| author | wenzelm | 
| Wed, 09 Nov 2005 16:26:49 +0100 | |
| changeset 18134 | 6450591da9f0 | 
| parent 17893 | aef5a6d11c2a | 
| child 18389 | 8352b1d3b639 | 
| permissions | -rw-r--r-- | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 1 | (* Title: HOL/Hilbert_Choice.thy | 
| 14760 | 2 | ID: $Id$ | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 3 | Author: Lawrence C Paulson | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 4 | Copyright 2001 University of Cambridge | 
| 12023 | 5 | *) | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 6 | |
| 14760 | 7 | header {* Hilbert's Epsilon-Operator and the Axiom of Choice *}
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 8 | |
| 15131 | 9 | theory Hilbert_Choice | 
| 15140 | 10 | imports NatArith | 
| 16417 | 11 | uses ("Tools/meson.ML") ("Tools/specification_package.ML")
 | 
| 15131 | 12 | begin | 
| 12298 | 13 | |
| 14 | subsection {* Hilbert's epsilon *}
 | |
| 15 | ||
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 16 | consts | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 17 |   Eps           :: "('a => bool) => 'a"
 | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 18 | |
| 14872 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 wenzelm parents: 
14760diff
changeset | 19 | syntax (epsilon) | 
| 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 wenzelm parents: 
14760diff
changeset | 20 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3\<some>_./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 21 | syntax (HOL) | 
| 12298 | 22 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3@ _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 23 | syntax | 
| 12298 | 24 |   "_Eps"        :: "[pttrn, bool] => 'a"    ("(3SOME _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 25 | translations | 
| 13764 | 26 | "SOME x. P" == "Eps (%x. P)" | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 27 | |
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 28 | print_translation {*
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 29 | (* to avoid eta-contraction of body *) | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 30 | [("Eps", fn [Abs abs] =>
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 31 | let val (x,t) = atomic_abs_tr' abs | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 32 | in Syntax.const "_Eps" $ x $ t end)] | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 33 | *} | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 34 | |
| 12298 | 35 | axioms | 
| 36 | someI: "P (x::'a) ==> P (SOME x. P x)" | |
| 17702 | 37 | finalconsts | 
| 38 | Eps | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 39 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 40 | |
| 12298 | 41 | constdefs | 
| 42 |   inv :: "('a => 'b) => ('b => 'a)"
 | |
| 43 | "inv(f :: 'a => 'b) == %y. SOME x. f x = y" | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 44 | |
| 12298 | 45 |   Inv :: "'a set => ('a => 'b) => ('b => 'a)"
 | 
| 14760 | 46 | "Inv A f == %x. SOME y. y \<in> A & f y = x" | 
| 47 | ||
| 48 | ||
| 49 | subsection {*Hilbert's Epsilon-operator*}
 | |
| 50 | ||
| 51 | text{*Easier to apply than @{text someI} if the witness comes from an
 | |
| 52 | existential formula*} | |
| 53 | lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)" | |
| 54 | apply (erule exE) | |
| 55 | apply (erule someI) | |
| 56 | done | |
| 57 | ||
| 58 | text{*Easier to apply than @{text someI} because the conclusion has only one
 | |
| 59 | occurrence of @{term P}.*}
 | |
| 60 | lemma someI2: "[| P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" | |
| 61 | by (blast intro: someI) | |
| 62 | ||
| 63 | text{*Easier to apply than @{text someI2} if the witness comes from an
 | |
| 64 | existential formula*} | |
| 65 | lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" | |
| 66 | by (blast intro: someI2) | |
| 67 | ||
| 68 | lemma some_equality [intro]: | |
| 69 | "[| P a; !!x. P x ==> x=a |] ==> (SOME x. P x) = a" | |
| 70 | by (blast intro: someI2) | |
