author | haftmann |
Tue, 21 Jul 2009 17:02:18 +0200 | |
changeset 32127 | 631546213601 |
parent 31790 | 05c92381363c |
child 33296 | a3924d1069e5 |
permissions | -rw-r--r-- |
23252 | 1 |
(* Title: HOL/Groebner_Basis.thy |
2 |
Author: Amine Chaieb, TU Muenchen |
|
3 |
*) |
|
4 |
||
5 |
header {* Semiring normalization and Groebner Bases *} |
|
28402 | 6 |
|
23252 | 7 |
theory Groebner_Basis |
30925 | 8 |
imports Nat_Numeral |
23252 | 9 |
uses |
10 |
"Tools/Groebner_Basis/misc.ML" |
|
11 |
"Tools/Groebner_Basis/normalizer_data.ML" |
|
12 |
("Tools/Groebner_Basis/normalizer.ML") |
|
23312 | 13 |
("Tools/Groebner_Basis/groebner.ML") |
23252 | 14 |
begin |
15 |
||
16 |
subsection {* Semiring normalization *} |
|
17 |
||
18 |
setup NormalizerData.setup |
|
19 |
||
20 |
||
23258
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
wenzelm
parents:
23252
diff
changeset
|
21 |
locale gb_semiring = |
23252 | 22 |
fixes add mul pwr r0 r1 |
23 |
assumes add_a:"(add x (add y z) = add (add x y) z)" |
|
24 |
and add_c: "add x y = add y x" and add_0:"add r0 x = x" |
|
25 |
and mul_a:"mul x (mul y z) = mul (mul x y) z" and mul_c:"mul x y = mul y x" |
|
26 |
and mul_1:"mul r1 x = x" and mul_0:"mul r0 x = r0" |
|
27 |
and mul_d:"mul x (add y z) = add (mul x y) (mul x z)" |
|
28 |
and pwr_0:"pwr x 0 = r1" and pwr_Suc:"pwr x (Suc n) = mul x (pwr x n)" |
|
29 |
begin |
|
30 |
||
31 |
lemma mul_pwr:"mul (pwr x p) (pwr x q) = pwr x (p + q)" |
|
32 |
proof (induct p) |
|
33 |
case 0 |
|
34 |
then show ?case by (auto simp add: pwr_0 mul_1) |
|
35 |
next |
|
36 |
case Suc |
|
37 |
from this [symmetric] show ?case |
|
38 |
by (auto simp add: pwr_Suc mul_1 mul_a) |
|
39 |
qed |
|
40 |
||
41 |
lemma pwr_mul: "pwr (mul x y) q = mul (pwr x q) (pwr y q)" |
|
42 |
proof (induct q arbitrary: x y, auto simp add:pwr_0 pwr_Suc mul_1) |
|
43 |
fix q x y |
|
44 |
assume "\<And>x y. pwr (mul x y) q = mul (pwr x q) (pwr y q)" |
|
45 |
have "mul (mul x y) (mul (pwr x q) (pwr y q)) = mul x (mul y (mul (pwr x q) (pwr y q)))" |
|
46 |
by (simp add: mul_a) |
|
47 |
also have "\<dots> = (mul (mul y (mul (pwr y q) (pwr x q))) x)" by (simp add: mul_c) |
|
48 |
also have "\<dots> = (mul (mul y (pwr y q)) (mul (pwr x q) x))" by (simp add: mul_a) |
|
49 |
finally show "mul (mul x y) (mul (pwr x q) (pwr y q)) = |
|
50 |
mul (mul x (pwr x q)) (mul y (pwr y q))" by (simp add: mul_c) |
|
51 |
qed |
|
52 |
||
53 |
lemma pwr_pwr: "pwr (pwr x p) q = pwr x (p * q)" |
|
54 |
proof (induct p arbitrary: q) |
|
55 |
case 0 |
|
56 |
show ?case using pwr_Suc mul_1 pwr_0 by (induct q) auto |
|
57 |
next |
|
58 |
case Suc |
|
59 |
thus ?case by (auto simp add: mul_pwr [symmetric] pwr_mul pwr_Suc) |
|
60 |
qed |
|
61 |
||
62 |
||
63 |
subsubsection {* Declaring the abstract theory *} |
|
64 |
||
65 |
lemma semiring_ops: |
|
66 |
shows "TERM (add x y)" and "TERM (mul x y)" and "TERM (pwr x n)" |
|
28856
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents:
28823
diff
changeset
|
67 |
and "TERM r0" and "TERM r1" . |
23252 | 68 |
|
69 |
lemma semiring_rules: |
|
70 |
"add (mul a m) (mul b m) = mul (add a b) m" |
|
71 |
"add (mul a m) m = mul (add a r1) m" |
|
72 |
"add m (mul a m) = mul (add a r1) m" |
|
73 |
"add m m = mul (add r1 r1) m" |
|
74 |
"add r0 a = a" |
|
75 |
"add a r0 = a" |
|
76 |
"mul a b = mul b a" |
|
77 |
"mul (add a b) c = add (mul a c) (mul b c)" |
|
78 |
"mul r0 a = r0" |
|
79 |
"mul a r0 = r0" |
|
80 |
"mul r1 a = a" |
|
81 |
"mul a r1 = a" |
|
82 |
"mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)" |
|
83 |
"mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))" |
|
84 |
"mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)" |
|
85 |
"mul (mul lx ly) rx = mul (mul lx rx) ly" |
|
86 |
"mul (mul lx ly) rx = mul lx (mul ly rx)" |
|
87 |
"mul lx (mul rx ry) = mul (mul lx rx) ry" |
|
88 |
"mul lx (mul rx ry) = mul rx (mul lx ry)" |
|
89 |
"add (add a b) (add c d) = add (add a c) (add b d)" |
|
90 |
"add (add a b) c = add a (add b c)" |
|
91 |
"add a (add c d) = add c (add a d)" |
|
92 |
"add (add a b) c = add (add a c) b" |
|
93 |
"add a c = add c a" |
|
94 |
"add a (add c d) = add (add a c) d" |
|
95 |
"mul (pwr x p) (pwr x q) = pwr x (p + q)" |
|
96 |
"mul x (pwr x q) = pwr x (Suc q)" |
|
97 |
"mul (pwr x q) x = pwr x (Suc q)" |
|
98 |
"mul x x = pwr x 2" |
|
99 |
"pwr (mul x y) q = mul (pwr x q) (pwr y q)" |
|
100 |
"pwr (pwr x p) q = pwr x (p * q)" |
