| author | wenzelm | 
| Thu, 29 Aug 2024 11:43:14 +0200 | |
| changeset 80788 | 66a8113ac23e | 
| parent 80142 | 34e0ddfc6dcc | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 63167 | 1 | section \<open>Simply-typed lambda-calculus with let and tuple patterns\<close> | 
| 33189 | 2 | |
| 3 | theory Pattern | |
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
63167diff
changeset | 4 | imports "HOL-Nominal.Nominal" | 
| 33189 | 5 | begin | 
| 6 | ||
| 7 | no_syntax | |
| 61069 | 8 |   "_Map" :: "maplets => 'a \<rightharpoonup> 'b"  ("(1[_])")
 | 
| 33189 | 9 | |
| 10 | atom_decl name | |
| 11 | ||
| 12 | nominal_datatype ty = | |
| 13 | Atom nat | |
| 14 | | Arrow ty ty (infixr "\<rightarrow>" 200) | |
| 15 | | TupleT ty ty (infixr "\<otimes>" 210) | |
| 16 | ||
| 17 | lemma fresh_type [simp]: "(a::name) \<sharp> (T::ty)" | |
| 18 | by (induct T rule: ty.induct) (simp_all add: fresh_nat) | |
| 19 | ||
| 20 | lemma supp_type [simp]: "supp (T::ty) = ({} :: name set)"
 | |
| 21 | by (induct T rule: ty.induct) (simp_all add: ty.supp supp_nat) | |
| 22 | ||
| 23 | lemma perm_type: "(pi::name prm) \<bullet> (T::ty) = T" | |
| 24 | by (induct T rule: ty.induct) (simp_all add: perm_nat_def) | |
| 25 | ||
| 26 | nominal_datatype trm = | |
| 27 | Var name | |
| 28 |   | Tuple trm trm  ("(1'\<langle>_,/ _'\<rangle>)")
 | |
| 29 | | Abs ty "\<guillemotleft>name\<guillemotright>trm" | |
| 30 | | App trm trm (infixl "\<cdot>" 200) | |
| 31 | | Let ty trm btrm | |
| 32 | and btrm = | |
| 33 | Base trm | |
| 34 | | Bind ty "\<guillemotleft>name\<guillemotright>btrm" | |
| 35 | ||
| 36 | abbreviation | |
| 37 |   Abs_syn :: "name \<Rightarrow> ty \<Rightarrow> trm \<Rightarrow> trm"  ("(3\<lambda>_:_./ _)" [0, 0, 10] 10) 
 | |
| 38 | where | |
| 39 | "\<lambda>x:T. t \<equiv> Abs T x t" | |
| 40 | ||
| 58310 | 41 | datatype pat = | 
| 33189 | 42 | PVar name ty | 
| 43 |   | PTuple pat pat  ("(1'\<langle>\<langle>_,/ _'\<rangle>\<rangle>)")
 | |
| 44 | ||
| 45 | (* FIXME: The following should be done automatically by the nominal package *) | |
| 46 | overloading pat_perm \<equiv> "perm :: name prm \<Rightarrow> pat \<Rightarrow> pat" (unchecked) | |
| 47 | begin | |
| 48 | ||
| 49 | primrec pat_perm | |
| 50 | where | |
| 51 | "pat_perm pi (PVar x ty) = PVar (pi \<bullet> x) (pi \<bullet> ty)" | |
| 52 | | "pat_perm pi \<langle>\<langle>p, q\<rangle>\<rangle> = \<langle>\<langle>pat_perm pi p, pat_perm pi q\<rangle>\<rangle>" | |
| 53 | ||
| 54 | end | |
| 55 | ||
| 56 | declare pat_perm.simps [eqvt] | |
| 57 | ||
| 58 | lemma supp_PVar [simp]: "((supp (PVar x T))::name set) = supp x" | |
| 59 | by (simp add: supp_def perm_fresh_fresh) | |
| 60 | ||
| 61 | lemma supp_PTuple [simp]: "((supp \<langle>\<langle>p, q\<rangle>\<rangle>)::name set) = supp p \<union> supp q" | |