| 71 | ||
| 72 | lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a" | |
| 73 | by (blast intro: some_equality) | |
| 74 | ||
| 75 | lemma some_eq_ex: "P (SOME x. P x) = (\<exists>x. P x)" | |
| 76 | by (blast intro: someI) | |
| 77 | ||
| 78 | lemma some_eq_trivial [simp]: "(SOME y. y=x) = x" | |
| 79 | apply (rule some_equality) | |
| 80 | apply (rule refl, assumption) | |
| 81 | done | |
| 82 | ||
| 83 | lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x" | |
| 84 | apply (rule some_equality) | |
| 85 | apply (rule refl) | |
| 86 | apply (erule sym) | |
| 87 | done | |
| 88 | ||
| 89 | ||
| 90 | subsection{*Axiom of Choice, Proved Using the Description Operator*}
 | |
| 91 | ||
| 92 | text{*Used in @{text "Tools/meson.ML"}*}
 | |
| 93 | lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)" | |
| 94 | by (fast elim: someI) | |
| 95 | ||
| 96 | lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)" | |
| 97 | by (fast elim: someI) | |
| 98 | ||
| 99 | ||
| 100 | subsection {*Function Inverse*}
 | |
| 101 | ||
| 102 | lemma inv_id [simp]: "inv id = id" | |
| 103 | by (simp add: inv_def id_def) | |
| 104 | ||
| 105 | text{*A one-to-one function has an inverse.*}
 | |
| 106 | lemma inv_f_f [simp]: "inj f ==> inv f (f x) = x" | |
| 107 | by (simp add: inv_def inj_eq) | |
| 108 | ||
| 109 | lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x" | |
| 110 | apply (erule subst) | |
| 111 | apply (erule inv_f_f) | |
| 112 | done | |
| 113 | ||
| 114 | lemma inj_imp_inv_eq: "[| inj f; \<forall>x. f(g x) = x |] ==> inv f = g" | |
| 115 | by (blast intro: ext inv_f_eq) | |
| 116 | ||
| 117 | text{*But is it useful?*}
 | |
| 118 | lemma inj_transfer: | |
| 119 | assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)" | |
| 120 | shows "P x" | |
| 121 | proof - | |
| 122 | have "f x \<in> range f" by auto | |
| 123 | hence "P(inv f (f x))" by (rule minor) | |
| 124 | thus "P x" by (simp add: inv_f_f [OF injf]) | |
| 125 | qed | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 126 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 127 | |
| 14760 | 128 | lemma inj_iff: "(inj f) = (inv f o f = id)" | 
| 129 | apply (simp add: o_def expand_fun_eq) | |
| 130 | apply (blast intro: inj_on_inverseI inv_f_f) | |
| 131 | done | |
| 132 | ||
| 133 | lemma inj_imp_surj_inv: "inj f ==> surj (inv f)" | |
| 134 | by (blast intro: surjI inv_f_f) | |
| 135 | ||
| 136 | lemma f_inv_f: "y \<in> range(f) ==> f(inv f y) = y" | |
| 137 | apply (simp add: inv_def) | |
| 138 | apply (fast intro: someI) | |
| 139 | done | |
| 140 | ||
| 141 | lemma surj_f_inv_f: "surj f ==> f(inv f y) = y" | |
| 142 | by (simp add: f_inv_f surj_range) | |
| 143 | ||
| 144 | lemma inv_injective: | |
| 145 | assumes eq: "inv f x = inv f y" | |
| 146 | and x: "x: range f" | |
| 147 | and y: "y: range f" | |
| 148 | shows "x=y" | |
| 149 | proof - | |
| 150 | have "f (inv f x) = f (inv f y)" using eq by simp | |
| 151 | thus ?thesis by (simp add: f_inv_f x y) | |
| 152 | qed | |
| 153 | ||
| 154 | lemma inj_on_inv: "A <= range(f) ==> inj_on (inv f) A" | |
| 155 | by (fast intro: inj_onI elim: inv_injective injD) | |
| 156 | ||
| 157 | lemma surj_imp_inj_inv: "surj f ==> inj (inv f)" | |
| 158 | by (simp add: inj_on_inv surj_range) | |
| 159 | ||
| 160 | lemma surj_iff: "(surj f) = (f o inv f = id)" | |
| 161 | apply (simp add: o_def expand_fun_eq) | |
| 162 | apply (blast intro: surjI surj_f_inv_f) | |
| 163 | done | |
| 164 | ||
| 165 | lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g" | |
| 166 | apply (rule ext) | |
| 167 | apply (drule_tac x = "inv f x" in spec) | |
| 168 | apply (simp add: surj_f_inv_f) | |
| 169 | done | |
| 170 | ||
| 171 | lemma bij_imp_bij_inv: "bij f ==> bij (inv f)" | |
| 172 | by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv) | |
| 12372 | 173 | |
| 14760 | 174 | lemma inv_equality: "[| !!x. g (f x) = x; !!y. f (g y) = y |] ==> inv f = g" | 
| 175 | apply (rule ext) | |
| 176 | apply (auto simp add: inv_def) | |
| 177 | done | |
| 178 | ||
| 179 | lemma inv_inv_eq: "bij f ==> inv (inv f) = f" | |