|
101 |
"pwr x 0 = r1" |
|
102 |
"pwr x 1 = x" |
|
103 |
"mul x (add y z) = add (mul x y) (mul x z)" |
|
104 |
"pwr x (Suc q) = mul x (pwr x q)" |
|
105 |
"pwr x (2*n) = mul (pwr x n) (pwr x n)" |
|
106 |
"pwr x (Suc (2*n)) = mul x (mul (pwr x n) (pwr x n))" |
|
107 |
proof - |
|
108 |
show "add (mul a m) (mul b m) = mul (add a b) m" using mul_d mul_c by simp |
|
109 |
next show"add (mul a m) m = mul (add a r1) m" using mul_d mul_c mul_1 by simp |
|
110 |
next show "add m (mul a m) = mul (add a r1) m" using mul_c mul_d mul_1 add_c by simp |
|
111 |
next show "add m m = mul (add r1 r1) m" using mul_c mul_d mul_1 by simp |
|
112 |
next show "add r0 a = a" using add_0 by simp |
|
113 |
next show "add a r0 = a" using add_0 add_c by simp |
|
114 |
next show "mul a b = mul b a" using mul_c by simp |
|
115 |
next show "mul (add a b) c = add (mul a c) (mul b c)" using mul_c mul_d by simp |
|
116 |
next show "mul r0 a = r0" using mul_0 by simp |
|
117 |
next show "mul a r0 = r0" using mul_0 mul_c by simp |
|
118 |
next show "mul r1 a = a" using mul_1 by simp |
|
119 |
next show "mul a r1 = a" using mul_1 mul_c by simp |
|
120 |
next show "mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)" |
|
121 |
using mul_c mul_a by simp |
|
122 |
next show "mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))" |
|
123 |
using mul_a by simp |
|
124 |
next |
|
125 |
have "mul (mul lx ly) (mul rx ry) = mul (mul rx ry) (mul lx ly)" by (rule mul_c) |
|
126 |
also have "\<dots> = mul rx (mul ry (mul lx ly))" using mul_a by simp |
|
127 |
finally |
|
128 |
show "mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)" |
|
129 |
using mul_c by simp |
|
130 |
next show "mul (mul lx ly) rx = mul (mul lx rx) ly" using mul_c mul_a by simp |
|
131 |
next |
|
132 |
show "mul (mul lx ly) rx = mul lx (mul ly rx)" by (simp add: mul_a) |
|
133 |
next show "mul lx (mul rx ry) = mul (mul lx rx) ry" by (simp add: mul_a ) |
|
134 |
next show "mul lx (mul rx ry) = mul rx (mul lx ry)" by (simp add: mul_a,simp add: mul_c) |
|
135 |
next show "add (add a b) (add c d) = add (add a c) (add b d)" |
|
136 |
using add_c add_a by simp |
|
137 |
next show "add (add a b) c = add a (add b c)" using add_a by simp |
|
138 |
next show "add a (add c d) = add c (add a d)" |
|
139 |
apply (simp add: add_a) by (simp only: add_c) |
|
140 |
next show "add (add a b) c = add (add a c) b" using add_a add_c by simp |
|
141 |
next show "add a c = add c a" by (rule add_c) |
|
142 |
next show "add a (add c d) = add (add a c) d" using add_a by simp |
|
143 |
next show "mul (pwr x p) (pwr x q) = pwr x (p + q)" by (rule mul_pwr) |
|
144 |
next show "mul x (pwr x q) = pwr x (Suc q)" using pwr_Suc by simp |
|
145 |
next show "mul (pwr x q) x = pwr x (Suc q)" using pwr_Suc mul_c by simp |
|
146 |
next show "mul x x = pwr x 2" by (simp add: nat_number pwr_Suc pwr_0 mul_1 mul_c) |
|
147 |
next show "pwr (mul x y) q = mul (pwr x q) (pwr y q)" by (rule pwr_mul) |
|
148 |
next show "pwr (pwr x p) q = pwr x (p * q)" by (rule pwr_pwr) |
|
149 |
next show "pwr x 0 = r1" using pwr_0 . |
|
30079
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
huffman
parents:
30042
diff
changeset
|
150 |
next show "pwr x 1 = x" unfolding One_nat_def by (simp add: nat_number pwr_Suc pwr_0 mul_1 mul_c) |
23252 | 151 |
next show "mul x (add y z) = add (mul x y) (mul x z)" using mul_d by simp |
152 |
next show "pwr x (Suc q) = mul x (pwr x q)" using pwr_Suc by simp |
|
153 |
next show "pwr x (2 * n) = mul (pwr x n) (pwr x n)" by (simp add: nat_number mul_pwr) |
|
154 |
next show "pwr x (Suc (2 * n)) = mul x (mul (pwr x n) (pwr x n))" |
|
155 |
by (simp add: nat_number pwr_Suc mul_pwr) |
|
156 |
qed |
|
157 |
||
158 |
||
26462 | 159 |
lemmas gb_semiring_axioms' = |
26314 | 160 |
gb_semiring_axioms [normalizer |
23252 | 161 |
semiring ops: semiring_ops |
26314 | 162 |
semiring rules: semiring_rules] |
23252 | 163 |
|
164 |
end |
|
165 |
||
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
30654
diff
changeset
|
166 |
interpretation class_semiring: gb_semiring |
31017 | 167 |
"op +" "op *" "op ^" "0::'a::{comm_semiring_1}" "1" |
29667 | 168 |
proof qed (auto simp add: algebra_simps power_Suc) |
23252 | 169 |
|
170 |
lemmas nat_arith = |
|
28987 | 171 |
add_nat_number_of |
172 |
diff_nat_number_of |
|
173 |
mult_nat_number_of |
|
174 |
eq_nat_number_of |
|
175 |
less_nat_number_of |
|
23252 | 176 |
