| author | wenzelm | 
| Tue, 29 Sep 2020 19:54:59 +0200 | |
| changeset 72339 | 626920749f5d | 
| parent 67443 | 3abf6a722518 | 
| permissions | -rw-r--r-- | 
| 5737 | 1  | 
(* Title: HOL/Induct/ABexp.thy  | 
2  | 
Author: Stefan Berghofer, TU Muenchen  | 
|
3  | 
*)  | 
|
4  | 
||
| 60530 | 5  | 
section \<open>Arithmetic and boolean expressions\<close>  | 
| 
11046
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
6  | 
|
| 46914 | 7  | 
theory ABexp  | 
8  | 
imports Main  | 
|
9  | 
begin  | 
|
| 5737 | 10  | 
|
| 58310 | 11  | 
datatype 'a aexp =  | 
| 
11046
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
12  | 
IF "'a bexp" "'a aexp" "'a aexp"  | 
| 
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
13  | 
| Sum "'a aexp" "'a aexp"  | 
| 
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
14  | 
| Diff "'a aexp" "'a aexp"  | 
| 
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
15  | 
| Var 'a  | 
| 
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
16  | 
| Num nat  | 
| 
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
17  | 
and 'a bexp =  | 
| 
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
18  | 
Less "'a aexp" "'a aexp"  | 
| 
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
19  | 
| And "'a bexp" "'a bexp"  | 
| 
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
20  | 
| Neg "'a bexp"  | 
| 5737 | 21  | 
|
22  | 
||
| 60530 | 23  | 
text \<open>\medskip Evaluation of arithmetic and boolean expressions\<close>  | 
| 5737 | 24  | 
|
| 60532 | 25  | 
primrec evala :: "('a \<Rightarrow> nat) \<Rightarrow> 'a aexp \<Rightarrow> nat"
 | 
26  | 
  and evalb :: "('a \<Rightarrow> nat) \<Rightarrow> 'a bexp \<Rightarrow> bool"
 | 
|
| 46914 | 27  | 
where  | 
| 
11046
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
28  | 
"evala env (IF b a1 a2) = (if evalb env b then evala env a1 else evala env a2)"  | 
| 39246 | 29  | 
| "evala env (Sum a1 a2) = evala env a1 + evala env a2"  | 
30  | 
| "evala env (Diff a1 a2) = evala env a1 - evala env a2"  | 
|
31  | 
| "evala env (Var v) = env v"  | 
|
32  | 
| "evala env (Num n) = n"  | 
|
| 5737 | 33  | 
|
| 39246 | 34  | 
| "evalb env (Less a1 a2) = (evala env a1 < evala env a2)"  | 
35  | 
| "evalb env (And b1 b2) = (evalb env b1 \<and> evalb env b2)"  | 
|
36  | 
| "evalb env (Neg b) = (\<not> evalb env b)"  | 
|
| 5737 | 37  | 
|
38  | 
||
| 60530 | 39  | 
text \<open>\medskip Substitution on arithmetic and boolean expressions\<close>  | 
| 5737 | 40  | 
|
| 60532 | 41  | 
primrec substa :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a aexp \<Rightarrow> 'b aexp"
 | 
42  | 
  and substb :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a bexp \<Rightarrow> 'b bexp"
 | 
|
| 46914 | 43  | 
where  | 
| 
11046
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
44  | 
"substa f (IF b a1 a2) = IF (substb f b) (substa f a1) (substa f a2)"  | 
| 39246 | 45  | 
| "substa f (Sum a1 a2) = Sum (substa f a1) (substa f a2)"  | 
46  | 
| "substa f (Diff a1 a2) = Diff (substa f a1) (substa f a2)"  | 
|
47  | 
| "substa f (Var v) = f v"  | 
|
48  | 
| "substa f (Num n) = Num n"  | 
|
| 5737 | 49  | 
|
| 39246 | 50  | 
| "substb f (Less a1 a2) = Less (substa f a1) (substa f a2)"  | 
51  | 
| "substb f (And b1 b2) = And (substb f b1) (substb f b2)"  | 
|
52  | 
| "substb f (Neg b) = Neg (substb f b)"  | 
|
| 5737 | 53  | 
|
| 12171 | 54  | 
lemma subst1_aexp:  | 
55  | 
"evala env (substa (Var (v := a')) a) = evala (env (v := evala env a')) a"  | 
|
56  | 
and subst1_bexp:  | 
|
57  | 
"evalb env (substb (Var (v := a')) b) = evalb (env (v := evala env a')) b"  | 
|
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
63167 
diff
changeset
 | 
58  | 
\<comment> \<open>one variable\<close>  | 
| 12171 | 59  | 
by (induct a and b) simp_all  | 
| 
11046
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
60  | 
|
| 12171 | 61  | 
lemma subst_all_aexp:  | 
62  | 
"evala env (substa s a) = evala (\<lambda>x. evala env (s x)) a"  | 
|
63  | 
and subst_all_bexp:  | 
|
64  | 
"evalb env (substb s b) = evalb (\<lambda>x. evala env (s x)) b"  | 
|
65  | 
by (induct a and b) auto  | 
|
| 
11046
 
b5f5942781a0
Induct: converted some theories to new-style format;
 
wenzelm 
parents: 
5802 
diff
changeset
 | 
66  | 
|
| 5737 | 67  | 
end  |