| 180 | apply (rule inv_equality) | |
| 181 | apply (auto simp add: bij_def surj_f_inv_f) | |
| 182 | done | |
| 183 | ||
| 184 | (** bij(inv f) implies little about f. Consider f::bool=>bool such that | |
| 185 | f(True)=f(False)=True. Then it's consistent with axiom someI that | |
| 186 | inv f could be any function at all, including the identity function. | |
| 187 | If inv f=id then inv f is a bijection, but inj f, surj(f) and | |
| 188 | inv(inv f)=f all fail. | |
| 189 | **) | |
| 190 | ||
| 191 | lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f" | |
| 192 | apply (rule inv_equality) | |
| 193 | apply (auto simp add: bij_def surj_f_inv_f) | |
| 194 | done | |
| 195 | ||
| 196 | ||
| 197 | lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A" | |
| 198 | by (simp add: image_eq_UN surj_f_inv_f) | |
| 199 | ||
| 200 | lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A" | |
| 201 | by (simp add: image_eq_UN) | |
| 202 | ||
| 203 | lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X" | |
| 204 | by (auto simp add: image_def) | |
| 205 | ||
| 206 | lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}"
 | |
| 207 | apply auto | |
| 208 | apply (force simp add: bij_is_inj) | |
| 209 | apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric]) | |
| 210 | done | |
| 211 | ||
| 212 | lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A" | |
| 213 | apply (auto simp add: bij_is_surj [THEN surj_f_inv_f]) | |
| 214 | apply (blast intro: bij_is_inj [THEN inv_f_f, symmetric]) | |
| 215 | done | |
| 216 | ||
| 217 | ||
| 218 | subsection {*Inverse of a PI-function (restricted domain)*}
 | |
| 219 | ||
| 220 | lemma Inv_f_f: "[| inj_on f A; x \<in> A |] ==> Inv A f (f x) = x" | |
| 221 | apply (simp add: Inv_def inj_on_def) | |
| 222 | apply (blast intro: someI2) | |
| 223 | done | |
| 224 | ||
| 225 | lemma f_Inv_f: "y \<in> f`A ==> f (Inv A f y) = y" | |
| 226 | apply (simp add: Inv_def) | |
| 13585 | 227 | apply (fast intro: someI2) | 
| 228 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 229 | |
| 14760 | 230 | lemma Inv_injective: | 
| 231 | assumes eq: "Inv A f x = Inv A f y" | |
| 232 | and x: "x: f`A" | |
| 233 | and y: "y: f`A" | |
| 234 | shows "x=y" | |
| 235 | proof - | |
| 236 | have "f (Inv A f x) = f (Inv A f y)" using eq by simp | |
| 237 | thus ?thesis by (simp add: f_Inv_f x y) | |
| 238 | qed | |
| 239 | ||
| 240 | lemma inj_on_Inv: "B <= f`A ==> inj_on (Inv A f) B" | |
| 241 | apply (rule inj_onI) | |
| 242 | apply (blast intro: inj_onI dest: Inv_injective injD) | |
| 243 | done | |
| 244 | ||
| 245 | lemma Inv_mem: "[| f ` A = B; x \<in> B |] ==> Inv A f x \<in> A" | |
| 246 | apply (simp add: Inv_def) | |
| 247 | apply (fast intro: someI2) | |
| 248 | done | |
| 249 | ||
| 250 | lemma Inv_f_eq: "[| inj_on f A; f x = y; x \<in> A |] ==> Inv A f y = x" | |
| 14399 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 251 | apply (erule subst) | 
| 14760 | 252 | apply (erule Inv_f_f, assumption) | 
| 14399 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 253 | done | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 254 | |
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 255 | lemma Inv_comp: | 
| 14760 | 256 | "[| inj_on f (g ` A); inj_on g A; x \<in> f ` g ` A |] ==> | 
| 14399 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 257 | Inv A (f o g) x = (Inv A g o Inv (g ` A) f) x" | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 258 | apply simp | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 259 | apply (rule Inv_f_eq) | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 260 | apply (fast intro: comp_inj_on) | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 261 | apply (simp add: f_Inv_f Inv_mem) | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 262 | apply (simp add: Inv_mem) | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 263 | done | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
14208diff
changeset | 264 | |
| 14760 | 265 | |
