author | eberlm <eberlm@in.tum.de> |
Mon, 29 May 2017 09:14:15 +0200 | |
changeset 65956 | 639eb3617a86 |
parent 65546 | 7c58f69451b0 |
child 67020 | c32254ab1901 |
permissions | -rw-r--r-- |
59813 | 1 |
(* Title: HOL/Library/Multiset_Order.thy |
2 |
Author: Dmitriy Traytel, TU Muenchen |
|
3 |
Author: Jasmin Blanchette, Inria, LORIA, MPII |
|
4 |
*) |
|
5 |
||
60500 | 6 |
section \<open>More Theorems about the Multiset Order\<close> |
59813 | 7 |
|
8 |
theory Multiset_Order |
|
9 |
imports Multiset |
|
10 |
begin |
|
11 |
||
65546 | 12 |
subsection \<open>Alternative Characterizations\<close> |
59813 | 13 |
|
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
14 |
context preorder |
59813 | 15 |
begin |
16 |
||
17 |
lemma order_mult: "class.order |
|
18 |
(\<lambda>M N. (M, N) \<in> mult {(x, y). x < y} \<or> M = N) |
|
19 |
(\<lambda>M N. (M, N) \<in> mult {(x, y). x < y})" |
|
20 |
(is "class.order ?le ?less") |
|
21 |
proof - |
|
22 |
have irrefl: "\<And>M :: 'a multiset. \<not> ?less M M" |
|
23 |
proof |
|
24 |
fix M :: "'a multiset" |
|
25 |
have "trans {(x'::'a, x). x' < x}" |
|
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
26 |
by (rule transI) (blast intro: less_trans) |
59813 | 27 |
moreover |
28 |
assume "(M, M) \<in> mult {(x, y). x < y}" |
|
29 |
ultimately have "\<exists>I J K. M = I + J \<and> M = I + K |
|
60495 | 30 |
\<and> J \<noteq> {#} \<and> (\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})" |
59813 | 31 |
by (rule mult_implies_one_step) |
32 |
then obtain I J K where "M = I + J" and "M = I + K" |
|
60495 | 33 |
and "J \<noteq> {#}" and "(\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})" by blast |
34 |
then have aux1: "K \<noteq> {#}" and aux2: "\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset K. k < j" by auto |
|
35 |
have "finite (set_mset K)" by simp |
|
59813 | 36 |
moreover note aux2 |
60495 | 37 |
ultimately have "set_mset K = {}" |
59813 | 38 |
by (induct rule: finite_induct) |
39 |
(simp, metis (mono_tags) insert_absorb insert_iff insert_not_empty less_irrefl less_trans) |
|
40 |
with aux1 show False by simp |
|
41 |
qed |
|
42 |
have trans: "\<And>K M N :: 'a multiset. ?less K M \<Longrightarrow> ?less M N \<Longrightarrow> ?less K N" |
|
43 |
unfolding mult_def by (blast intro: trancl_trans) |
|
44 |
show "class.order ?le ?less" |
|
63388
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
45 |
by standard (auto simp add: less_eq_multiset_def irrefl dest: trans) |
59813 | 46 |
qed |
47 |
||
60500 | 48 |
text \<open>The Dershowitz--Manna ordering:\<close> |
59813 | 49 |
|
50 |
definition less_multiset\<^sub>D\<^sub>M where |
|
51 |
"less_multiset\<^sub>D\<^sub>M M N \<longleftrightarrow> |
|
64587 | 52 |
(\<exists>X Y. X \<noteq> {#} \<and> X \<subseteq># N \<and> M = (N - X) + Y \<and> (\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)))" |
59813 | 53 |
|
54 |
||
60500 | 55 |
text \<open>The Huet--Oppen ordering:\<close> |
59813 | 56 |
|
57 |
definition less_multiset\<^sub>H\<^sub>O where |
|
58 |
"less_multiset\<^sub>H\<^sub>O M N \<longleftrightarrow> M \<noteq> N \<and> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. y < x \<and> count M x < count N x))" |
|
59 |
||
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
60 |
lemma mult_imp_less_multiset\<^sub>H\<^sub>O: |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
61 |
"(M, N) \<in> mult {(x, y). x < y} \<Longrightarrow> less_multiset\<^sub>H\<^sub>O M N" |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
62 |
proof (unfold mult_def, induct rule: trancl_induct) |
59813 | 63 |
case (base P) |
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
64 |
then show ?case |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
65 |
by (auto elim!: mult1_lessE simp add: count_eq_zero_iff less_multiset\<^sub>H\<^sub>O_def split: if_splits dest!: Suc_lessD) |
59813 | 66 |
next |
67 |
case (step N P) |
|
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
68 |
from step(3) have "M \<noteq> N" and |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
69 |
**: "\<And>y. count N y < count M y \<Longrightarrow> (\<exists>x>y. count M x < count N x)" |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
70 |
by (simp_all add: less_multiset\<^sub>H\<^sub>O_def) |
59813 | 71 |
from step(2) obtain M0 a K where |
63793
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
