| author | wenzelm | 
| Tue, 29 Sep 2020 19:54:59 +0200 | |
| changeset 72339 | 626920749f5d | 
| parent 70332 | 315489d836d8 | 
| permissions | -rw-r--r-- | 
| 
36751
 
7f1da69cacb3
split of semiring normalization from Groebner theory; moved field_comp_conv to Numeral_Simproces
 
haftmann 
parents: 
36720 
diff
changeset
 | 
1  | 
(* Title: HOL/Semiring_Normalization.thy  | 
| 23252 | 2  | 
Author: Amine Chaieb, TU Muenchen  | 
3  | 
*)  | 
|
4  | 
||
| 60758 | 5  | 
section \<open>Semiring normalization\<close>  | 
| 28402 | 6  | 
|
| 
36751
 
7f1da69cacb3
split of semiring normalization from Groebner theory; moved field_comp_conv to Numeral_Simproces
 
haftmann 
parents: 
36720 
diff
changeset
 | 
7  | 
theory Semiring_Normalization  | 
| 66836 | 8  | 
imports Numeral_Simprocs  | 
| 23252 | 9  | 
begin  | 
10  | 
||
| 60758 | 11  | 
text \<open>Prelude\<close>  | 
| 36873 | 12  | 
|
13  | 
class comm_semiring_1_cancel_crossproduct = comm_semiring_1_cancel +  | 
|
14  | 
assumes crossproduct_eq: "w * y + x * z = w * z + x * y \<longleftrightarrow> w = x \<or> y = z"  | 
|
15  | 
begin  | 
|
16  | 
||
17  | 
lemma crossproduct_noteq:  | 
|
18  | 
"a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> a * c + b * d \<noteq> a * d + b * c"  | 
|
19  | 
by (simp add: crossproduct_eq)  | 
|
| 
36756
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
20  | 
|
| 36873 | 21  | 
lemma add_scale_eq_noteq:  | 
22  | 
"r \<noteq> 0 \<Longrightarrow> a = b \<and> c \<noteq> d \<Longrightarrow> a + r * c \<noteq> b + r * d"  | 
|
23  | 
proof (rule notI)  | 
|
24  | 
assume nz: "r\<noteq> 0" and cnd: "a = b \<and> c\<noteq>d"  | 
|
25  | 
and eq: "a + (r * c) = b + (r * d)"  | 
|
26  | 
have "(0 * d) + (r * c) = (0 * c) + (r * d)"  | 
|
| 59557 | 27  | 
using add_left_imp_eq eq mult_zero_left by (simp add: cnd)  | 
| 36873 | 28  | 
then show False using crossproduct_eq [of 0 d] nz cnd by simp  | 
29  | 
qed  | 
|
| 
36756
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
30  | 
|
| 36873 | 31  | 
lemma add_0_iff:  | 
32  | 
"b = b + a \<longleftrightarrow> a = 0"  | 
|
| 59557 | 33  | 
using add_left_imp_eq [of b a 0] by auto  | 
| 36873 | 34  | 
|
35  | 
end  | 
|
36  | 
||
| 37946 | 37  | 
subclass (in idom) comm_semiring_1_cancel_crossproduct  | 
| 
36756
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
38  | 
proof  | 
| 
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
39  | 
fix w x y z  | 
| 
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
40  | 
show "w * y + x * z = w * z + x * y \<longleftrightarrow> w = x \<or> y = z"  | 
| 
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
41  | 
proof  | 
| 
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
42  | 
assume "w * y + x * z = w * z + x * y"  | 
| 
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
43  | 
then have "w * y + x * z - w * z - x * y = 0" by (simp add: algebra_simps)  | 
| 
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
44  | 
then have "w * (y - z) - x * (y - z) = 0" by (simp add: algebra_simps)  | 
| 
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
45  | 
then have "(y - z) * (w - x) = 0" by (simp add: algebra_simps)  | 
| 
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
46  | 
then have "y - z = 0 \<or> w - x = 0" by (rule divisors_zero)  | 
| 
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
47  | 
then show "w = x \<or> y = z" by auto  | 
| 
57514
 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 