|
177 |
lemma not_iszero_Numeral1: "\<not> iszero (Numeral1::'a::number_ring)" |
|
178 |
by (simp add: numeral_1_eq_1) |
|
28986 | 179 |
|
29039 | 180 |
lemmas comp_arith = |
181 |
Let_def arith_simps nat_arith rel_simps neg_simps if_False |
|
23252 | 182 |
if_True add_0 add_Suc add_number_of_left mult_number_of_left |
31790 | 183 |
numeral_1_eq_1[symmetric] Suc_eq_plus1 |
28986 | 184 |
numeral_0_eq_0[symmetric] numerals[symmetric] |
185 |
iszero_simps not_iszero_Numeral1 |
|
23252 | 186 |
|
187 |
lemmas semiring_norm = comp_arith |
|
188 |
||
189 |
ML {* |
|
23573 | 190 |
local |
23252 | 191 |
|
23573 | 192 |
open Conv; |
193 |
||
30866 | 194 |
fun numeral_is_const ct = can HOLogic.dest_number (Thm.term_of ct); |
23252 | 195 |
|
23573 | 196 |
fun int_of_rat x = |
197 |
(case Rat.quotient_of_rat x of (i, 1) => i |
|
198 |
| _ => error "int_of_rat: bad int"); |
|
23252 | 199 |
|
23573 | 200 |
val numeral_conv = |
201 |
Simplifier.rewrite (HOL_basic_ss addsimps @{thms semiring_norm}) then_conv |
|
202 |
Simplifier.rewrite (HOL_basic_ss addsimps |
|
203 |
(@{thms numeral_1_eq_1} @ @{thms numeral_0_eq_0} @ @{thms numerals(1-2)})); |
|
204 |
||
205 |
in |
|
206 |
||
207 |
fun normalizer_funs key = |
|
208 |
NormalizerData.funs key |
|
23252 | 209 |
{is_const = fn phi => numeral_is_const, |
210 |
dest_const = fn phi => fn ct => |
|
211 |
Rat.rat_of_int (snd |
|
212 |
(HOLogic.dest_number (Thm.term_of ct) |
|
213 |
handle TERM _ => error "ring_dest_const")), |
|
23573 | 214 |
mk_const = fn phi => fn cT => fn x => Numeral.mk_cnumber cT (int_of_rat x), |
23330
01c09922ce59
Conversion for computation on constants now depends on the context
chaieb
parents:
23327
diff
changeset
|
215 |
conv = fn phi => K numeral_conv} |
23573 | 216 |
|
217 |
end |
|
23252 | 218 |
*} |
219 |
||
26462 | 220 |
declaration {* normalizer_funs @{thm class_semiring.gb_semiring_axioms'} *} |
23573 | 221 |
|
23252 | 222 |
|
23258
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
wenzelm
parents:
23252
diff
changeset
|
223 |
locale gb_ring = gb_semiring + |
23252 | 224 |
fixes sub :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
225 |
and neg :: "'a \<Rightarrow> 'a" |
|
226 |
assumes neg_mul: "neg x = mul (neg r1) x" |
|
227 |
and sub_add: "sub x y = add x (neg y)" |
|
228 |
begin |
|
229 |
||
28856
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents:
28823
diff
changeset
|
230 |
lemma ring_ops: shows "TERM (sub x y)" and "TERM (neg x)" . |
23252 | 231 |
|
232 |
lemmas ring_rules = neg_mul sub_add |
|
233 |
||
26462 | 234 |
lemmas gb_ring_axioms' = |
26314 | 235 |
gb_ring_axioms [normalizer |
236 |
semiring ops: semiring_ops |
|
237 |
semiring rules: semiring_rules |
|
238 |
ring ops: ring_ops |
|
239 |
ring rules: ring_rules] |
|
23252 | 240 |
|
241 |
end |
|
242 |
||
243 |
||
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
30654
diff
changeset
|
244 |
interpretation class_ring: gb_ring "op +" "op *" "op ^" |
31017 | 245 |
"0::'a::{comm_semiring_1,number_ring}" 1 "op -" "uminus" |
28823 | 246 |
proof qed simp_all |
23252 | 247 |
|
248 |
||
26462 | 249 |
declaration {* normalizer_funs @{thm class_ring.gb_ring_axioms'} *} |
23252 | 250 |
|
251 |
use "Tools/Groebner_Basis/normalizer.ML" |
|
252 |
||
27666 | 253 |
|
23252 | 254 |
method_setup sring_norm = {* |
30549 | 255 |
Scan.succeed (SIMPLE_METHOD' o Normalizer.semiring_normalize_tac) |
23458 | 256 |
*} "semiring normalizer" |
23252 | 257 |
|
258 |
||
23327 | 259 |
locale gb_field = gb_ring + |
260 |
fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
261 |
and inverse:: "'a \<Rightarrow> 'a" |
|
30866 | 262 |
assumes divide_inverse: "divide x y = mul x (inverse y)" |
263 |
and inverse_divide: "inverse x = divide r1 x" |
|
23327 | 264 |
begin |
265 |
||
30866 | 266 |
lemma field_ops: shows "TERM (divide x y)" and "TERM (inverse x)" . |
267 |
||
268 |
lemmas field_rules = divide_inverse inverse_divide |
|
269 |
||
26462 | 270 |
lemmas gb_field_axioms' = |
26314 | 271 |
gb_field_axioms [normalizer |
272 |
semiring ops: semiring_ops |
|
273 |
semiring rules: semiring_rules |
|
274 |
ring ops: ring_ops |
|
30866 | 275 |
ring rules: ring_rules |
276 |
field ops: field_ops |
|
277 |
field rules: field_rules] |
|
23327 | 278 |
|
279 |
end |
|
280 |
||
23458 | 281 |
|
23266 | 282 |
subsection {* Groebner Bases *} |
23252 | 283 |
|
23258
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
