 | 
    19  | 
  shows "subseq (seqseq n) \<and>
  | 
| 
 | 
    20  | 
  (\<exists>r'. seqseq (Suc n) = seqseq n o r' \<and> subseq r' \<and> P n (seqseq n o r'))"
  | 
| 
 | 
    21  | 
proof (induct n)
  | 
| 
 | 
    22  | 
  case 0
  | 
| 
 | 
    23  | 
  let ?P = "\<lambda>r'. subseq r' \<and> P 0 r'"
  | 
| 
 | 
    24  | 
  let ?r = "Eps ?P"
  | 
| 
 | 
    25  | 
  have "?P ?r" using ex_subseq[of id 0] by (intro someI_ex[of ?P]) (auto simp: subseq_def)
  | 
| 
 | 
    26  | 
  thus ?case by (auto simp: subseq_def)
  | 
| 
 | 
    27  | 
next
  | 
| 
 | 
    28  | 
  case (Suc n)
  | 
| 
 | 
    29  | 
  then obtain r' where
  | 
| 
 | 
    30  | 
    Suc': "seqseq (Suc n) = seqseq n \<circ> r'" "subseq (seqseq n)" "subseq r'"
  | 
| 
 | 
    31  | 
      "P n (seqseq n o r')"
  | 
| 
 | 
    32  | 
    by blast
  | 
| 
 | 
    33  | 
  let ?P = "\<lambda>r'a. subseq (r'a ) \<and> P (Suc n) (seqseq n o r' o r'a)"
  | 
| 
 | 
    34  | 
  let ?r = "Eps ?P"
  | 
| 
 | 
    35  | 
  have "?P ?r" using ex_subseq[of "seqseq n o r'" "Suc n"] Suc'
  | 
| 
 | 
    36  | 
    by (intro someI_ex[of ?P]) (auto intro: subseq_o simp: o_assoc)
  | 
| 
 | 
    37  | 
  moreover have "seqseq (Suc (Suc n)) = seqseq n \<circ> r' \<circ> ?r"
  | 
| 
 | 
    38  | 
    by (subst seqseq.simps) (simp only: Suc' o_assoc)
  | 
| 
 | 
    39  | 
  moreover note subseq_o[OF `subseq (seqseq n)` `subseq r'`]
  | 
| 
 | 
    40  | 
  ultimately show ?case unfolding Suc' by (auto simp: o_def)
  | 
| 
 | 
    41  | 
qed
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
lemma subseq_seqseq:
  | 
| 
 | 
    44  | 
  shows "subseq (seqseq n)" using seqseq_ex[OF assms] by auto
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
definition reducer where "reducer n = (SOME r'. subseq r' \<and> P n (seqseq n o r'))"
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma subseq_reducer: "subseq (reducer n)" and reducer_reduces: "P n (seqseq n o reducer n)"
  | 
| 
 | 
    49  | 
  unfolding atomize_conj unfolding reducer_def using subseq_seqseq
  | 
| 
 | 
    50  | 
  by (rule someI_ex[OF ex_subseq])
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
lemma seqseq_reducer[simp]:
  | 
| 
 | 
    53  | 
  "seqseq (Suc n) = seqseq n o reducer n"
  | 
| 
 | 
    54  | 
  by (simp add: reducer_def)
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
declare seqseq.simps(2)[simp del]
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
definition diagseq where "diagseq i = seqseq i i"
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
lemma diagseq_mono: "diagseq n < diagseq (Suc n)"
  | 
| 
 | 
    61  | 
  unfolding diagseq_def seqseq_reducer o_def
  | 
| 
 | 
    62  | 
  by (metis subseq_mono[OF subseq_seqseq] less_le_trans lessI seq_suble subseq_reducer)
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
lemma subseq_diagseq: "subseq diagseq"
  | 
| 
 | 
    65  | 
  using diagseq_mono by (simp add: subseq_Suc_iff diagseq_def)
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
primrec fold_reduce where
  | 
| 
 | 
    68  | 
  "fold_reduce n 0 = id"
  | 
| 
 | 
    69  | 
| "fold_reduce n (Suc k) = fold_reduce n k o reducer (n + k)"
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
lemma subseq_fold_reduce: "subseq (fold_reduce n k)"
  | 
| 
 | 
    72  | 
proof (induct k)
  | 
| 
 | 
    73  | 
  case (Suc k) from subseq_o[OF this subseq_reducer] show ?case by (simp add: o_def)
  | 
| 
 | 
    74  | 
qed (simp add: subseq_def)
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
lemma ex_subseq_reduce_index: "seqseq (n + k) = seqseq n o fold_reduce n k"
  | 
| 
 | 
    77  | 
  by (induct k) simp_all
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
lemma seqseq_fold_reduce: "seqseq n = fold_reduce 0 n"
  | 
| 
 | 
    80  | 
  by (induct n) (simp_all)
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
lemma diagseq_fold_reduce: "diagseq n = fold_reduce 0 n n"
  | 
| 
 | 
    83  | 
  using seqseq_fold_reduce by (simp add: diagseq_def)
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
lemma fold_reduce_add: "fold_reduce 0 (m + n) = fold_reduce 0 m o fold_reduce m n"
  | 
| 
 | 
    86  | 
  by (induct n) simp_all
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
lemma diagseq_add: "diagseq (k + n) = (seqseq k o (fold_reduce k n)) (k + n)"
  | 
| 
 | 
    89  | 
proof -
  | 
| 
 | 
    90  | 
  have "diagseq (k + n) = fold_reduce 0 (k + n) (k + n)"
  | 
| 
 | 
    91  | 
    by (simp add: diagseq_fold_reduce)
  | 
| 
 | 
    92  | 
  also have "\<dots> = (seqseq k o fold_reduce k n) (k + n)"
  | 
| 
 | 
    93  | 
    unfolding fold_reduce_add seqseq_fold_reduce ..
  | 
| 
 | 
    94  | 
  finally show ?thesis .
  | 
| 
 | 
    95  | 
qed
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
lemma diagseq_sub:
  | 
| 
 | 
    98  | 
  assumes "m \<le> n" shows "diagseq n = (seqseq m o (fold_reduce m (n - m))) n"
  | 
| 
 | 
    99  | 
  using diagseq_add[of m "n - m"] assms by simp
  | 
| 
 | 
   100  | 
  | 
| 
 | 
   101  | 
lemma subseq_diagonal_rest: "subseq (\<lambda>x. fold_reduce k x (k + x))"
  | 
| 
 | 
   102  | 
  unfolding subseq_Suc_iff fold_reduce.simps o_def
  | 
| 
 | 
   103  | 
  by (metis subseq_mono[OF subseq_fold_reduce] less_le_trans lessI add_Suc_right seq_suble
  | 
| 
 | 
   104  | 
      subseq_reducer)
  | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
lemma diagseq_seqseq: "diagseq o (op + k) = (seqseq k o (\<lambda>x. fold_reduce k x (k + x)))"
  | 
| 
 | 
   107  | 
  by (auto simp: o_def diagseq_add)
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
end
  | 
| 
 | 
   110  | 
  | 
| 
 | 
   111  | 
end
  |