| 266 | subsection {*Other Consequences of Hilbert's Epsilon*}
 | |
| 267 | ||
| 268 | text {*Hilbert's Epsilon and the @{term split} Operator*}
 | |
| 269 | ||
| 270 | text{*Looping simprule*}
 | |
| 271 | lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))" | |
| 272 | by (simp add: split_Pair_apply) | |
| 273 | ||
| 274 | lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))" | |
| 275 | by (simp add: split_def) | |
| 276 | ||
| 277 | lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)" | |
| 278 | by blast | |
| 279 | ||
| 280 | ||
| 281 | text{*A relation is wellfounded iff it has no infinite descending chain*}
 | |
| 282 | lemma wf_iff_no_infinite_down_chain: | |
| 283 | "wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))" | |
| 284 | apply (simp only: wf_eq_minimal) | |
| 285 | apply (rule iffI) | |
| 286 | apply (rule notI) | |
| 287 | apply (erule exE) | |
| 288 |  apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast)
 | |
| 289 | apply (erule contrapos_np, simp, clarify) | |
| 290 | apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q") | |
| 291 | apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI) | |
| 292 | apply (rule allI, simp) | |
| 293 | apply (rule someI2_ex, blast, blast) | |
| 294 | apply (rule allI) | |
| 295 | apply (induct_tac "n", simp_all) | |
| 296 | apply (rule someI2_ex, blast+) | |
| 297 | done | |
| 298 | ||
| 299 | text{*A dynamically-scoped fact for TFL *}
 | |
| 12298 | 300 | lemma tfl_some: "\<forall>P x. P x --> P (Eps P)" | 
| 301 | by (blast intro: someI) | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 302 | |
| 12298 | 303 | |
| 304 | subsection {* Least value operator *}
 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 305 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 306 | constdefs | 
| 12298 | 307 | LeastM :: "['a => 'b::ord, 'a => bool] => 'a" | 
| 14760 | 308 | "LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 309 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 310 | syntax | 
| 12298 | 311 |   "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"    ("LEAST _ WRT _. _" [0, 4, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 312 | translations | 
| 12298 | 313 | "LEAST x WRT m. P" == "LeastM m (%x. P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 314 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 315 | lemma LeastMI2: | 
| 12298 | 316 | "P x ==> (!!y. P y ==> m x <= m y) | 
| 317 | ==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x) | |
| 318 | ==> Q (LeastM m P)" | |
| 14760 | 319 | apply (simp add: LeastM_def) | 
| 14208 | 320 | apply (rule someI2_ex, blast, blast) | 
| 12298 | 321 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 322 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 323 | lemma LeastM_equality: | 
| 12298 | 324 | "P k ==> (!!x. P x ==> m k <= m x) | 
| 325 | ==> m (LEAST x WRT m. P x) = (m k::'a::order)" | |
| 14208 | 326 | apply (rule LeastMI2, assumption, blast) | 
| 12298 | 327 | apply (blast intro!: order_antisym) | 
| 328 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 329 | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 330 | lemma wf_linord_ex_has_least: | 
| 14760 | 331 | "wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k | 
| 332 | ==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)" | |
| 12298 | 333 | apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]]) | 
| 14208 | 334 | apply (drule_tac x = "m`Collect P" in spec, force) | 
| 12298 | 335 | done | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 336 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 337 | lemma ex_has_least_nat: | 
| 14760 | 338 | "P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))" | 
| 12298 | 339 | apply (simp only: pred_nat_trancl_eq_le [symmetric]) | 
| 340 | apply (rule wf_pred_nat [THEN wf_linord_ex_has_least]) | |
| 16796 | 341 | apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption) | 
| 12298 | 342 | done | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 343 | |
| 12298 | 344 | lemma LeastM_nat_lemma: | 