wenzelm
parents:
23252
diff
changeset
|
284 |
locale semiringb = gb_semiring + |
23252 | 285 |
assumes add_cancel: "add (x::'a) y = add x z \<longleftrightarrow> y = z" |
286 |
and add_mul_solve: "add (mul w y) (mul x z) = |
|
287 |
add (mul w z) (mul x y) \<longleftrightarrow> w = x \<or> y = z" |
|
288 |
begin |
|
289 |
||
290 |
lemma noteq_reduce: "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)" |
|
291 |
proof- |
|
292 |
have "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> \<not> (a = b \<or> c = d)" by simp |
|
293 |
also have "\<dots> \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)" |
|
294 |
using add_mul_solve by blast |
|
295 |
finally show "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)" |
|
296 |
by simp |
|
297 |
qed |
|
298 |
||
299 |
lemma add_scale_eq_noteq: "\<lbrakk>r \<noteq> r0 ; (a = b) \<and> ~(c = d)\<rbrakk> |
|
300 |
\<Longrightarrow> add a (mul r c) \<noteq> add b (mul r d)" |
|
301 |
proof(clarify) |
|
302 |
assume nz: "r\<noteq> r0" and cnd: "c\<noteq>d" |
|
303 |
and eq: "add b (mul r c) = add b (mul r d)" |
|
304 |
hence "mul r c = mul r d" using cnd add_cancel by simp |
|
305 |
hence "add (mul r0 d) (mul r c) = add (mul r0 c) (mul r d)" |
|
306 |
using mul_0 add_cancel by simp |
|
307 |
thus "False" using add_mul_solve nz cnd by simp |
|
308 |
qed |
|
309 |
||
25250
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
chaieb
parents:
23573
diff
changeset
|
310 |
lemma add_r0_iff: " x = add x a \<longleftrightarrow> a = r0" |
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
chaieb
parents:
23573
diff
changeset
|
311 |
proof- |
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
chaieb
parents:
23573
diff
changeset
|
312 |
have "a = r0 \<longleftrightarrow> add x a = add x r0" by (simp add: add_cancel) |
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
chaieb
parents:
23573
diff
changeset
|
313 |
thus "x = add x a \<longleftrightarrow> a = r0" by (auto simp add: add_c add_0) |
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
chaieb
parents:
23573
diff
changeset
|
314 |
qed |
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
chaieb
parents:
23573
diff
changeset
|
315 |
|
26462 | 316 |
declare gb_semiring_axioms' [normalizer del] |
23252 | 317 |
|
26462 | 318 |
lemmas semiringb_axioms' = semiringb_axioms [normalizer |
23252 | 319 |
semiring ops: semiring_ops |
320 |
semiring rules: semiring_rules |
|
26314 | 321 |
idom rules: noteq_reduce add_scale_eq_noteq] |
23252 | 322 |
|
323 |
end |
|
324 |
||
25250
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
chaieb
parents:
23573
diff
changeset
|
325 |
locale ringb = semiringb + gb_ring + |
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
chaieb
parents:
23573
diff
changeset
|
326 |
assumes subr0_iff: "sub x y = r0 \<longleftrightarrow> x = y" |
23252 | 327 |
begin |
328 |
||
26462 | 329 |
declare gb_ring_axioms' [normalizer del] |
23252 | 330 |
|
26462 | 331 |
lemmas ringb_axioms' = ringb_axioms [normalizer |
23252 | 332 |
semiring ops: semiring_ops |
333 |
semiring rules: semiring_rules |
|
334 |
ring ops: ring_ops |
|
335 |
ring rules: ring_rules |
|
25250
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
chaieb
parents:
23573
diff
changeset
|
336 |
idom rules: noteq_reduce add_scale_eq_noteq |
26314 | 337 |
ideal rules: subr0_iff add_r0_iff] |
23252 | 338 |
|
339 |
end |
|
340 |
||
25250
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
chaieb
parents:
23573
diff
changeset
|
341 |
|
23252 | 342 |
lemma no_zero_divirors_neq0: |
343 |
assumes az: "(a::'a::no_zero_divisors) \<noteq> 0" |
|
344 |
and ab: "a*b = 0" shows "b = 0" |
|
345 |
proof - |
|
346 |
{ assume bz: "b \<noteq> 0" |
|
347 |
from no_zero_divisors [OF az bz] ab have False by blast } |
|
348 |
thus "b = 0" by blast |
|
349 |
qed |
|
350 |
||
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
30654
diff
changeset
|
351 |
interpretation class_ringb: ringb |
31017 | 352 |
"op +" "op *" "op ^" "0::'a::{idom,number_ring}" "1" "op -" "uminus" |
29667 | 353 |
proof(unfold_locales, simp add: algebra_simps power_Suc, auto) |
31017 | 354 |
fix w x y z ::"'a::{idom,number_ring}" |
23252 | 355 |
assume p: "w * y + x * z = w * z + x * y" and ynz: "y \<noteq> z" |
356 |
hence ynz': "y - z \<noteq> 0" by simp |
|
357 |
from p have "w * y + x* z - w*z - x*y = 0" by simp |
|
29667 | 358 |