72 |
*: "P = add_mset a M0" "N = M0 + K" "a \<notin># K" "\<And>b. b \<in># K \<Longrightarrow> b < a" |
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
73 |
by (blast elim: mult1_lessE) |
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
74 |
from \<open>M \<noteq> N\<close> ** *(1,2,3) have "M \<noteq> P" by (force dest: *(4) elim!: less_asym split: if_splits ) |
59813 | 75 |
moreover |
76 |
{ assume "count P a \<le> count M a" |
|
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
77 |
with \<open>a \<notin># K\<close> have "count N a < count M a" unfolding *(1,2) |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
78 |
by (auto simp add: not_in_iff) |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
79 |
with ** obtain z where z: "z > a" "count M z < count N z" |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
80 |
by blast |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
81 |
with * have "count N z \<le> count P z" |
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
82 |
by (auto elim: less_asym intro: count_inI) |
59813 | 83 |
with z have "\<exists>z > a. count M z < count P z" by auto |
84 |
} note count_a = this |
|
85 |
{ fix y |
|
86 |
assume count_y: "count P y < count M y" |
|
87 |
have "\<exists>x>y. count M x < count P x" |
|
88 |
proof (cases "y = a") |
|
89 |
case True |
|
90 |
with count_y count_a show ?thesis by auto |
|
91 |
next |
|
92 |
case False |
|
93 |
show ?thesis |
|
94 |
proof (cases "y \<in># K") |
|
95 |
case True |
|
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
96 |
with *(4) have "y < a" by simp |
59813 | 97 |
then show ?thesis by (cases "count P a \<le> count M a") (auto dest: count_a intro: less_trans) |
98 |
next |
|
99 |
case False |
|
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
100 |
with \<open>y \<noteq> a\<close> have "count P y = count N y" unfolding *(1,2) |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
101 |
by (simp add: not_in_iff) |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
102 |
with count_y ** obtain z where z: "z > y" "count M z < count N z" by auto |
59813 | 103 |
show ?thesis |
104 |
proof (cases "z \<in># K") |
|
105 |
case True |
|
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
106 |
with *(4) have "z < a" by simp |
59813 | 107 |
with z(1) show ?thesis |
108 |
by (cases "count P a \<le> count M a") (auto dest!: count_a intro: less_trans) |
|
109 |
next |
|
110 |
case False |
|
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
111 |
with \<open>a \<notin># K\<close> have "count N z \<le> count P z" unfolding * |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
112 |
by (auto simp add: not_in_iff) |
59813 | 113 |
with z show ?thesis by auto |
114 |
qed |
|
115 |
qed |
|
116 |
qed |
|
117 |
} |
|
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
118 |
ultimately show ?case unfolding less_multiset\<^sub>H\<^sub>O_def by blast |
59813 | 119 |
qed |
120 |
||
121 |
lemma less_multiset\<^sub>D\<^sub>M_imp_mult: |
|
122 |
"less_multiset\<^sub>D\<^sub>M M N \<Longrightarrow> (M, N) \<in> mult {(x, y). x < y}" |
|
123 |
proof - |
|
124 |
assume "less_multiset\<^sub>D\<^sub>M M N" |
|
125 |
then obtain X Y where |
|
64587 | 126 |
"X \<noteq> {#}" and "X \<subseteq># N" and "M = N - X + Y" and "\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)" |
59813 | 127 |
unfolding less_multiset\<^sub>D\<^sub>M_def by blast |
128 |
then have "(N - X + Y, N - X + X) \<in> mult {(x, y). x < y}" |
|
129 |
by (intro one_step_implies_mult) (auto simp: Bex_def trans_def) |
|
64587 | 130 |
with \<open>M = N - X + Y\<close> \<open>X \<subseteq># N\<close> show "(M, N) \<in> mult {(x, y). x < y}" |
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59958
diff
changeset
|
131 |
by (metis subset_mset.diff_add) |
59813 | 132 |
qed |
133 |
||
134 |
lemma less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M: "less_multiset\<^sub>H\<^sub>O M N \<Longrightarrow> less_multiset\<^sub>D\<^sub>M M N" |
|
135 |
unfolding less_multiset\<^sub>D\<^sub>M_def |
|
136 |
proof (intro iffI exI conjI) |
|
137 |
assume "less_multiset\<^sub>H\<^sub>O M N" |
|
138 |
then obtain z where z: "count M z < count N z" |
|
139 |
unfolding less_multiset\<^sub>H\<^sub>O_def by (auto simp: multiset_eq_iff nat_neq_iff) |
|
63040 | 140 |
define X where "X = N - M" |
141 |