| 14760 | 345 | "P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))" | 
| 346 | apply (simp add: LeastM_def) | |
| 12298 | 347 | apply (rule someI_ex) | 
| 348 | apply (erule ex_has_least_nat) | |
| 349 | done | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 350 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 351 | lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard] | 
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 352 | |
| 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 353 | lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)" | 
| 14208 | 354 | by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption) | 
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 355 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 356 | |
| 12298 | 357 | subsection {* Greatest value operator *}
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 358 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 359 | constdefs | 
| 12298 | 360 | GreatestM :: "['a => 'b::ord, 'a => bool] => 'a" | 
| 14760 | 361 | "GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)" | 
| 12298 | 362 | |
| 363 |   Greatest :: "('a::ord => bool) => 'a"    (binder "GREATEST " 10)
 | |
| 364 | "Greatest == GreatestM (%x. x)" | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 365 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 366 | syntax | 
| 12298 | 367 | "_GreatestM" :: "[pttrn, 'a=>'b::ord, bool] => 'a" | 
| 368 |       ("GREATEST _ WRT _. _" [0, 4, 10] 10)
 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 369 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 370 | translations | 
| 12298 | 371 | "GREATEST x WRT m. P" == "GreatestM m (%x. P)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 372 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 373 | lemma GreatestMI2: | 
| 12298 | 374 | "P x ==> (!!y. P y ==> m y <= m x) | 
| 375 | ==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x) | |
| 376 | ==> Q (GreatestM m P)" | |
| 14760 | 377 | apply (simp add: GreatestM_def) | 
| 14208 | 378 | apply (rule someI2_ex, blast, blast) | 
| 12298 | 379 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 380 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 381 | lemma GreatestM_equality: | 
| 12298 | 382 | "P k ==> (!!x. P x ==> m x <= m k) | 
| 383 | ==> m (GREATEST x WRT m. P x) = (m k::'a::order)" | |
| 14208 | 384 | apply (rule_tac m = m in GreatestMI2, assumption, blast) | 
| 12298 | 385 | apply (blast intro!: order_antisym) | 
| 386 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 387 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 388 | lemma Greatest_equality: | 
| 12298 | 389 | "P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k" | 
| 14760 | 390 | apply (simp add: Greatest_def) | 
| 14208 | 391 | apply (erule GreatestM_equality, blast) | 
| 12298 | 392 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 393 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 394 | lemma ex_has_greatest_nat_lemma: | 
| 14760 | 395 | "P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x)) | 
| 396 | ==> \<exists>y. P y & ~ (m y < m k + n)" | |
| 15251 | 397 | apply (induct n, force) | 
| 12298 | 398 | apply (force simp add: le_Suc_eq) | 
| 399 | done | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 400 | |
| 12298 | 401 | lemma ex_has_greatest_nat: | 
| 14760 | 402 | "P k ==> \<forall>y. P y --> m y < b | 
| 403 | ==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)" | |
| 12298 | 404 | apply (rule ccontr) | 
| 405 | apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma) | |
| 14208 | 406 | apply (subgoal_tac [3] "m k <= b", auto) | 
| 12298 | 407 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 408 | |
| 12298 | 409 | lemma GreatestM_nat_lemma: | 
| 14760 | 410 | "P k ==> \<forall>y. P y --> m y < b | 
| 411 | ==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))" | |
| 412 | apply (simp add: GreatestM_def) | |
| 12298 | 413 | apply (rule someI_ex) | 
| 14208 | 414 | apply (erule ex_has_greatest_nat, assumption) | 