hence "w* (y - z) - x * (y - z) = 0" by (simp add: algebra_simps) |
359 |
hence "(y - z) * (w - x) = 0" by (simp add: algebra_simps) |
|
23252 | 360 |
with no_zero_divirors_neq0 [OF ynz'] |
361 |
have "w - x = 0" by blast |
|
362 |
thus "w = x" by simp |
|
363 |
qed |
|
364 |
||
26462 | 365 |
declaration {* normalizer_funs @{thm class_ringb.ringb_axioms'} *} |
23252 | 366 |
|
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
30654
diff
changeset
|
367 |
interpretation natgb: semiringb |
29223 | 368 |
"op +" "op *" "op ^" "0::nat" "1" |
29667 | 369 |
proof (unfold_locales, simp add: algebra_simps power_Suc) |
23252 | 370 |
fix w x y z ::"nat" |
371 |
{ assume p: "w * y + x * z = w * z + x * y" and ynz: "y \<noteq> z" |
|
372 |
hence "y < z \<or> y > z" by arith |
|
373 |
moreover { |
|
374 |
assume lt:"y <z" hence "\<exists>k. z = y + k \<and> k > 0" by (rule_tac x="z - y" in exI, auto) |
|
375 |
then obtain k where kp: "k>0" and yz:"z = y + k" by blast |
|
29667 | 376 |
from p have "(w * y + x *y) + x*k = (w * y + x*y) + w*k" by (simp add: yz algebra_simps) |
23252 | 377 |
hence "x*k = w*k" by simp |
378 |
hence "w = x" using kp by (simp add: mult_cancel2) } |
|
379 |
moreover { |
|
380 |
assume lt: "y >z" hence "\<exists>k. y = z + k \<and> k>0" by (rule_tac x="y - z" in exI, auto) |
|
381 |
then obtain k where kp: "k>0" and yz:"y = z + k" by blast |
|
29667 | 382 |
from p have "(w * z + x *z) + w*k = (w * z + x*z) + x*k" by (simp add: yz algebra_simps) |
23252 | 383 |
hence "w*k = x*k" by simp |
384 |
hence "w = x" using kp by (simp add: mult_cancel2)} |
|
385 |
ultimately have "w=x" by blast } |
|
386 |
thus "(w * y + x * z = w * z + x * y) = (w = x \<or> y = z)" by auto |
|
387 |
qed |
|
388 |
||
26462 | 389 |
declaration {* normalizer_funs @{thm natgb.semiringb_axioms'} *} |
23252 | 390 |
|
23327 | 391 |
locale fieldgb = ringb + gb_field |
392 |
begin |
|
393 |
||
26462 | 394 |
declare gb_field_axioms' [normalizer del] |
23327 | 395 |
|
26462 | 396 |
lemmas fieldgb_axioms' = fieldgb_axioms [normalizer |
23327 | 397 |
semiring ops: semiring_ops |
398 |
semiring rules: semiring_rules |
|
399 |
ring ops: ring_ops |
|
400 |
ring rules: ring_rules |
|
30866 | 401 |
field ops: field_ops |
402 |
field rules: field_rules |
|
25250
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
chaieb
parents:
23573
diff
changeset
|
403 |
idom rules: noteq_reduce add_scale_eq_noteq |
26314 | 404 |
ideal rules: subr0_iff add_r0_iff] |
405 |
||
23327 | 406 |
end |
407 |
||
408 |
||
23258
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
wenzelm
parents:
23252
diff
changeset
|
409 |
lemmas bool_simps = simp_thms(1-34) |
23252 | 410 |
lemma dnf: |
411 |
"(P & (Q | R)) = ((P&Q) | (P&R))" "((Q | R) & P) = ((Q&P) | (R&P))" |
|
412 |
"(P \<and> Q) = (Q \<and> P)" "(P \<or> Q) = (Q \<or> P)" |
|
413 |
by blast+ |
|
414 |
||
415 |
lemmas weak_dnf_simps = dnf bool_simps |
|
416 |
||
417 |
lemma nnf_simps: |
|
418 |
"(\<not>(P \<and> Q)) = (\<not>P \<or> \<not>Q)" "(\<not>(P \<or> Q)) = (\<not>P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)" |
|
419 |
"(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not> \<not>(P)) = P" |
|
420 |
by blast+ |
|
421 |
||
422 |
lemma PFalse: |
|
423 |
"P \<equiv> False \<Longrightarrow> \<not> P" |
|
424 |
"\<not> P \<Longrightarrow> (P \<equiv> False)" |
|
425 |
by auto |
|
426 |
use "Tools/Groebner_Basis/groebner.ML" |
|
427 |
||
23332
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
428 |
method_setup algebra = |
23458 | 429 |
{* |
23332
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
430 |
let |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
431 |
fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K () |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
432 |
val addN = "add" |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
433 |
val delN = "del" |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
434 |
val any_keyword = keyword addN || keyword delN |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
435 |
val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
436 |
in |
30549 | 437 |
((Scan.optional (keyword addN |-- thms) []) -- |
438 |
(Scan.optional (keyword delN |-- thms) [])) >> |
|
439 |
(fn (add_ths, del_ths) => fn ctxt => |
|
30510
4120fc59dd85
unified type Proof.method and pervasive METHOD combinators;
wenzelm
parents:
30242
diff
changeset
|
440 |