define Y where "Y = M - N" |
|
59813 | 142 |
from z show "X \<noteq> {#}" unfolding X_def by (auto simp: multiset_eq_iff not_less_eq_eq Suc_le_eq) |
64587 | 143 |
from z show "X \<subseteq># N" unfolding X_def by auto |
59813 | 144 |
show "M = (N - X) + Y" unfolding X_def Y_def multiset_eq_iff count_union count_diff by force |
145 |
show "\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)" |
|
146 |
proof (intro allI impI) |
|
147 |
fix k |
|
148 |
assume "k \<in># Y" |
|
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
149 |
then have "count N k < count M k" unfolding Y_def |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
150 |
by (auto simp add: in_diff_count) |
60500 | 151 |
with \<open>less_multiset\<^sub>H\<^sub>O M N\<close> obtain a where "k < a" and "count M a < count N a" |
59813 | 152 |
unfolding less_multiset\<^sub>H\<^sub>O_def by blast |
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
153 |
then show "\<exists>a. a \<in># X \<and> k < a" unfolding X_def |
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
154 |
by (auto simp add: in_diff_count) |
59813 | 155 |
qed |
156 |
qed |
|
157 |
||
158 |
lemma mult_less_multiset\<^sub>D\<^sub>M: "(M, N) \<in> mult {(x, y). x < y} \<longleftrightarrow> less_multiset\<^sub>D\<^sub>M M N" |
|
159 |
by (metis less_multiset\<^sub>D\<^sub>M_imp_mult less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M mult_imp_less_multiset\<^sub>H\<^sub>O) |
|
160 |
||
161 |
lemma mult_less_multiset\<^sub>H\<^sub>O: "(M, N) \<in> mult {(x, y). x < y} \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N" |
|
162 |
by (metis less_multiset\<^sub>D\<^sub>M_imp_mult less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M mult_imp_less_multiset\<^sub>H\<^sub>O) |
|
163 |
||
164 |
lemmas mult\<^sub>D\<^sub>M = mult_less_multiset\<^sub>D\<^sub>M[unfolded less_multiset\<^sub>D\<^sub>M_def] |
|
165 |
lemmas mult\<^sub>H\<^sub>O = mult_less_multiset\<^sub>H\<^sub>O[unfolded less_multiset\<^sub>H\<^sub>O_def] |
|
166 |
||
167 |
end |
|
168 |
||
169 |
lemma less_multiset_less_multiset\<^sub>H\<^sub>O: |
|
63388
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
170 |
"M < N \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N" |
59813 | 171 |
unfolding less_multiset_def mult\<^sub>H\<^sub>O less_multiset\<^sub>H\<^sub>O_def .. |
172 |
||
173 |
lemmas less_multiset\<^sub>D\<^sub>M = mult\<^sub>D\<^sub>M[folded less_multiset_def] |
|
174 |
lemmas less_multiset\<^sub>H\<^sub>O = mult\<^sub>H\<^sub>O[folded less_multiset_def] |
|
175 |
||
63388
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
176 |
lemma subset_eq_imp_le_multiset: |
64587 | 177 |
shows "M \<subseteq># N \<Longrightarrow> M \<le> N" |
63388
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
178 |
unfolding less_eq_multiset_def less_multiset\<^sub>H\<^sub>O |
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59958
diff
changeset
|
179 |
by (simp add: less_le_not_le subseteq_mset_def) |
59813 | 180 |
|
63388
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
181 |
lemma le_multiset_right_total: |
63793
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
182 |
shows "M < add_mset x M" |
63388
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
183 |
unfolding less_eq_multiset_def less_multiset\<^sub>H\<^sub>O by simp |
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
184 |
|
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
185 |
lemma less_eq_multiset_empty_left[simp]: |
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
186 |
shows "{#} \<le> M" |
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
187 |
by (simp add: subset_eq_imp_le_multiset) |
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
188 |
|
63409
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
189 |
lemma ex_gt_imp_less_multiset: "(\<exists>y. y \<in># N \<and> (\<forall>x. x \<in># M \<longrightarrow> x < y)) \<Longrightarrow> M < N" |
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
190 |
unfolding less_multiset\<^sub>H\<^sub>O |
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
191 |
by (metis count_eq_zero_iff count_greater_zero_iff less_le_not_le) |
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
192 |
|
63388
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
193 |
lemma less_eq_multiset_empty_right[simp]: |
63409
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