| 12298 | 415 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 416 | |
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 417 | lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard] | 
| 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 418 | |
| 12298 | 419 | lemma GreatestM_nat_le: | 
| 14760 | 420 | "P x ==> \<forall>y. P y --> m y < b | 
| 12298 | 421 | ==> (m x::nat) <= m (GreatestM m P)" | 
| 422 | apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec]) | |
| 423 | done | |
| 424 | ||
| 425 | ||
| 426 | text {* \medskip Specialization to @{text GREATEST}. *}
 | |
| 427 | ||
| 14760 | 428 | lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)" | 
| 429 | apply (simp add: Greatest_def) | |
| 14208 | 430 | apply (rule GreatestM_natI, auto) | 
| 12298 | 431 | done | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 432 | |
| 12298 | 433 | lemma Greatest_le: | 
| 14760 | 434 | "P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)" | 
| 435 | apply (simp add: Greatest_def) | |
| 14208 | 436 | apply (rule GreatestM_nat_le, auto) | 
| 12298 | 437 | done | 
| 438 | ||
| 439 | ||
| 440 | subsection {* The Meson proof procedure *}
 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 441 | |
| 12298 | 442 | subsubsection {* Negation Normal Form *}
 | 
| 443 | ||
| 444 | text {* de Morgan laws *}
 | |
| 445 | ||
| 446 | lemma meson_not_conjD: "~(P&Q) ==> ~P | ~Q" | |
| 447 | and meson_not_disjD: "~(P|Q) ==> ~P & ~Q" | |
| 448 | and meson_not_notD: "~~P ==> P" | |
| 14760 | 449 | and meson_not_allD: "!!P. ~(\<forall>x. P(x)) ==> \<exists>x. ~P(x)" | 
| 450 | and meson_not_exD: "!!P. ~(\<exists>x. P(x)) ==> \<forall>x. ~P(x)" | |
| 12298 | 451 | by fast+ | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 452 | |
| 12298 | 453 | text {* Removal of @{text "-->"} and @{text "<->"} (positive and
 | 
| 454 | negative occurrences) *} | |
| 455 | ||
| 456 | lemma meson_imp_to_disjD: "P-->Q ==> ~P | Q" | |
| 457 | and meson_not_impD: "~(P-->Q) ==> P & ~Q" | |
| 458 | and meson_iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)" | |
| 459 | and meson_not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)" | |
| 460 |     -- {* Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF *}
 | |
| 461 | by fast+ | |
| 462 | ||
| 463 | ||
| 464 | subsubsection {* Pulling out the existential quantifiers *}
 | |
| 465 | ||
| 466 | text {* Conjunction *}
 | |
| 467 | ||
| 14760 | 468 | lemma meson_conj_exD1: "!!P Q. (\<exists>x. P(x)) & Q ==> \<exists>x. P(x) & Q" | 
| 469 | and meson_conj_exD2: "!!P Q. P & (\<exists>x. Q(x)) ==> \<exists>x. P & Q(x)" | |
| 12298 | 470 | by fast+ | 
| 471 | ||
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 472 | |
| 12298 | 473 | text {* Disjunction *}
 | 
| 474 | ||
| 14760 | 475 | lemma meson_disj_exD: "!!P Q. (\<exists>x. P(x)) | (\<exists>x. Q(x)) ==> \<exists>x. P(x) | Q(x)" | 
| 12298 | 476 |   -- {* DO NOT USE with forall-Skolemization: makes fewer schematic variables!! *}
 | 
| 477 |   -- {* With ex-Skolemization, makes fewer Skolem constants *}
 | |
| 14760 | 478 | and meson_disj_exD1: "!!P Q. (\<exists>x. P(x)) | Q ==> \<exists>x. P(x) | Q" | 
| 479 | and meson_disj_exD2: "!!P Q. P | (\<exists>x. Q(x)) ==> \<exists>x. P | Q(x)" | |
| 12298 | 480 | by fast+ | 
| 481 | ||
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 482 | |
| 12298 | 483 | subsubsection {* Generating clauses for the Meson Proof Procedure *}
 | 
| 484 | ||
| 485 | text {* Disjunctions *}
 | |
| 486 | ||
| 487 | lemma meson_disj_assoc: "(P|Q)|R ==> P|(Q|R)" | |
| 488 | and meson_disj_comm: "P|Q ==> Q|P" | |
| 489 | and meson_disj_FalseD1: "False|P ==> P" | |
| 490 | and meson_disj_FalseD2: "P|False ==> P" | |
| 491 | by fast+ | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 492 | |
| 14760 | 493 | |
| 494 | subsection{*Lemmas for Meson, the Model Elimination Procedure*}
 | |
| 495 | ||
| 496 | text{* Generation of contrapositives *}
 | |
| 497 | ||
| 498 | text{*Inserts negated disjunct after removing the negation; P is a literal.
