| 
435
 | 
     1  | 
(*  Title: 	ZF/Ordinal.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1994  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Ordinals in Zermelo-Fraenkel Set Theory 
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
852
 | 
     9  | 
Ordinal = WF + Bool + "simpdata" + "equalities" +
  | 
| 
435
 | 
    10  | 
consts
  | 
| 
 | 
    11  | 
  Memrel      	:: "i=>i"
  | 
| 
 | 
    12  | 
  Transset,Ord  :: "i=>o"
  | 
| 
 | 
    13  | 
  "<"           :: "[i,i] => o"  (infixl 50) (*less than on ordinals*)
  | 
| 
 | 
    14  | 
  "le"          :: "[i,i] => o"  (infixl 50) (*less than or equals*)
  | 
| 
 | 
    15  | 
  Limit         :: "i=>o"
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
translations
  | 
| 
 | 
    18  | 
  "x le y"      == "x < succ(y)"
  | 
| 
 | 
    19  | 
  | 
| 
753
 | 
    20  | 
defs
  | 
| 
435
 | 
    21  | 
  Memrel_def  	"Memrel(A)   == {z: A*A . EX x y. z=<x,y> & x:y }"
 | 
| 
 | 
    22  | 
  Transset_def	"Transset(i) == ALL x:i. x<=i"
  | 
| 
 | 
    23  | 
  Ord_def     	"Ord(i)      == Transset(i) & (ALL x:i. Transset(x))"
  | 
| 
 | 
    24  | 
  lt_def        "i<j         == i:j & Ord(j)"
  | 
| 
 | 
    25  | 
  Limit_def     "Limit(i)    == Ord(i) & 0<i & (ALL y. y<i --> succ(y)<i)"
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
end
  |