194 |
"M \<noteq> {#} \<Longrightarrow> \<not> M \<le> {#}" |
63388
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
195 |
by (metis less_eq_multiset_empty_left antisym) |
59813 | 196 |
|
63409
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
197 |
lemma le_multiset_empty_left[simp]: "M \<noteq> {#} \<Longrightarrow> {#} < M" |
63388
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
198 |
by (simp add: less_multiset\<^sub>H\<^sub>O) |
59813 | 199 |
|
63409
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
200 |
lemma le_multiset_empty_right[simp]: "\<not> M < {#}" |
64076 | 201 |
using subset_mset.le_zero_eq less_multiset\<^sub>D\<^sub>M by blast |
59813 | 202 |
|
64587 | 203 |
lemma union_le_diff_plus: "P \<subseteq># M \<Longrightarrow> N < P \<Longrightarrow> M - P + N < M" |
63409
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
204 |
by (drule subset_mset.diff_add[symmetric]) (metis union_le_mono2) |
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
205 |
|
63525
f01d1e393f3f
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63410
diff
changeset
|
206 |
instantiation multiset :: (preorder) ordered_ab_semigroup_monoid_add_imp_le |
63409
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
207 |
begin |
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
208 |
|
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
209 |
lemma less_eq_multiset\<^sub>H\<^sub>O: |
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
210 |
"M \<le> N \<longleftrightarrow> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. y < x \<and> count M x < count N x))" |
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
211 |
by (auto simp: less_eq_multiset_def less_multiset\<^sub>H\<^sub>O) |
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
212 |
|
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
213 |
instance by standard (auto simp: less_eq_multiset\<^sub>H\<^sub>O) |
63409
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
214 |
|
59813 | 215 |
lemma |
63409
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
216 |
fixes M N :: "'a multiset" |
59813 | 217 |
shows |
63525
f01d1e393f3f
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63410
diff
changeset
|
218 |
less_eq_multiset_plus_left: "N \<le> (M + N)" and |
f01d1e393f3f
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63410
diff
changeset
|
219 |
less_eq_multiset_plus_right: "M \<le> (M + N)" |
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
220 |
by simp_all |
59813 | 221 |
|
222 |
lemma |
|
63409
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
223 |
fixes M N :: "'a multiset" |
59813 | 224 |
shows |
63525
f01d1e393f3f
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63410
diff
changeset
|
225 |
le_multiset_plus_left_nonempty: "M \<noteq> {#} \<Longrightarrow> N < M + N" and |
f01d1e393f3f
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63410
diff
changeset
|
226 |
le_multiset_plus_right_nonempty: "N \<noteq> {#} \<Longrightarrow> M < M + N" |
f01d1e393f3f
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63410
diff
changeset
|
227 |
by simp_all |
63388
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
228 |
|
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
229 |
end |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
230 |
|
65546 | 231 |
lemma all_lt_Max_imp_lt_mset: "N \<noteq> {#} \<Longrightarrow> (\<forall>a \<in># M. a < Max (set_mset N)) \<Longrightarrow> M < N" |
232 |
by (meson Max_in[OF finite_set_mset] ex_gt_imp_less_multiset set_mset_eq_empty_iff) |
|
233 |
||
234 |
lemma lt_imp_ex_count_lt: "M < N \<Longrightarrow> \<exists>y. count M y < count N y" |
|
235 |
by (meson less_eq_multiset\<^sub>H\<^sub>O less_le_not_le) |
|
236 |
||
237 |
lemma subset_imp_less_mset: "A \<subset># B \<Longrightarrow> A < B" |
|
238 |
by (simp add: order.not_eq_order_implies_strict subset_eq_imp_le_multiset) |
|
239 |
||
240 |
lemma image_mset_strict_mono: |
|
241 |
assumes |
|
242 |
mono_f: "\<forall>x \<in> set_mset M. \<forall>y \<in> set_mset N. x < y \<longrightarrow> f x < f y" and |
|
243 |
less: "M < N" |
|
244 |
shows "image_mset f M < image_mset f N" |
|
245 |
proof - |
|
246 |
obtain Y X where |
|
247 |
y_nemp: "Y \<noteq> {#}" and y_sub_N: "Y \<subseteq># N" and M_eq: "M = N - Y + X" and |
|
248 |