 | |
| 499 | Model elimination requires assuming the negation of every attempted subgoal, | |
| 500 | hence the negated disjuncts.*} | |
| 501 | lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)" | |
| 502 | by blast | |
| 503 | ||
| 504 | text{*Version for Plaisted's "Postive refinement" of the Meson procedure*}
 | |
| 505 | lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)" | |
| 506 | by blast | |
| 507 | ||
| 508 | text{*@{term P} should be a literal*}
 | |
| 509 | lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)" | |
| 510 | by blast | |
| 511 | ||
| 512 | text{*Versions of @{text make_neg_rule} and @{text make_pos_rule} that don't
 | |
| 513 | insert new assumptions, for ordinary resolution.*} | |
| 514 | ||
| 515 | lemmas make_neg_rule' = make_refined_neg_rule | |
| 516 | ||
| 517 | lemma make_pos_rule': "[|P|Q; ~P|] ==> Q" | |
| 518 | by blast | |
| 519 | ||
| 520 | text{* Generation of a goal clause -- put away the final literal *}
 | |
| 521 | ||
| 522 | lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)" | |
| 523 | by blast | |
| 524 | ||
| 525 | lemma make_pos_goal: "P ==> ((P==>~P) ==> False)" | |
| 526 | by blast | |
| 527 | ||
| 528 | ||
| 529 | subsubsection{* Lemmas for Forward Proof*}
 | |
| 530 | ||
| 531 | text{*There is a similarity to congruence rules*}
 | |
| 532 | ||
| 533 | (*NOTE: could handle conjunctions (faster?) by | |
| 534 | nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *) | |
| 535 | lemma conj_forward: "[| P'&Q'; P' ==> P; Q' ==> Q |] ==> P&Q" | |
| 536 | by blast | |
| 537 | ||
| 538 | lemma disj_forward: "[| P'|Q'; P' ==> P; Q' ==> Q |] ==> P|Q" | |
| 539 | by blast | |
| 540 | ||
| 541 | (*Version of @{text disj_forward} for removal of duplicate literals*)
 | |
| 542 | lemma disj_forward2: | |
| 543 | "[| P'|Q'; P' ==> P; [| Q'; P==>False |] ==> Q |] ==> P|Q" | |
| 544 | apply blast | |
| 545 | done | |
| 546 | ||
| 547 | lemma all_forward: "[| \<forall>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<forall>x. P(x)" | |
| 548 | by blast | |
| 549 | ||
| 550 | lemma ex_forward: "[| \<exists>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<exists>x. P(x)" | |
| 551 | by blast | |
| 552 | ||
| 17420 | 553 | |
| 554 | text{*Many of these bindings are used by the ATP linkup, and not just by
 | |
| 555 | legacy proof scripts.*} | |
| 14760 | 556 | ML | 
| 557 | {*
 | |
| 558 | val inv_def = thm "inv_def"; | |
| 559 | val Inv_def = thm "Inv_def"; | |
| 560 | ||
| 561 | val someI = thm "someI"; | |
| 562 | val someI_ex = thm "someI_ex"; | |
| 563 | val someI2 = thm "someI2"; | |
| 564 | val someI2_ex = thm "someI2_ex"; | |
| 565 | val some_equality = thm "some_equality"; | |
| 566 | val some1_equality = thm "some1_equality"; | |
| 567 | val some_eq_ex = thm "some_eq_ex"; | |
| 568 | val some_eq_trivial = thm "some_eq_trivial"; | |
| 569 | val some_sym_eq_trivial = thm "some_sym_eq_trivial"; | |
| 570 | val choice = thm "choice"; | |
| 571 | val bchoice = thm "bchoice"; | |
| 572 | val inv_id = thm "inv_id"; | |
| 573 | val inv_f_f = thm "inv_f_f"; | |
| 574 | val inv_f_eq = thm "inv_f_eq"; | |
| 575 | val inj_imp_inv_eq = thm "inj_imp_inv_eq"; | |
| 576 | val inj_transfer = thm "inj_transfer"; | |
