| author | kuncar | 
| Sat, 15 Feb 2014 00:11:17 +0100 | |
| changeset 55487 | 6380313b8ed5 | 
| parent 54703 | 499f92dc6e45 | 
| child 56927 | 4044a7d1720f | 
| permissions | -rw-r--r-- | 
| 39189 | 1  | 
theory Reg_Exp_Example  | 
| 41956 | 2  | 
imports  | 
3  | 
"~~/src/HOL/Library/Predicate_Compile_Quickcheck"  | 
|
4  | 
"~~/src/HOL/Library/Code_Prolog"  | 
|
| 39188 | 5  | 
begin  | 
6  | 
||
| 54703 | 7  | 
text {* An example from the experiments from SmallCheck (@{url "http://www.cs.york.ac.uk/fp/smallcheck/"}) *}
 | 
| 39188 | 8  | 
text {* The example (original in Haskell) was imported with Haskabelle and
 | 
9  | 
manually slightly adapted.  | 
|
10  | 
*}  | 
|
11  | 
||
12  | 
datatype Nat = Zer  | 
|
13  | 
| Suc Nat  | 
|
14  | 
||
15  | 
fun sub :: "Nat \<Rightarrow> Nat \<Rightarrow> Nat"  | 
|
16  | 
where  | 
|
17  | 
"sub x y = (case y of  | 
|
18  | 
Zer \<Rightarrow> x  | 
|
19  | 
| Suc y' \<Rightarrow> case x of  | 
|
20  | 
Zer \<Rightarrow> Zer  | 
|
21  | 
| Suc x' \<Rightarrow> sub x' y')"  | 
|
22  | 
||
23  | 
datatype Sym = N0  | 
|
24  | 
| N1 Sym  | 
|
25  | 
||
26  | 
datatype RE = Sym Sym  | 
|
27  | 
| Or RE RE  | 
|
28  | 
| Seq RE RE  | 
|
29  | 
| And RE RE  | 
|
30  | 
| Star RE  | 
|
31  | 
| Empty  | 
|
32  | 
||
33  | 
||
34  | 
function accepts :: "RE \<Rightarrow> Sym list \<Rightarrow> bool" and  | 
|
35  | 
seqSplit :: "RE \<Rightarrow> RE \<Rightarrow> Sym list \<Rightarrow> Sym list \<Rightarrow> bool" and  | 
|
36  | 
seqSplit'' :: "RE \<Rightarrow> RE \<Rightarrow> Sym list \<Rightarrow> Sym list \<Rightarrow> bool" and  | 
|
37  | 
seqSplit' :: "RE \<Rightarrow> RE \<Rightarrow> Sym list \<Rightarrow> Sym list \<Rightarrow> bool"  | 
|
38  | 
where  | 
|
39  | 
"accepts re ss = (case re of  | 
|
40  | 
Sym n \<Rightarrow> case ss of  | 
|
41  | 
Nil \<Rightarrow> False  | 
|
42  | 
| (n' # ss') \<Rightarrow> n = n' & List.null ss'  | 
|
43  | 
| Or re1 re2 \<Rightarrow> accepts re1 ss | accepts re2 ss  | 
|
44  | 
| Seq re1 re2 \<Rightarrow> seqSplit re1 re2 Nil ss  | 
|
45  | 
| And re1 re2 \<Rightarrow> accepts re1 ss & accepts re2 ss  | 
|
46  | 
| Star re' \<Rightarrow> case ss of  | 
|
47  | 
Nil \<Rightarrow> True  | 
|
48  | 
| (s # ss') \<Rightarrow> seqSplit re' re [s] ss'  | 
|
49  | 
| Empty \<Rightarrow> List.null ss)"  | 
|
50  | 
| "seqSplit re1 re2 ss2 ss = (seqSplit'' re1 re2 ss2 ss | seqSplit' re1 re2 ss2 ss)"  | 
|
51  | 
| "seqSplit'' re1 re2 ss2 ss = (accepts re1 ss2 & accepts re2 ss)"  | 
|
52  | 
| "seqSplit' re1 re2 ss2 ss = (case ss of  | 
|
53  | 
Nil \<Rightarrow> False  | 
|
54  | 
| (n # ss') \<Rightarrow> seqSplit re1 re2 (ss2 @ [n]) ss')"  | 
|
55  | 
by pat_completeness auto  | 
|
56  | 
||
57  | 
termination  | 
|
58  | 
sorry  | 
|
59  | 
||
60  | 
fun rep :: "Nat \<Rightarrow> RE \<Rightarrow> RE"  | 
|
61  | 
where  | 
|
62  | 
"rep n re = (case n of  | 
|
63  | 
Zer \<Rightarrow> Empty  | 
|
64  | 
| Suc n' \<Rightarrow> Seq re (rep n' re))"  | 
|
65  | 
||
66  | 
||
67  | 
fun repMax :: "Nat \<Rightarrow> RE \<Rightarrow> RE"  | 
|
68  | 
where  | 
|
69  | 
"repMax n re = (case n of  | 
|
70  | 
Zer \<Rightarrow> Empty  | 
|
71  | 
| Suc n' \<Rightarrow> Or (rep n re) (repMax n' re))"  | 
|
72  | 
||
73  | 
||
74  | 
fun repInt' :: "Nat \<Rightarrow> Nat \<Rightarrow> RE \<Rightarrow> RE"  | 
|
75  | 
where  | 
|
76  | 
"repInt' n k re = (case k of  | 
|
77  | 
Zer \<Rightarrow> rep n re  | 
|
78  | 
| Suc k' \<Rightarrow> Or (rep n re) (repInt' (Suc n) k' re))"  | 
|
79  | 
||
80  | 
||
81  | 
fun repInt :: "Nat \<Rightarrow> Nat \<Rightarrow> RE \<Rightarrow> RE"  | 
|
82  | 
where  | 
|
83  | 
"repInt n k re = repInt' n (sub k n) re"  | 
|
84  | 
||
85  | 
||
86  | 
fun prop_regex :: "Nat * Nat * RE * RE * Sym list \<Rightarrow> bool"  | 
|
87  | 
where  | 
|
| 52666 | 88  | 
"prop_regex (n, (k, (p, (q, s)))) =  | 
89  | 
((accepts (repInt n k (And p q)) s) = (accepts (And (repInt n k p) (repInt n k q)) s))"  | 
|
| 39188 | 90  | 
|
91  | 
||
92  | 
||
93  | 
lemma "accepts (repInt n k (And p q)) s --> accepts (And (repInt n k p) (repInt n k q)) s"  | 
|
94  | 
(*nitpick  | 
|
| 40924 | 95  | 
quickcheck[tester = random, iterations = 10000]  | 
96  | 
quickcheck[tester = predicate_compile_wo_ff]  | 
|
| 
45451
 