SIMPLE_METHOD' (Groebner.algebra_tac add_ths del_ths ctxt)) |
23332
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
441 |
end |
25250
b3a485b98963
(1) added axiom to ringb and theorems to enable algebra to prove the ideal membership problem; (2) Method algebra now calls algebra_tac which first tries to solve a universal formula, then in case of failure trie to solve the ideal membership problem (see HOL/Tools/Groebner_Basis/groebner.ML)
chaieb
parents:
23573
diff
changeset
|
442 |
*} "solve polynomial equations over (semi)rings and ideal membership problems using Groebner bases" |
27666 | 443 |
declare dvd_def[algebra] |
444 |
declare dvd_eq_mod_eq_0[symmetric, algebra] |
|
30027 | 445 |
declare mod_div_trivial[algebra] |
446 |
declare mod_mod_trivial[algebra] |
|
27666 | 447 |
declare conjunct1[OF DIVISION_BY_ZERO, algebra] |
448 |
declare conjunct2[OF DIVISION_BY_ZERO, algebra] |
|
449 |
declare zmod_zdiv_equality[symmetric,algebra] |
|
450 |
declare zdiv_zmod_equality[symmetric, algebra] |
|
451 |
declare zdiv_zminus_zminus[algebra] |
|
452 |
declare zmod_zminus_zminus[algebra] |
|
453 |
declare zdiv_zminus2[algebra] |
|
454 |
declare zmod_zminus2[algebra] |
|
455 |
declare zdiv_zero[algebra] |
|
456 |
declare zmod_zero[algebra] |
|
30031 | 457 |
declare mod_by_1[algebra] |
458 |
declare div_by_1[algebra] |
|
27666 | 459 |
declare zmod_minus1_right[algebra] |
460 |
declare zdiv_minus1_right[algebra] |
|
461 |
declare mod_div_trivial[algebra] |
|
462 |
declare mod_mod_trivial[algebra] |
|
30034 | 463 |
declare mod_mult_self2_is_0[algebra] |
464 |
declare mod_mult_self1_is_0[algebra] |
|
27666 | 465 |
declare zmod_eq_0_iff[algebra] |
30042 | 466 |
declare dvd_0_left_iff[algebra] |
27666 | 467 |
declare zdvd1_eq[algebra] |
468 |
declare zmod_eq_dvd_iff[algebra] |
|
469 |
declare nat_mod_eq_iff[algebra] |
|
23252 | 470 |
|
28402 | 471 |
subsection{* Groebner Bases for fields *} |
472 |
||
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
30654
diff
changeset
|
473 |
interpretation class_fieldgb: |
31017 | 474 |
fieldgb "op +" "op *" "op ^" "0::'a::{field,number_ring}" "1" "op -" "uminus" "op /" "inverse" apply (unfold_locales) by (simp_all add: divide_inverse) |
28402 | 475 |
|
476 |
lemma divide_Numeral1: "(x::'a::{field,number_ring}) / Numeral1 = x" by simp |
|
477 |
lemma divide_Numeral0: "(x::'a::{field,number_ring, division_by_zero}) / Numeral0 = 0" |
|
478 |
by simp |
|
479 |
lemma mult_frac_frac: "((x::'a::{field,division_by_zero}) / y) * (z / w) = (x*z) / (y*w)" |
|
480 |
by simp |
|
481 |
lemma mult_frac_num: "((x::'a::{field, division_by_zero}) / y) * z = (x*z) / y" |
|
482 |
by simp |
|
483 |
lemma mult_num_frac: "((x::'a::{field, division_by_zero}) / y) * z = (x*z) / y" |
|
484 |
by simp |
|
485 |
||
486 |
lemma Numeral1_eq1_nat: "(1::nat) = Numeral1" by simp |
|
487 |
||
488 |
lemma add_frac_num: "y\<noteq> 0 \<Longrightarrow> (x::'a::{field, division_by_zero}) / y + z = (x + z*y) / y" |
|
489 |
by (simp add: add_divide_distrib) |
|
490 |
lemma add_num_frac: "y\<noteq> 0 \<Longrightarrow> z + (x::'a::{field, division_by_zero}) / y = (x + z*y) / y" |
|
491 |
by (simp add: add_divide_distrib) |
|
30869
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
chaieb
parents:
30866
diff
changeset
|
492 |
ML{* let open Conv in fconv_rule (arg_conv (arg1_conv (rewr_conv (mk_meta_eq @{thm mult_commute})))) (@{thm divide_inverse} RS sym)end*} |
28402 | 493 |
ML{* |
494 |
local |
|
495 |
val zr = @{cpat "0"} |
|
496 |
val zT = ctyp_of_term zr |
|
497 |
val geq = @{cpat "op ="} |
|
498 |
val eqT = Thm.dest_ctyp (ctyp_of_term geq) |> hd |
|
499 |
val add_frac_eq = mk_meta_eq @{thm "add_frac_eq"} |
|
500 |
val add_frac_num = mk_meta_eq @{thm "add_frac_num"} |
|
501 |
val add_num_frac = mk_meta_eq @{thm "add_num_frac"} |
|
502 |
||
503 |
fun prove_nz ss T t = |
|
504 |
let |
|
505 |
val z = instantiate_cterm ([(zT,T)],[]) zr |
|
506 |
val eq = instantiate_cterm ([(eqT,T)],[]) geq |
|
507 |
val th = Simplifier.rewrite (ss addsimps simp_thms) |
|
508 |
(Thm.capply @{cterm "Trueprop"} (Thm.capply @{cterm "Not"} |
|
509 |
(Thm.capply (Thm.capply eq t) z))) |
|
510 |
in equal_elim (symmetric th) TrueI |
|
511 |
end |
|
512 |
||
513 |
fun proc phi ss ct = |
|
514 |
let |
|
515 |
val ((x,y),(w,z)) = |
|
516 |
(Thm.dest_binop #> (fn (a,b) => (Thm.dest_binop a, Thm.dest_binop b))) ct |
|
517 |