ex_y: "\<forall>x. x \<in># X \<longrightarrow> (\<exists>y. y \<in># Y \<and> x < y)" |
|
249 |
using less[unfolded less_multiset\<^sub>D\<^sub>M] by blast |
|
250 |
||
251 |
have x_sub_M: "X \<subseteq># M" |
|
252 |
using M_eq by simp |
|
253 |
||
254 |
let ?fY = "image_mset f Y" |
|
255 |
let ?fX = "image_mset f X" |
|
256 |
||
257 |
show ?thesis |
|
258 |
unfolding less_multiset\<^sub>D\<^sub>M |
|
259 |
proof (intro exI conjI) |
|
260 |
show "image_mset f M = image_mset f N - ?fY + ?fX" |
|
261 |
using M_eq[THEN arg_cong, of "image_mset f"] y_sub_N |
|
262 |
by (metis image_mset_Diff image_mset_union) |
|
263 |
next |
|
264 |
obtain y where y: "\<forall>x. x \<in># X \<longrightarrow> y x \<in># Y \<and> x < y x" |
|
265 |
using ex_y by moura |
|
266 |
||
267 |
show "\<forall>fx. fx \<in># ?fX \<longrightarrow> (\<exists>fy. fy \<in># ?fY \<and> fx < fy)" |
|
268 |
proof (intro allI impI) |
|
269 |
fix fx |
|
270 |
assume "fx \<in># ?fX" |
|
271 |
then obtain x where fx: "fx = f x" and x_in: "x \<in># X" |
|
272 |
by auto |
|
273 |
hence y_in: "y x \<in># Y" and y_gt: "x < y x" |
|
274 |
using y[rule_format, OF x_in] by blast+ |
|
275 |
hence "f (y x) \<in># ?fY \<and> f x < f (y x)" |
|
276 |
using mono_f y_sub_N x_sub_M x_in |
|
277 |
by (metis image_eqI in_image_mset mset_subset_eqD) |
|
278 |
thus "\<exists>fy. fy \<in># ?fY \<and> fx < fy" |
|
279 |
unfolding fx by auto |
|
280 |
qed |
|
281 |
qed (auto simp: y_nemp y_sub_N image_mset_subseteq_mono) |
|
282 |
qed |
|
283 |
||
284 |
lemma image_mset_mono: |
|
285 |
assumes |
|
286 |
mono_f: "\<forall>x \<in> set_mset M. \<forall>y \<in> set_mset N. x < y \<longrightarrow> f x < f y" and |
|
287 |
less: "M \<le> N" |
|
288 |
shows "image_mset f M \<le> image_mset f N" |
|
289 |
by (metis eq_iff image_mset_strict_mono less less_imp_le mono_f order.not_eq_order_implies_strict) |
|
290 |
||
291 |
lemma mset_lt_single_right_iff[simp]: "M < {#y#} \<longleftrightarrow> (\<forall>x \<in># M. x < y)" for y :: "'a::linorder" |
|
292 |
proof (rule iffI) |
|
293 |
assume M_lt_y: "M < {#y#}" |
|
294 |
show "\<forall>x \<in># M. x < y" |
|
295 |
proof |
|
296 |
fix x |
|
297 |
assume x_in: "x \<in># M" |
|
298 |
hence M: "M - {#x#} + {#x#} = M" |
|
299 |
by (meson insert_DiffM2) |
|
300 |
hence "\<not> {#x#} < {#y#} \<Longrightarrow> x < y" |
|
301 |
using x_in M_lt_y |
|
302 |
by (metis diff_single_eq_union le_multiset_empty_left less_add_same_cancel2 mset_le_trans) |
|
303 |
also have "\<not> {#y#} < M" |
|
304 |
using M_lt_y mset_le_not_sym by blast |
|
305 |
ultimately show "x < y" |
|
306 |
by (metis (no_types) Max_ge all_lt_Max_imp_lt_mset empty_iff finite_set_mset insertE |
|
307 |
less_le_trans linorder_less_linear mset_le_not_sym set_mset_add_mset_insert |
|
308 |
set_mset_eq_empty_iff x_in) |
|
309 |
qed |
|
310 |
next |
|
311 |
assume y_max: "\<forall>x \<in># M. x < y" |
|
312 |
show "M < {#y#}" |
|
313 |
by (rule all_lt_Max_imp_lt_mset) (auto intro!: y_max) |
|
314 |
qed |
|
315 |
||
316 |
lemma mset_le_single_right_iff[simp]: |
|
317 |
"M \<le> {#y#} \<longleftrightarrow> M = {#y#} \<or> (\<forall>x \<in># M. x < y)" for y :: "'a::linorder" |
|
318 |
by (meson less_eq_multiset_def mset_lt_single_right_iff) |
|
319 |
||
63793
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
320 |
|
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
321 |
subsection \<open>Simprocs\<close> |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
322 |
|
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
323 |
lemma mset_le_add_iff1: |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
324 |
"j \<le> (i::nat) \<Longrightarrow> (repeat_mset i u + m \<le> repeat_mset j u + n) = (repeat_mset (i-j) u + m \<le> n)" |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
325 |
proof - |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
326 |
assume "j \<le> i" |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
327 |
then have "j + (i - j) = i" |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
328 |
using le_add_diff_inverse by blast |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
329 |
then show ?thesis |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
330 |
by (metis (no_types) add_le_cancel_left left_add_mult_distrib_mset) |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
331 |
qed |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
332 |
|
