| author | clasohm | 
| Fri, 01 Dec 1995 14:20:09 +0100 | |
| changeset 1385 | 63c3d78df538 | 
| parent 660 | 7fe6ec24d842 | 
| child 1461 | 6bcb44e4d6e5 | 
| permissions | -rw-r--r-- | 
| 660 | 1 | (* Title: LCF/fix | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow | |
| 4 | Copyright 1992 University of Cambridge | |
| 5 | ||
| 6 | Fixedpoint theory | |
| 7 | *) | |
| 8 | ||
| 0 | 9 | signature FIX = | 
| 10 | sig | |
| 11 | val adm_eq: thm | |
| 12 | val adm_not_eq_tr: thm | |
| 13 | val adm_not_not: thm | |
| 14 | val not_eq_TT: thm | |
| 15 | val not_eq_FF: thm | |
| 16 | val not_eq_UU: thm | |
| 17 | val induct2: thm | |
| 18 | val induct_tac: string -> int -> tactic | |
| 19 | val induct2_tac: string*string -> int -> tactic | |
| 20 | end; | |
| 21 | ||
| 22 | structure Fix:FIX = | |
| 23 | struct | |
| 24 | ||
| 442 
13ac1fd0a14d
added parentheses made necessary by change of constrain's precedence
 clasohm parents: 
231diff
changeset | 25 | val adm_eq = prove_goal LCF.thy "adm(%x.t(x)=(u(x)::'a::cpo))" | 
| 0 | 26 | (fn _ => [rewrite_goals_tac [eq_def], | 
| 27 | REPEAT(rstac[adm_conj,adm_less]1)]); | |
| 28 | ||
| 29 | val adm_not_not = prove_goal LCF.thy "adm(P) ==> adm(%x.~~P(x))" | |
| 30 | (fn prems => [simp_tac (LCF_ss addsimps prems) 1]); | |
| 31 | ||
| 32 | ||
| 33 | val tac = rtac tr_induct 1 THEN REPEAT(simp_tac LCF_ss 1); | |
| 34 | ||
| 35 | val not_eq_TT = prove_goal LCF.thy "ALL p. ~p=TT <-> (p=FF | p=UU)" | |
| 660 | 36 | (fn _ => [tac]) RS spec; | 
| 0 | 37 | |
| 38 | val not_eq_FF = prove_goal LCF.thy "ALL p. ~p=FF <-> (p=TT | p=UU)" | |
| 660 | 39 | (fn _ => [tac]) RS spec; | 
| 0 | 40 | |
| 41 | val not_eq_UU = prove_goal LCF.thy "ALL p. ~p=UU <-> (p=TT | p=FF)" | |
| 660 | 42 | (fn _ => [tac]) RS spec; | 
| 0 | 43 | |
| 44 | val adm_not_eq_tr = prove_goal LCF.thy "ALL p::tr.adm(%x. ~t(x)=p)" | |
| 660 | 45 | (fn _ => [rtac tr_induct 1, | 
| 46 | REPEAT(simp_tac (LCF_ss addsimps [not_eq_TT,not_eq_FF,not_eq_UU]) 1 THEN | |
| 47 | REPEAT(rstac [adm_disj,adm_eq] 1))]) RS spec; | |
| 0 | 48 | |
| 49 | val adm_lemmas = [adm_not_free,adm_eq,adm_less,adm_not_less,adm_not_eq_tr, | |
| 50 | adm_conj,adm_disj,adm_imp,adm_all]; | |
| 51 | ||
| 52 | fun induct_tac v i = res_inst_tac[("f",v)] induct i THEN
 | |
| 53 | REPEAT(rstac adm_lemmas i); | |
| 54 | ||
| 55 | ||
| 56 | val least_FIX = prove_goal LCF.thy "f(p) = p ==> FIX(f) << p" | |
| 57 | (fn [prem] => [induct_tac "f" 1, rtac minimal 1, strip_tac 1, | |
| 58 | stac (prem RS sym) 1, etac less_ap_term 1]); | |
| 59 | ||
| 60 | val lfp_is_FIX = prove_goal LCF.thy | |
| 61 | "[| f(p) = p; ALL q. f(q)=q --> p << q |] ==> p = FIX(f)" | |
| 62 | (fn [prem1,prem2] => [rtac less_anti_sym 1, | |
| 645 
77474875da92
LCF/fix/lfp_is_FIX: modified proof to suppress deep unification
 lcp parents: 
442diff
changeset | 63 | rtac (prem2 RS spec RS mp) 1, rtac FIX_eq 1, | 
| 0 | 64 | rtac least_FIX 1, rtac prem1 1]); | 
| 65 | ||
| 66 | val ffix = read_instantiate [("f","f::?'a=>?'a")] FIX_eq;
 | |
| 67 | val gfix = read_instantiate [("f","g::?'a=>?'a")] FIX_eq;
 | |
| 68 | val ss = LCF_ss addsimps [ffix,gfix]; | |
| 69 | ||
| 70 | val FIX_pair = prove_goal LCF.thy | |
| 71 | "<FIX(f),FIX(g)> = FIX(%p.<f(FST(p)),g(SND(p))>)" | |
| 72 | (fn _ => [rtac lfp_is_FIX 1, simp_tac ss 1, | |
| 73 | strip_tac 1, simp_tac (LCF_ss addsimps [PROD_less]) 1, | |
| 74 | rtac conjI 1, rtac least_FIX 1, etac subst 1, rtac (FST RS sym) 1, | |
| 75 | rtac least_FIX 1, etac subst 1, rtac (SND RS sym) 1]); | |
| 76 | ||
| 77 | val FIX_pair_conj = rewrite_rule (map mk_meta_eq [PROD_eq,FST,SND]) FIX_pair; | |
| 78 | ||
| 79 | val FIX1 = FIX_pair_conj RS conjunct1; | |
| 80 | val FIX2 = FIX_pair_conj RS conjunct2; | |
| 81 | ||
| 82 | val induct2 = prove_goal LCF.thy | |
| 83 | "[| adm(%p.P(FST(p),SND(p))); P(UU::'a,UU::'b);\ | |
| 84 | \ ALL x y. P(x,y) --> P(f(x),g(y)) |] ==> P(FIX(f),FIX(g))" | |
| 85 | (fn prems => [EVERY1 | |
| 86 | 	[res_inst_tac [("f","f"),("g","g")] (standard(FIX1 RS ssubst)),
 | |
| 87 | 	 res_inst_tac [("f","f"),("g","g")] (standard(FIX2 RS ssubst)),
 | |
| 88 | 	 res_inst_tac [("f","%x. <f(FST(x)),g(SND(x))>")] induct,
 | |
| 89 | rstac prems, simp_tac ss, rstac prems, | |
| 90 | simp_tac (LCF_ss addsimps [expand_all_PROD]), rstac prems]]); | |
| 91 | ||
| 92 | fun induct2_tac (f,g) i = res_inst_tac[("f",f),("g",g)] induct2 i THEN
 | |
| 93 | REPEAT(rstac adm_lemmas i); | |
| 94 | ||
| 95 | end; | |
| 96 | ||
| 97 | open Fix; |