74515e8e6046
renaming example invocations: tester predicate_compile is renamed to smart_exhaustive
 
bulwahn 
parents: 
43974 
diff
changeset
 | 
97  | 
quickcheck[tester = predicate_compile_ff_fs]*)  | 
| 39188 | 98  | 
oops  | 
99  | 
||
100  | 
||
| 52666 | 101  | 
setup {*
 | 
102  | 
Context.theory_map  | 
|
103  | 
    (Quickcheck.add_tester ("prolog", (Code_Prolog.active, Code_Prolog.test_goals)))
 | 
|
104  | 
*}  | 
|
| 39188 | 105  | 
|
106  | 
setup {* Code_Prolog.map_code_options (K 
 | 
|
107  | 
  {ensure_groundness = true,
 | 
|
| 39800 | 108  | 
limit_globally = NONE,  | 
| 39188 | 109  | 
   limited_types = [(@{typ Sym}, 0), (@{typ "Sym list"}, 2), (@{typ RE}, 6)],
 | 
110  | 
limited_predicates = [(["repIntPa"], 2), (["repP"], 2), (["subP"], 0),  | 
|
| 39725 | 111  | 
(["accepts", "acceptsaux", "seqSplit", "seqSplita", "seqSplitaux", "seqSplitb"], 25)],  | 
| 39188 | 112  | 
replacing =  | 
113  | 
     [(("repP", "limited_repP"), "lim_repIntPa"),
 | 
|
114  | 
      (("subP", "limited_subP"), "repIntP"),
 | 
|
115  | 
      (("repIntPa", "limited_repIntPa"), "repIntP"),
 | 
|
116  | 
      (("accepts", "limited_accepts"), "quickcheck")],  
 | 
|
| 39463 | 117  | 
manual_reorder = []}) *}  | 
| 39188 | 118  | 
|
119  | 
text {* Finding the counterexample still seems out of reach for the
 | 
|
120  | 
prolog-style generation. *}  | 
|
121  | 
||
122  | 
lemma "accepts (And (repInt n k p) (repInt n k q)) s --> accepts (repInt n k (And p q)) s"  | 
|
| 
45451
 
74515e8e6046
renaming example invocations: tester predicate_compile is renamed to smart_exhaustive
 
bulwahn 
parents: 
43974 
diff
changeset
 | 
123  | 
quickcheck[exhaustive]  | 
| 
 