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
333 |
lemma mset_le_add_iff2: |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
334 |
"i \<le> (j::nat) \<Longrightarrow> (repeat_mset i u + m \<le> repeat_mset j u + n) = (m \<le> repeat_mset (j-i) u + n)" |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
335 |
proof - |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
336 |
assume "i \<le> j" |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
337 |
then have "i + (j - i) = j" |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
338 |
using le_add_diff_inverse by blast |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
339 |
then show ?thesis |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
340 |
by (metis (no_types) add_le_cancel_left left_add_mult_distrib_mset) |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
341 |
qed |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
342 |
|
65027
2b8583507891
renaming multiset simprocs
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
64978
diff
changeset
|
343 |
simproc_setup msetless_cancel |
63793
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
344 |
("(l::'a::preorder multiset) + m < n" | "(l::'a multiset) < m + n" | |
65028
87e003397834
adding simplification patterns to multiset simprocs
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
65027
diff
changeset
|
345 |
"add_mset a m < n" | "m < add_mset a n" | |
87e003397834
adding simplification patterns to multiset simprocs
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
65027
diff
changeset
|
346 |
"replicate_mset p a < n" | "m < replicate_mset p a" | |
87e003397834
adding simplification patterns to multiset simprocs
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
65027
diff
changeset
|
347 |
"repeat_mset p m < n" | "m < repeat_mset p n") = |
65031
52e2c99f3711
use the cancellation simprocs directly
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
65028
diff
changeset
|
348 |
\<open>fn phi => Cancel_Simprocs.less_cancel\<close> |
63793
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
349 |
|
65027
2b8583507891
renaming multiset simprocs
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
64978
diff
changeset
|
350 |
simproc_setup msetle_cancel |
63793
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
351 |
("(l::'a::preorder multiset) + m \<le> n" | "(l::'a multiset) \<le> m + n" | |
65028
87e003397834
adding simplification patterns to multiset simprocs
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
65027
diff
changeset
|
352 |
"add_mset a m \<le> n" | "m \<le> add_mset a n" | |
87e003397834
adding simplification patterns to multiset simprocs
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
65027
diff
changeset
|
353 |
"replicate_mset p a \<le> n" | "m \<le> replicate_mset p a" | |
87e003397834
adding simplification patterns to multiset simprocs
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
65027
diff
changeset
|
354 |
"repeat_mset p m \<le> n" | "m \<le> repeat_mset p n") = |
65031
52e2c99f3711
use the cancellation simprocs directly
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
65028
diff
changeset
|
355 |
\<open>fn phi => Cancel_Simprocs.less_eq_cancel\<close> |
63793
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
356 |
|
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
357 |
|
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
358 |
subsection \<open>Additional facts and instantiations\<close> |
e68a0b651eb5
add_mset constructor in multisets
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63525
diff
changeset
|
359 |
|
63388
a095acd4cfbf
instantiate multiset with multiset ordering
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63310
diff
changeset
|
360 |
lemma ex_gt_count_imp_le_multiset: |
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
361 |
"(\<forall>y :: 'a :: order. y \<in># M + N \<longrightarrow> y \<le> x) \<Longrightarrow> count M x < count N x \<Longrightarrow> M < N" |
62430
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
haftmann
parents:
61424
diff
changeset
|
362 |
unfolding less_multiset\<^sub>H\<^sub>O |
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
363 |
by (metis count_greater_zero_iff le_imp_less_or_eq less_imp_not_less not_gr_zero union_iff) |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
364 |
|
64418 | 365 |