| 577 | val inj_iff = thm "inj_iff"; | |
| 578 | val inj_imp_surj_inv = thm "inj_imp_surj_inv"; | |
| 579 | val f_inv_f = thm "f_inv_f"; | |
| 580 | val surj_f_inv_f = thm "surj_f_inv_f"; | |
| 581 | val inv_injective = thm "inv_injective"; | |
| 582 | val inj_on_inv = thm "inj_on_inv"; | |
| 583 | val surj_imp_inj_inv = thm "surj_imp_inj_inv"; | |
| 584 | val surj_iff = thm "surj_iff"; | |
| 585 | val surj_imp_inv_eq = thm "surj_imp_inv_eq"; | |
| 586 | val bij_imp_bij_inv = thm "bij_imp_bij_inv"; | |
| 587 | val inv_equality = thm "inv_equality"; | |
| 588 | val inv_inv_eq = thm "inv_inv_eq"; | |
| 589 | val o_inv_distrib = thm "o_inv_distrib"; | |
| 590 | val image_surj_f_inv_f = thm "image_surj_f_inv_f"; | |
| 591 | val image_inv_f_f = thm "image_inv_f_f"; | |
| 592 | val inv_image_comp = thm "inv_image_comp"; | |
| 593 | val bij_image_Collect_eq = thm "bij_image_Collect_eq"; | |
| 594 | val bij_vimage_eq_inv_image = thm "bij_vimage_eq_inv_image"; | |
| 595 | val Inv_f_f = thm "Inv_f_f"; | |
| 596 | val f_Inv_f = thm "f_Inv_f"; | |
| 597 | val Inv_injective = thm "Inv_injective"; | |
| 598 | val inj_on_Inv = thm "inj_on_Inv"; | |
| 599 | val split_paired_Eps = thm "split_paired_Eps"; | |
| 600 | val Eps_split = thm "Eps_split"; | |
| 601 | val Eps_split_eq = thm "Eps_split_eq"; | |
| 602 | val wf_iff_no_infinite_down_chain = thm "wf_iff_no_infinite_down_chain"; | |
| 603 | val Inv_mem = thm "Inv_mem"; | |
| 604 | val Inv_f_eq = thm "Inv_f_eq"; | |
| 605 | val Inv_comp = thm "Inv_comp"; | |
| 606 | val tfl_some = thm "tfl_some"; | |
| 607 | val make_neg_rule = thm "make_neg_rule"; | |
| 608 | val make_refined_neg_rule = thm "make_refined_neg_rule"; | |
| 609 | val make_pos_rule = thm "make_pos_rule"; | |
| 610 | val make_neg_rule' = thm "make_neg_rule'"; | |
| 611 | val make_pos_rule' = thm "make_pos_rule'"; | |
| 612 | val make_neg_goal = thm "make_neg_goal"; | |
| 613 | val make_pos_goal = thm "make_pos_goal"; | |
| 614 | val conj_forward = thm "conj_forward"; | |
| 615 | val disj_forward = thm "disj_forward"; | |
| 616 | val disj_forward2 = thm "disj_forward2"; | |
| 617 | val all_forward = thm "all_forward"; | |
| 618 | val ex_forward = thm "ex_forward"; | |
| 619 | *} | |
| 620 | ||
| 621 | ||
| 17893 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 622 | subsection {* Meson method setup *}
 | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 623 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 624 | use "Tools/meson.ML" | 
| 16563 | 625 | setup Meson.skolemize_setup | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 626 | |
| 17893 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 627 | |
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 628 | subsection {* Specification package -- Hilbertized version *}
 | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 629 | |
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 630 | lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c" | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 631 | by (simp only: someI_ex) | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 632 | |
| 14115 | 633 | use "Tools/specification_package.ML" | 
| 634 | ||
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 635 | end |