| 62 | by (simp add: supp_def Collect_disj_eq del: disj_not1) | |
| 63 | ||
| 64 | instance pat :: pt_name | |
| 80140 | 65 | proof | 
| 66 | fix x :: pat | |
| 67 | show "([]::(name \<times> _) list) \<bullet> x = x" | |
| 68 | by (induct x) simp_all | |
| 69 | fix pi1 pi2 :: "(name \<times> name) list" | |
| 70 | show "(pi1 @ pi2) \<bullet> x = pi1 \<bullet> pi2 \<bullet> x" | |
| 71 | by (induct x) (simp_all add: pt_name2) | |
| 72 | assume "pi1 \<triangleq> pi2" | |
| 73 | then show "pi1 \<bullet> x = pi2 \<bullet> x" | |
| 74 | by (induct x) (simp_all add: pt_name3) | |
| 33189 | 75 | qed | 
| 76 | ||
| 77 | instance pat :: fs_name | |
| 80140 | 78 | proof | 
| 79 | fix x :: pat | |
| 80 | show "finite (supp x::name set)" | |
| 81 | by (induct x) (simp_all add: fin_supp) | |
| 33189 | 82 | qed | 
| 83 | ||
| 84 | (* the following function cannot be defined using nominal_primrec, *) | |
| 85 | (* since variable parameters are currently not allowed. *) | |
| 86 | primrec abs_pat :: "pat \<Rightarrow> btrm \<Rightarrow> btrm" ("(3\<lambda>[_]./ _)" [0, 10] 10)
 | |
| 87 | where | |
| 88 | "(\<lambda>[PVar x T]. t) = Bind T x t" | |
| 89 | | "(\<lambda>[\<langle>\<langle>p, q\<rangle>\<rangle>]. t) = (\<lambda>[p]. \<lambda>[q]. t)" | |
| 90 | ||
| 91 | lemma abs_pat_eqvt [eqvt]: | |
| 92 | "(pi :: name prm) \<bullet> (\<lambda>[p]. t) = (\<lambda>[pi \<bullet> p]. (pi \<bullet> t))" | |
| 93 | by (induct p arbitrary: t) simp_all | |
| 94 | ||
| 95 | lemma abs_pat_fresh [simp]: | |
| 96 | "(x::name) \<sharp> (\<lambda>[p]. t) = (x \<in> supp p \<or> x \<sharp> t)" | |
| 97 | by (induct p arbitrary: t) (simp_all add: abs_fresh supp_atm) | |
| 98 | ||
| 99 | lemma abs_pat_alpha: | |
| 100 | assumes fresh: "((pi::name prm) \<bullet> supp p::name set) \<sharp>* t" | |
| 101 | and pi: "set pi \<subseteq> supp p \<times> pi \<bullet> supp p" | |
| 102 | shows "(\<lambda>[p]. t) = (\<lambda>[pi \<bullet> p]. pi \<bullet> t)" | |
| 103 | proof - | |
| 104 | note pt_name_inst at_name_inst pi | |
| 105 | moreover have "(supp p::name set) \<sharp>* (\<lambda>[p]. t)" | |
| 106 | by (simp add: fresh_star_def) | |
| 107 | moreover from fresh | |
| 108 | have "(pi \<bullet> supp p::name set) \<sharp>* (\<lambda>[p]. t)" | |
| 109 | by (simp add: fresh_star_def) | |
| 110 | ultimately have "pi \<bullet> (\<lambda>[p]. t) = (\<lambda>[p]. t)" | |
| 111 | by (rule pt_freshs_freshs) | |
| 112 | then show ?thesis by (simp add: eqvts) | |
| 113 | qed | |
| 114 | ||
| 115 | primrec pat_vars :: "pat \<Rightarrow> name list" | |
| 116 | where | |
| 117 | "pat_vars (PVar x T) = [x]" | |
| 118 | | "pat_vars \<langle>\<langle>p, q\<rangle>\<rangle> = pat_vars q @ pat_vars p" | |
| 119 | ||
| 120 | lemma pat_vars_eqvt [eqvt]: | |
| 121 | "(pi :: name prm) \<bullet> (pat_vars p) = pat_vars (pi \<bullet> p)" | |