val _ = map (HOLogic.dest_number o term_of) [x,y,z,w] |
|
518 |
val T = ctyp_of_term x |
|
519 |
val [y_nz, z_nz] = map (prove_nz ss T) [y, z] |
|
520 |
val th = instantiate' [SOME T] (map SOME [y,z,x,w]) add_frac_eq |
|
521 |
in SOME (implies_elim (implies_elim th y_nz) z_nz) |
|
522 |
end |
|
523 |
handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE |
|
524 |
||
525 |
fun proc2 phi ss ct = |
|
526 |
let |
|
527 |
val (l,r) = Thm.dest_binop ct |
|
528 |
val T = ctyp_of_term l |
|
529 |
in (case (term_of l, term_of r) of |
|
530 |
(Const(@{const_name "HOL.divide"},_)$_$_, _) => |
|
531 |
let val (x,y) = Thm.dest_binop l val z = r |
|
532 |
val _ = map (HOLogic.dest_number o term_of) [x,y,z] |
|
533 |
val ynz = prove_nz ss T y |
|
534 |
in SOME (implies_elim (instantiate' [SOME T] (map SOME [y,x,z]) add_frac_num) ynz) |
|
535 |
end |
|
536 |
| (_, Const (@{const_name "HOL.divide"},_)$_$_) => |
|
537 |
let val (x,y) = Thm.dest_binop r val z = l |
|
538 |
val _ = map (HOLogic.dest_number o term_of) [x,y,z] |
|
539 |
val ynz = prove_nz ss T y |
|
540 |
in SOME (implies_elim (instantiate' [SOME T] (map SOME [y,z,x]) add_num_frac) ynz) |
|
541 |
end |
|
542 |
| _ => NONE) |
|
543 |
end |
|
544 |
handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE |
|
545 |
||
546 |
fun is_number (Const(@{const_name "HOL.divide"},_)$a$b) = is_number a andalso is_number b |
|
547 |
| is_number t = can HOLogic.dest_number t |
|
548 |
||
549 |
val is_number = is_number o term_of |
|
550 |
||
551 |
fun proc3 phi ss ct = |
|
552 |
(case term_of ct of |
|
553 |
Const(@{const_name HOL.less},_)$(Const(@{const_name "HOL.divide"},_)$_$_)$_ => |
|
554 |
let |
|
555 |
val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop |
|
556 |
val _ = map is_number [a,b,c] |
|
557 |
val T = ctyp_of_term c |
|
558 |
val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_less_eq"} |
|
559 |
in SOME (mk_meta_eq th) end |
|
560 |
| Const(@{const_name HOL.less_eq},_)$(Const(@{const_name "HOL.divide"},_)$_$_)$_ => |
|
561 |
let |
|
562 |
val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop |
|
563 |
val _ = map is_number [a,b,c] |
|
564 |
val T = ctyp_of_term c |
|
565 |
val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_le_eq"} |
|
566 |
in SOME (mk_meta_eq th) end |
|
567 |
| Const("op =",_)$(Const(@{const_name "HOL.divide"},_)$_$_)$_ => |
|
568 |
let |
|
569 |
val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop |
|
570 |
val _ = map is_number [a,b,c] |
|
571 |
val T = ctyp_of_term c |
|
572 |
val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_eq_eq"} |
|
573 |
in SOME (mk_meta_eq th) end |
|
574 |
| Const(@{const_name HOL.less},_)$_$(Const(@{const_name "HOL.divide"},_)$_$_) => |
|
575 |
let |
|
576 |
val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop |
|
577 |
val _ = map is_number [a,b,c] |
|
578 |
val T = ctyp_of_term c |
|
579 |
val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "less_divide_eq"} |
|
580 |
in SOME (mk_meta_eq th) end |
|
581 |
| Const(@{const_name HOL.less_eq},_)$_$(Const(@{const_name "HOL.divide"},_)$_$_) => |
|
582 |
let |
|
583 |
val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop |
|
584 |
val _ = map is_number [a,b,c] |
|
585 |
val T = ctyp_of_term c |
|
586 |
val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "le_divide_eq"} |
|
587 |
in SOME (mk_meta_eq th) end |
|
588 |
| Const("op =",_)$_$(Const(@{const_name "HOL.divide"},_)$_$_) => |
|
589 |
let |
|
590 |
val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop |
|
591 |
val _ = map is_number [a,b,c] |
|
592 |
val T = ctyp_of_term c |
|
593 |
val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "eq_divide_eq"} |
|
594 |
in SOME (mk_meta_eq th) end |
|
595 |
| _ => NONE) |
|
596 |
handle TERM _ => NONE | CTERM _ => NONE | THM _ => NONE |
|
597 |
||
598 |
val add_frac_frac_simproc = |
|
599 |
make_simproc {lhss = [@{cpat "(?x::?'a::field)/?y + (?w::?'a::field)/?z"}], |
|
600 |
name = "add_frac_frac_simproc", |
|
601 |
proc = proc, identifier = []} |
|
602 |
||
603 |
val add_frac_num_simproc = |
|
604 |
make_simproc {lhss = [@{cpat "(?x::?'a::field)/?y + ?z"}, @{cpat "?z + (?x::?'a::field)/?y"}], |
|
605 |
name = "add_frac_num_simproc", |
|
606 |
proc = proc2, identifier = []} |
|
607 |
||
608 |
val ord_frac_simproc = |
|
609 |
make_simproc |
|
610 |
{lhss = [@{cpat "(?a::(?'a::{field, ord}))/?b < ?c"}, |
|
611 |