haftmann 
parents: 
54230 
diff
changeset
 | 
48  | 
qed (auto simp add: ac_simps)  | 
| 
36756
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
49  | 
qed  | 
| 
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
50  | 
|
| 36873 | 51  | 
instance nat :: comm_semiring_1_cancel_crossproduct  | 
| 
36756
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
52  | 
proof  | 
| 
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
53  | 
fix w x y z :: nat  | 
| 36873 | 54  | 
have aux: "\<And>y z. y < z \<Longrightarrow> w * y + x * z = w * z + x * y \<Longrightarrow> w = x"  | 
55  | 
proof -  | 
|
56  | 
fix y z :: nat  | 
|
57  | 
assume "y < z" then have "\<exists>k. z = y + k \<and> k \<noteq> 0" by (intro exI [of _ "z - y"]) auto  | 
|
58  | 
then obtain k where "z = y + k" and "k \<noteq> 0" by blast  | 
|
59  | 
assume "w * y + x * z = w * z + x * y"  | 
|
| 60758 | 60  | 
then have "(w * y + x * y) + x * k = (w * y + x * y) + w * k" by (simp add: \<open>z = y + k\<close> algebra_simps)  | 
| 36873 | 61  | 
then have "x * k = w * k" by simp  | 
| 60758 | 62  | 
then show "w = x" using \<open>k \<noteq> 0\<close> by simp  | 
| 36873 | 63  | 
qed  | 
64  | 
show "w * y + x * z = w * z + x * y \<longleftrightarrow> w = x \<or> y = z"  | 
|
65  | 
by (auto simp add: neq_iff dest!: aux)  | 
|
| 
36756
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
66  | 
qed  | 
| 
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
67  | 
|
| 60758 | 68  | 
text \<open>Semiring normalization proper\<close>  | 
| 36871 | 69  | 
|
| 69605 | 70  | 
ML_file \<open>Tools/semiring_normalizer.ML\<close>  | 
| 23252 | 71  | 
|
| 36871 | 72  | 
context comm_semiring_1  | 
73  | 
begin  | 
|
74  | 
||
| 70332 | 75  | 
lemma semiring_normalization_rules [no_atp]:  | 
| 61153 | 76  | 
"(a * m) + (b * m) = (a + b) * m"  | 
77  | 
"(a * m) + m = (a + 1) * m"  | 
|
78  | 
"m + (a * m) = (a + 1) * m"  | 
|
79  | 
"m + m = (1 + 1) * m"  | 
|
80  | 
"0 + a = a"  | 
|
81  | 
"a + 0 = a"  | 
|
82  | 
"a * b = b * a"  | 
|
83  | 
"(a + b) * c = (a * c) + (b * c)"  | 
|
84  | 
"0 * a = 0"  | 
|
85  | 
"a * 0 = 0"  | 
|
86  | 
"1 * a = a"  | 
|
87  | 
"a * 1 = a"  | 
|
88  | 
"(lx * ly) * (rx * ry) = (lx * rx) * (ly * ry)"  | 
|
89  | 
"(lx * ly) * (rx * ry) = lx * (ly * (rx * ry))"  | 
|
90  | 
"(lx * ly) * (rx * ry) = rx * ((lx * ly) * ry)"  | 
|
91  | 
"(lx * ly) * rx = (lx * rx) * ly"  | 
|
92  | 
"(lx * ly) * rx = lx * (ly * rx)"  | 
|
93  | 
"lx * (rx * ry) = (lx * rx) * ry"  | 
|
94  | 
"lx * (rx * ry) = rx * (lx * ry)"  | 
|
95  | 
"(a + b) + (c + d) = (a + c) + (b + d)"  | 
|
96  | 
"(a + b) + c = a + (b + c)"  | 
|
97  | 
"a + (c + d) = c + (a + d)"  | 
|
98  | 
"(a + b) + c = (a + c) + b"  | 
|
99  | 
"a + c = c + a"  | 
|
100  | 
"a + (c + d) = (a + c) + d"  | 
|
101  | 
"(x ^ p) * (x ^ q) = x ^ (p + q)"  | 
|
102  | 
"x * (x ^ q) = x ^ (Suc q)"  | 
|
103  | 
"(x ^ q) * x = x ^ (Suc q)"  | 
|
104  | 
"x * x = x\<^sup>2"  | 
|
105  | 
"(x * y) ^ q = (x ^ q) * (y ^ q)"  | 
|
106  | 
"(x ^ p) ^ q = x ^ (p * q)"  | 
|
107  | 
"x ^ 0 = 1"  | 
|
108  | 
"x ^ 1 = x"  | 
|
109  | 
"x * (y + z) = (x * y) + (x * z)"  | 
|
110  | 
"x ^ (Suc q) = x * (x ^ q)"  | 
|
111  | 
"x ^ (2*n) = (x ^ n) * (x ^ n)"  | 
|
112  | 
by (simp_all add: algebra_simps power_add power2_eq_square  | 
|
113  | 
power_mult_distrib power_mult del: one_add_one)  | 
|
114  | 
||
115  | 
local_setup \<open>  | 
|
| 
59554
 