lemma mset_lt_single_iff[iff]: "{#x#} < {#y#} \<longleftrightarrow> x < y" |
366 |
unfolding less_multiset\<^sub>H\<^sub>O by simp |
|
367 |
||
368 |
lemma mset_le_single_iff[iff]: "{#x#} \<le> {#y#} \<longleftrightarrow> x \<le> y" for x y :: "'a::order" |
|
369 |
unfolding less_eq_multiset\<^sub>H\<^sub>O by force |
|
370 |
||
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
371 |
instance multiset :: (linorder) linordered_cancel_ab_semigroup_add |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
372 |
by standard (metis less_eq_multiset\<^sub>H\<^sub>O not_less_iff_gr_or_eq) |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
373 |
|
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
374 |
lemma less_eq_multiset_total: |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
375 |
fixes M N :: "'a :: linorder multiset" |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
376 |
shows "\<not> M \<le> N \<Longrightarrow> N \<le> M" |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
377 |
by simp |
63409
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
378 |
|
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
379 |
instantiation multiset :: (wellorder) wellorder |
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
380 |
begin |
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
381 |
|
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
382 |
lemma wf_less_multiset: "wf {(M :: 'a multiset, N). M < N}" |
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
383 |
unfolding less_multiset_def by (auto intro: wf_mult wf) |
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
384 |
|
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
385 |
instance by standard (metis less_multiset_def wf wf_def wf_mult) |
59813 | 386 |
|
387 |
end |
|
63409
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
388 |
|
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
389 |
instantiation multiset :: (preorder) order_bot |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
390 |
begin |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
391 |
|
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
392 |
definition bot_multiset :: "'a multiset" where "bot_multiset = {#}" |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
393 |
|
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
394 |
instance by standard (simp add: bot_multiset_def) |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
395 |
|
63409
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
blanchet
parents:
63407
diff
changeset
|
396 |
end |
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
397 |
|
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
398 |
instance multiset :: (preorder) no_top |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
399 |
proof standard |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
400 |
fix x :: "'a multiset" |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
401 |
obtain a :: 'a where True by simp |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
402 |
have "x < x + (x + {#a#})" |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
403 |
by simp |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
404 |
then show "\<exists>y. x < y" |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
405 |
by blast |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
406 |
qed |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
407 |
|
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
408 |
instance multiset :: (preorder) ordered_cancel_comm_monoid_add |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
409 |
by standard |
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
410 |
|
65546 | 411 |
instantiation multiset :: (linorder) distrib_lattice |
412 |
begin |
|
413 |
||
414 |
definition inf_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" where |
|
415 |
"inf_multiset A B = (if A < B then A else B)" |
|
416 |
||
417 |
definition sup_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" where |
|
418 |
"sup_multiset A B = (if B > A then B else A)" |
|
419 |
||
420 |
instance |
|
421 |
by intro_classes (auto simp: inf_multiset_def sup_multiset_def) |
|
422 |
||
63410
9789ccc2a477
more instantiations for multiset
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
63409
diff
changeset
|
423 |
end |
65546 | 424 |
|
425 |
end |