author | paulson |
Thu, 11 Nov 1999 10:24:14 +0100 | |
changeset 8004 | 6273f58ea2c1 |
parent 6093 | 87bf8c03b169 |
child 9395 | 1c9851cdfe9f |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/univ.thy |
0 | 2 |
ID: $Id$ |
1478 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1992 University of Cambridge |
5 |
||
6 |
The cumulative hierarchy and a small universe for recursive types |
|
7 |
||
8 |
Standard notation for Vset(i) is V(i), but users might want V for a variable |
|
516 | 9 |
|
10 |
NOTE: univ(A) could be a translation; would simplify many proofs! |
|
6093 | 11 |
But Ind_Syntax.univ refers to the constant "Univ.univ" |
0 | 12 |
*) |
13 |
||
2469 | 14 |
Univ = Arith + Sum + Finite + mono + |
3923 | 15 |
|
0 | 16 |
consts |
1401 | 17 |
Vfrom :: [i,i]=>i |
18 |
Vset :: i=>i |
|
19 |
Vrec :: [i, [i,i]=>i] =>i |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3940
diff
changeset
|
20 |
Vrecursor :: [[i,i]=>i, i] =>i |
1401 | 21 |
univ :: i=>i |
0 | 22 |
|
23 |
translations |
|
1478 | 24 |
"Vset(x)" == "Vfrom(0,x)" |
0 | 25 |
|
3923 | 26 |
|
753 | 27 |
defs |
0 | 28 |
Vfrom_def "Vfrom(A,i) == transrec(i, %x f. A Un (UN y:x. Pow(f`y)))" |
29 |
||
30 |
Vrec_def |
|
1478 | 31 |
"Vrec(a,H) == transrec(rank(a), %x g. lam z: Vset(succ(x)). |
1155 | 32 |
H(z, lam w:Vset(x). g`rank(w)`w)) ` a" |
0 | 33 |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3940
diff
changeset
|
34 |
Vrecursor_def |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3940
diff
changeset
|
35 |
"Vrecursor(H,a) == transrec(rank(a), %x g. lam z: Vset(succ(x)). |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3940
diff
changeset
|
36 |
H(lam w:Vset(x). g`rank(w)`w, z)) ` a" |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3940
diff
changeset
|
37 |
|
0 | 38 |
univ_def "univ(A) == Vfrom(A,nat)" |
39 |
||
40 |
end |