74515e8e6046
renaming example invocations: tester predicate_compile is renamed to smart_exhaustive
 
bulwahn 
parents: 
43974 
diff
changeset
 | 
124  | 
quickcheck[tester = random, iterations = 1000]  | 
| 40924 | 125  | 
(*quickcheck[tester = predicate_compile_wo_ff]*)  | 
126  | 
(*quickcheck[tester = predicate_compile_ff_fs, iterations = 1]*)  | 
|
127  | 
(*quickcheck[tester = prolog, iterations = 1, size = 1]*)  | 
|
| 39188 | 128  | 
oops  | 
129  | 
||
130  | 
section {* Given a partial solution *}
 | 
|
131  | 
||
132  | 
lemma  | 
|
133  | 
(* assumes "n = Zer"  | 
|
134  | 
assumes "k = Suc (Suc Zer)"*)  | 
|
135  | 
assumes "p = Sym N0"  | 
|
136  | 
assumes "q = Seq (Sym N0) (Sym N0)"  | 
|
137  | 
(* assumes "s = [N0, N0]"*)  | 
|
138  | 
shows "accepts (And (repInt n k p) (repInt n k q)) s --> accepts (repInt n k (And p q)) s"  | 
|
| 40924 | 139  | 
(*quickcheck[tester = predicate_compile_wo_ff, iterations = 1]*)  | 
| 43974 | 140  | 
quickcheck[tester = prolog, iterations = 1, size = 1]  | 
| 39188 | 141  | 
oops  | 
142  | 
||
143  | 
section {* Checking the counterexample *}
 | 
|
144  | 
||
145  | 
definition a_sol  | 
|
146  | 
where  | 
|
147  | 
"a_sol = (Zer, (Suc (Suc Zer), (Sym N0, (Seq (Sym N0) (Sym N0), [N0, N0]))))"  | 
|
148  | 
||
149  | 
lemma  | 
|
150  | 
assumes "n = Zer"  | 
|
151  | 
assumes "k = Suc (Suc Zer)"  | 
|
152  | 
assumes "p = Sym N0"  | 
|
153  | 
assumes "q = Seq (Sym N0) (Sym N0)"  | 
|
154  | 
assumes "s = [N0, N0]"  | 
|
155  | 
shows "accepts (repInt n k (And p q)) s --> accepts (And (repInt n k p) (repInt n k q)) s"  | 
|
| 40924 | 156  | 
(*quickcheck[tester = predicate_compile_wo_ff]*)  | 
| 39188 | 157  | 
oops  | 
158  | 
||
159  | 
lemma  | 
|
160  | 
assumes "n = Zer"  | 
|
161  | 
assumes "k = Suc (Suc Zer)"  | 
|
162  | 
assumes "p = Sym N0"  | 
|
163  | 
assumes "q = Seq (Sym N0) (Sym N0)"  | 
|
164  | 
assumes "s = [N0, N0]"  | 
|
165  | 
shows "accepts (And (repInt n k p) (repInt n k q)) s --> accepts (repInt n k (And p q)) s"  | 
|
| 40924 | 166  | 
(*quickcheck[tester = predicate_compile_wo_ff, iterations = 1, expect = counterexample]*)  | 
| 43974 | 167  | 
quickcheck[tester = prolog, iterations = 1, size = 1]  | 
| 39188 | 168  | 
oops  | 
169  | 
||
170  | 
lemma  | 
|
171  | 
assumes "n = Zer"  | 
|
172  | 
assumes "k = Suc (Suc Zer)"  | 
|
173  | 
assumes "p = Sym N0"  | 
|
174  | 
assumes "q = Seq (Sym N0) (Sym N0)"  | 
|
175  | 
assumes "s = [N0, N0]"  | 
|
176  | 
shows "prop_regex (n, (k, (p, (q, s))))"  | 
|
| 
45451
 
74515e8e6046
renaming example invocations: tester predicate_compile is renamed to smart_exhaustive
 
bulwahn 
parents: 
43974 
diff
changeset
 | 
177  | 
quickcheck[tester = smart_exhaustive, depth = 30]  | 
| 43974 | 178  | 
quickcheck[tester = prolog]  | 
| 39188 | 179  | 
oops  | 
180  | 
||
181  | 
lemma "prop_regex a_sol"  | 
|
| 43974 | 182  | 
quickcheck[tester = random]  | 
| 
45451
 
74515e8e6046
renaming example invocations: tester predicate_compile is renamed to smart_exhaustive
 
bulwahn 
parents: 
43974 
diff
changeset
 | 
183  | 
quickcheck[tester = smart_exhaustive]  | 
| 39188 | 184  | 
oops  | 
185  | 
||
186  | 
value [code] "prop_regex a_sol"  | 
|
187  | 
||
188  | 
||
189  | 
end  |