| 122 | by (induct p rule: pat.induct) (simp_all add: eqvts) | |
| 123 | ||
| 124 | lemma set_pat_vars_supp: "set (pat_vars p) = supp p" | |
| 125 | by (induct p) (auto simp add: supp_atm) | |
| 126 | ||
| 127 | lemma distinct_eqvt [eqvt]: | |
| 128 | "(pi :: name prm) \<bullet> (distinct (xs::name list)) = distinct (pi \<bullet> xs)" | |
| 129 | by (induct xs) (simp_all add: eqvts) | |
| 130 | ||
| 131 | primrec pat_type :: "pat \<Rightarrow> ty" | |
| 132 | where | |
| 133 | "pat_type (PVar x T) = T" | |
| 134 | | "pat_type \<langle>\<langle>p, q\<rangle>\<rangle> = pat_type p \<otimes> pat_type q" | |
| 135 | ||
| 136 | lemma pat_type_eqvt [eqvt]: | |
| 137 | "(pi :: name prm) \<bullet> (pat_type p) = pat_type (pi \<bullet> p)" | |
| 138 | by (induct p) simp_all | |
| 139 | ||
| 140 | lemma pat_type_perm_eq: "pat_type ((pi :: name prm) \<bullet> p) = pat_type p" | |
| 141 | by (induct p) (simp_all add: perm_type) | |
| 142 | ||
| 41798 | 143 | type_synonym ctx = "(name \<times> ty) list" | 
| 33189 | 144 | |
| 145 | inductive | |
| 146 |   ptyping :: "pat \<Rightarrow> ty \<Rightarrow> ctx \<Rightarrow> bool"  ("\<turnstile> _ : _ \<Rightarrow> _" [60, 60, 60] 60)
 | |
| 147 | where | |
| 148 | PVar: "\<turnstile> PVar x T : T \<Rightarrow> [(x, T)]" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 149 | | PTuple: "\<turnstile> p : T \<Rightarrow> \<Delta>\<^sub>1 \<Longrightarrow> \<turnstile> q : U \<Rightarrow> \<Delta>\<^sub>2 \<Longrightarrow> \<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> : T \<otimes> U \<Rightarrow> \<Delta>\<^sub>2 @ \<Delta>\<^sub>1" | 
| 33189 | 150 | |
| 151 | lemma pat_vars_ptyping: | |
| 152 | assumes "\<turnstile> p : T \<Rightarrow> \<Delta>" | |
| 153 | shows "pat_vars p = map fst \<Delta>" using assms | |
| 154 | by induct simp_all | |
| 155 | ||
| 156 | inductive | |
| 157 | valid :: "ctx \<Rightarrow> bool" | |
| 158 | where | |
| 159 | Nil [intro!]: "valid []" | |
| 160 | | Cons [intro!]: "valid \<Gamma> \<Longrightarrow> x \<sharp> \<Gamma> \<Longrightarrow> valid ((x, T) # \<Gamma>)" | |
| 161 | ||
| 162 | inductive_cases validE[elim!]: "valid ((x, T) # \<Gamma>)" | |
| 163 | ||
| 164 | lemma fresh_ctxt_set_eq: "((x::name) \<sharp> (\<Gamma>::ctx)) = (x \<notin> fst ` set \<Gamma>)" | |
| 165 | by (induct \<Gamma>) (auto simp add: fresh_list_nil fresh_list_cons fresh_prod fresh_atm) | |
| 166 | ||
| 167 | lemma valid_distinct: "valid \<Gamma> = distinct (map fst \<Gamma>)" | |
| 168 | by (induct \<Gamma>) (auto simp add: fresh_ctxt_set_eq [symmetric]) | |
| 169 | ||
| 170 | abbreviation | |
| 171 |   "sub_ctx" :: "ctx \<Rightarrow> ctx \<Rightarrow> bool" ("_ \<sqsubseteq> _") 
 | |
| 172 | where | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 173 | "\<Gamma>\<^sub>1 \<sqsubseteq> \<Gamma>\<^sub>2 \<equiv> \<forall>x. x \<in> set \<Gamma>\<^sub>1 \<longrightarrow> x \<in> set \<Gamma>\<^sub>2" | 
