author | oheimb |
Fri, 13 Dec 1996 18:40:50 +0100 | |
changeset 2393 | 651fce76c86c |
parent 2258 | 8ad8ee759d9f |
child 2541 | 70aa00ed3025 |
permissions | -rw-r--r-- |
923 | 1 |
(* Title: HOL/Nat.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, Cambridge University Computer Laboratory |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
||
6 |
Definition of types ind and nat. |
|
7 |
||
8 |
Type nat is defined as a set Nat over type ind. |
|
9 |
*) |
|
10 |
||
11 |
Nat = WF + |
|
12 |
||
13 |
(** type ind **) |
|
14 |
||
15 |
types |
|
16 |
ind |
|
17 |
||
18 |
arities |
|
19 |
ind :: term |
|
20 |
||
21 |
consts |
|
1370
7361ac9b024d
removed quotes from types in consts and syntax sections
clasohm
parents:
1151
diff
changeset
|
22 |
Zero_Rep :: ind |
7361ac9b024d
removed quotes from types in consts and syntax sections
clasohm
parents:
1151
diff
changeset
|
23 |
Suc_Rep :: ind => ind |
923 | 24 |
|
25 |
rules |
|
26 |
(*the axiom of infinity in 2 parts*) |
|
27 |
inj_Suc_Rep "inj(Suc_Rep)" |
|
28 |
Suc_Rep_not_Zero_Rep "Suc_Rep(x) ~= Zero_Rep" |
|
29 |
||
30 |
||
31 |
||
32 |
(** type nat **) |
|
33 |
||
34 |
(* type definition *) |
|
35 |
||
1475 | 36 |
typedef (Nat) |
923 | 37 |
nat = "lfp(%X. {Zero_Rep} Un (Suc_Rep``X))" (lfp_def) |
38 |
||
39 |
instance |
|
40 |
nat :: ord |
|
41 |
||
42 |
||
43 |
(* abstract constants and syntax *) |
|
44 |
||
45 |
consts |
|
1531 | 46 |
"0" :: nat ("0") |
47 |
Suc :: nat => nat |
|
48 |
nat_case :: ['a, nat => 'a, nat] => 'a |
|
49 |
pred_nat :: "(nat * nat) set" |
|
1824 | 50 |
nat_rec :: ['a, [nat, 'a] => 'a, nat] => 'a |
1531 | 51 |
|
52 |
Least :: (nat=>bool) => nat (binder "LEAST " 10) |
|
923 | 53 |
|
2258 | 54 |
syntax |
55 |
"1" :: nat ("1") |
|
56 |
"2" :: nat ("2") |
|
57 |
||
923 | 58 |
translations |
2393 | 59 |
"1" == "Suc 0" |
60 |
"2" == "Suc 1" |
|
61 |
"case p of 0 => a | Suc y => b" == "nat_case a (%y.b) p" |
|
62 |
||
63 |
(* |
|
64 |
syntax (symbols) |
|
65 |
||
66 |
"LEAST " :: [idts, bool] => nat ("(3\\<mu>_./ _)" [0, 10] 10) |
|
67 |
*) |
|
923 | 68 |
|
69 |
defs |
|
70 |
Zero_def "0 == Abs_Nat(Zero_Rep)" |
|
71 |
Suc_def "Suc == (%n. Abs_Nat(Suc_Rep(Rep_Nat(n))))" |
|
72 |
||
73 |
(*nat operations and recursion*) |
|
1151 | 74 |
nat_case_def "nat_case a f n == @z. (n=0 --> z=a) |
2393 | 75 |
& (!x. n=Suc x --> z=f(x))" |
76 |
pred_nat_def "pred_nat == {p. ? n. p = (n, Suc n)}" |
|
923 | 77 |
|
1531 | 78 |
less_def "m<n == (m,n):trancl(pred_nat)" |
79 |
||
80 |
le_def "m<=(n::nat) == ~(n<m)" |
|
923 | 81 |
|
1824 | 82 |
nat_rec_def "nat_rec c d == |
83 |
wfrec pred_nat (%f. nat_case c (%m. d m (f m)))" |
|
1531 | 84 |
(*least number operator*) |
2393 | 85 |
Least_def "Least P == @k. P(k) & (ALL j. j<k --> ~P(j))" |
1660 | 86 |
|
923 | 87 |
end |