4044f53326c9
inlined rules to free user-space from technical names
 
haftmann 
parents: 
59553 
diff
changeset
 | 
116  | 
  Semiring_Normalizer.declare @{thm comm_semiring_1_axioms}
 | 
| 69593 | 117  | 
    {semiring = ([\<^term>\<open>x + y\<close>, \<^term>\<open>x * y\<close>, \<^term>\<open>x ^ n\<close>, \<^term>\<open>0\<close>, \<^term>\<open>1\<close>],
 | 
| 61153 | 118  | 
      @{thms semiring_normalization_rules}),
 | 
119  | 
ring = ([], []),  | 
|
120  | 
field = ([], []),  | 
|
121  | 
idom = [],  | 
|
122  | 
ideal = []}  | 
|
123  | 
\<close>  | 
|
| 
36756
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
124  | 
|
| 36871 | 125  | 
end  | 
| 23252 | 126  | 
|
| 36871 | 127  | 
context comm_ring_1  | 
128  | 
begin  | 
|
129  | 
||
| 70332 | 130  | 
lemma ring_normalization_rules [no_atp]:  | 
| 61153 | 131  | 
"- x = (- 1) * x"  | 
132  | 
"x - y = x + (- y)"  | 
|
133  | 
by simp_all  | 
|
134  | 
||
135  | 
local_setup \<open>  | 
|
| 
59554
 