@{cpat "(?a::(?'a::{field, ord}))/?b \<le> ?c"}, |
|
612 |
@{cpat "?c < (?a::(?'a::{field, ord}))/?b"}, |
|
613 |
@{cpat "?c \<le> (?a::(?'a::{field, ord}))/?b"}, |
|
614 |
@{cpat "?c = ((?a::(?'a::{field, ord}))/?b)"}, |
|
615 |
@{cpat "((?a::(?'a::{field, ord}))/ ?b) = ?c"}], |
|
616 |
name = "ord_frac_simproc", proc = proc3, identifier = []} |
|
617 |
||
30869
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
chaieb
parents:
30866
diff
changeset
|
618 |
local |
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
chaieb
parents:
30866
diff
changeset
|
619 |
open Conv |
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
chaieb
parents:
30866
diff
changeset
|
620 |
in |
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
chaieb
parents:
30866
diff
changeset
|
621 |
|
28402 | 622 |
val ths = [@{thm "mult_numeral_1"}, @{thm "mult_numeral_1_right"}, |
623 |
@{thm "divide_Numeral1"}, |
|
624 |
@{thm "Ring_and_Field.divide_zero"}, @{thm "divide_Numeral0"}, |
|
625 |
@{thm "divide_divide_eq_left"}, @{thm "mult_frac_frac"}, |
|
626 |
@{thm "mult_num_frac"}, @{thm "mult_frac_num"}, |
|
627 |
@{thm "mult_frac_frac"}, @{thm "times_divide_eq_right"}, |
|
628 |
@{thm "times_divide_eq_left"}, @{thm "divide_divide_eq_right"}, |
|
629 |
@{thm "diff_def"}, @{thm "minus_divide_left"}, |
|
30869
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
chaieb
parents:
30866
diff
changeset
|
630 |
@{thm "Numeral1_eq1_nat"}, @{thm "add_divide_distrib"} RS sym, |
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
chaieb
parents:
30866
diff
changeset
|
631 |
@{thm divide_inverse} RS sym, @{thm inverse_divide}, |
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
chaieb
parents:
30866
diff
changeset
|
632 |
fconv_rule (arg_conv (arg1_conv (rewr_conv (mk_meta_eq @{thm mult_commute})))) |
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
chaieb
parents:
30866
diff
changeset
|
633 |
(@{thm divide_inverse} RS sym)] |
28402 | 634 |
|
635 |
val comp_conv = (Simplifier.rewrite |
|
636 |
(HOL_basic_ss addsimps @{thms "Groebner_Basis.comp_arith"} |
|
28987 | 637 |
addsimps ths addsimps simp_thms |
31068
f591144b0f17
modules numeral_simprocs, nat_numeral_simprocs; proper structures for numeral simprocs
haftmann
parents:
31017
diff
changeset
|
638 |
addsimprocs Numeral_Simprocs.field_cancel_numeral_factors |
28402 | 639 |
addsimprocs [add_frac_frac_simproc, add_frac_num_simproc, |
640 |
ord_frac_simproc] |
|
641 |
addcongs [@{thm "if_weak_cong"}])) |
|
642 |
then_conv (Simplifier.rewrite (HOL_basic_ss addsimps |
|
643 |
[@{thm numeral_1_eq_1},@{thm numeral_0_eq_0}] @ @{thms numerals(1-2)})) |
|
23252 | 644 |
end |
28402 | 645 |
|
646 |
fun numeral_is_const ct = |
|
647 |
case term_of ct of |
|
648 |
Const (@{const_name "HOL.divide"},_) $ a $ b => |
|
30866 | 649 |
can HOLogic.dest_number a andalso can HOLogic.dest_number b |
650 |
| Const (@{const_name "HOL.inverse"},_)$t => can HOLogic.dest_number t |
|
28402 | 651 |
| t => can HOLogic.dest_number t |
652 |
||
653 |
fun dest_const ct = ((case term_of ct of |
|
654 |
Const (@{const_name "HOL.divide"},_) $ a $ b=> |
|
655 |
Rat.rat_of_quotient (snd (HOLogic.dest_number a), snd (HOLogic.dest_number b)) |
|
30869
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
chaieb
parents:
30866
diff
changeset
|
656 |
| Const (@{const_name "HOL.inverse"},_)$t => |
71fde5b7b43c
More precise treatement of rational constants by the normalizer for fields
chaieb
parents:
30866
diff
changeset
|
657 |
Rat.inv (Rat.rat_of_int (snd (HOLogic.dest_number t))) |
28402 | 658 |
| t => Rat.rat_of_int (snd (HOLogic.dest_number t))) |
659 |
handle TERM _ => error "ring_dest_const") |
|
660 |
||
661 |
fun mk_const phi cT x = |
|
662 |
let val (a, b) = Rat.quotient_of_rat x |
|
663 |
in if b = 1 then Numeral.mk_cnumber cT a |
|
664 |
else Thm.capply |
|
665 |
(Thm.capply (Drule.cterm_rule (instantiate' [SOME cT] []) @{cpat "op /"}) |
|
666 |
(Numeral.mk_cnumber cT a)) |
|
667 |
(Numeral.mk_cnumber cT b) |
|
668 |
end |
|
669 |
||
670 |
in |
|
671 |
val field_comp_conv = comp_conv; |
|
672 |
val fieldgb_declaration = |
|
673 |
NormalizerData.funs @{thm class_fieldgb.fieldgb_axioms'} |
|
674 |
{is_const = K numeral_is_const, |
|
675 |
dest_const = K dest_const, |
|
676 |
mk_const = mk_const, |
|
677 |
conv = K (K comp_conv)} |
|
678 |
end; |
|
679 |
*} |
|
680 |
||
681 |
declaration fieldgb_declaration |
|
682 |
||
683 |
end |