4044f53326c9
inlined rules to free user-space from technical names
 
haftmann 
parents: 
59553 
diff
changeset
 | 
136  | 
  Semiring_Normalizer.declare @{thm comm_ring_1_axioms}
 | 
| 69593 | 137  | 
    {semiring = ([\<^term>\<open>x + y\<close>, \<^term>\<open>x * y\<close>, \<^term>\<open>x ^ n\<close>, \<^term>\<open>0\<close>, \<^term>\<open>1\<close>],
 | 
| 61153 | 138  | 
      @{thms semiring_normalization_rules}),
 | 
| 69593 | 139  | 
      ring = ([\<^term>\<open>x - y\<close>, \<^term>\<open>- x\<close>], @{thms ring_normalization_rules}),
 | 
| 61153 | 140  | 
field = ([], []),  | 
141  | 
idom = [],  | 
|
142  | 
ideal = []}  | 
|
143  | 
\<close>  | 
|
| 30866 | 144  | 
|
| 36871 | 145  | 
end  | 
146  | 
||
| 36873 | 147  | 
context comm_semiring_1_cancel_crossproduct  | 
| 36871 | 148  | 
begin  | 
149  | 
||
| 61153 | 150  | 
local_setup \<open>  | 
151  | 
  Semiring_Normalizer.declare @{thm comm_semiring_1_cancel_crossproduct_axioms}
 | 
|
| 69593 | 152  | 
    {semiring = ([\<^term>\<open>x + y\<close>, \<^term>\<open>x * y\<close>, \<^term>\<open>x ^ n\<close>, \<^term>\<open>0\<close>, \<^term>\<open>1\<close>],
 | 
| 61153 | 153  | 
      @{thms semiring_normalization_rules}),
 | 
154  | 
ring = ([], []),  | 
|
155  | 
field = ([], []),  | 
|
156  | 
     idom = @{thms crossproduct_noteq add_scale_eq_noteq},
 | 
|
157  | 
ideal = []}  | 
|
158  | 
\<close>  | 
|
| 23252 | 159  | 
|
| 36871 | 160  | 
end  | 
| 23252 | 161  | 
|
| 36871 | 162  | 
context idom  | 
163  | 
begin  | 
|
164  | 
||
| 61153 | 165  | 
local_setup \<open>  | 
166  | 
  Semiring_Normalizer.declare @{thm idom_axioms}
 | 
|
| 69593 | 167  | 
   {semiring = ([\<^term>\<open>x + y\<close>, \<^term>\<open>x * y\<close>, \<^term>\<open>x ^ n\<close>, \<^term>\<open>0\<close>, \<^term>\<open>1\<close>],
 | 
| 61153 | 168  | 
      @{thms semiring_normalization_rules}),
 | 
| 69593 | 169  | 
    ring = ([\<^term>\<open>x - y\<close>, \<^term>\<open>- x\<close>], @{thms ring_normalization_rules}),
 | 
| 61153 | 170  | 
field = ([], []),  | 
171  | 
    idom = @{thms crossproduct_noteq add_scale_eq_noteq},
 | 
|
172  | 
    ideal = @{thms right_minus_eq add_0_iff}}
 | 
|
173  | 
\<close>  | 
|
| 23252 | 174  | 
|
| 36871 | 175  | 
end  | 
176  | 
||
177  | 
context field  | 
|
178  | 
begin  | 
|
179  | 
||
| 61153 | 180  | 
local_setup \<open>  | 
181  | 
  Semiring_Normalizer.declare @{thm field_axioms}
 | 
|
| 69593 | 182  | 
   {semiring = ([\<^term>\<open>x + y\<close>, \<^term>\<open>x * y\<close>, \<^term>\<open>x ^ n\<close>, \<^term>\<open>0\<close>, \<^term>\<open>1\<close>],
 | 
| 61153 | 183  | 
      @{thms semiring_normalization_rules}),
 | 
| 69593 | 184  | 
    ring = ([\<^term>\<open>x - y\<close>, \<^term>\<open>- x\<close>], @{thms ring_normalization_rules}),
 | 
185  | 
    field = ([\<^term>\<open>x / y\<close>, \<^term>\<open>inverse x\<close>], @{thms divide_inverse inverse_eq_divide}),
 | 
|
| 61153 | 186  | 
    idom = @{thms crossproduct_noteq add_scale_eq_noteq},
 | 
187  | 
    ideal = @{thms right_minus_eq add_0_iff}}
 | 
|
188  | 
\<close>  | 
|
| 
36756
 
c1ae8a0b4265
moved normalization proof tool infrastructure to canonical algebraic classes
 
haftmann 
parents: 
36753 
diff
changeset
 | 
189  | 
|
| 36871 | 190  | 
end  | 
191  | 
||
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
48891 
diff
changeset
 | 
192  | 
code_identifier  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
48891 
diff
changeset
 | 
193  | 
code_module Semiring_Normalization \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith  | 
| 
47108
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
37946 
diff
changeset
 | 
194  | 
|
| 28402 | 195  | 
end  |