| 33189 | 174 | |
| 175 | abbreviation | |
| 176 |   Let_syn :: "pat \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"  ("(LET (_ =/ _)/ IN (_))" 10)
 | |
| 177 | where | |
| 178 | "LET p = t IN u \<equiv> Let (pat_type p) t (\<lambda>[p]. Base u)" | |
| 179 | ||
| 180 | inductive typing :: "ctx \<Rightarrow> trm \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60, 60, 60] 60)
 | |
| 181 | where | |
| 182 | Var [intro]: "valid \<Gamma> \<Longrightarrow> (x, T) \<in> set \<Gamma> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T" | |
| 183 | | Tuple [intro]: "\<Gamma> \<turnstile> t : T \<Longrightarrow> \<Gamma> \<turnstile> u : U \<Longrightarrow> \<Gamma> \<turnstile> \<langle>t, u\<rangle> : T \<otimes> U" | |
| 184 | | Abs [intro]: "(x, T) # \<Gamma> \<turnstile> t : U \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda>x:T. t) : T \<rightarrow> U" | |
| 185 | | App [intro]: "\<Gamma> \<turnstile> t : T \<rightarrow> U \<Longrightarrow> \<Gamma> \<turnstile> u : T \<Longrightarrow> \<Gamma> \<turnstile> t \<cdot> u : U" | |
| 186 | | Let: "((supp p)::name set) \<sharp>* t \<Longrightarrow> | |
| 187 | \<Gamma> \<turnstile> t : T \<Longrightarrow> \<turnstile> p : T \<Rightarrow> \<Delta> \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> u : U \<Longrightarrow> | |
| 188 | \<Gamma> \<turnstile> (LET p = t IN u) : U" | |
| 189 | ||
| 190 | equivariance ptyping | |
| 191 | ||
| 192 | equivariance valid | |
| 193 | ||
| 194 | equivariance typing | |
| 195 | ||
| 196 | lemma valid_typing: | |
| 197 | assumes "\<Gamma> \<turnstile> t : T" | |
| 198 | shows "valid \<Gamma>" using assms | |
| 199 | by induct auto | |
| 200 | ||
| 201 | lemma pat_var: | |
| 202 | assumes "\<turnstile> p : T \<Rightarrow> \<Delta>" | |
| 203 | shows "(supp p::name set) = supp \<Delta>" using assms | |
| 204 | by induct (auto simp add: supp_list_nil supp_list_cons supp_prod supp_list_append) | |
| 205 | ||
| 206 | lemma valid_app_fresh: | |
| 207 | assumes "valid (\<Delta> @ \<Gamma>)" and "(x::name) \<in> supp \<Delta>" | |
| 208 | shows "x \<sharp> \<Gamma>" using assms | |
| 209 | by (induct \<Delta>) | |
| 210 | (auto simp add: supp_list_nil supp_list_cons supp_prod supp_atm fresh_list_append) | |
| 211 | ||
| 212 | lemma pat_freshs: | |
| 213 | assumes "\<turnstile> p : T \<Rightarrow> \<Delta>" | |
| 214 | shows "(supp p::name set) \<sharp>* c = (supp \<Delta>::name set) \<sharp>* c" using assms | |
| 215 | by (auto simp add: fresh_star_def pat_var) | |
| 216 | ||
| 217 | lemma valid_app_mono: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 218 | assumes "valid (\<Delta> @ \<Gamma>\<^sub>1)" and "(supp \<Delta>::name set) \<sharp>* \<Gamma>\<^sub>2" and "valid \<Gamma>\<^sub>2" and "\<Gamma>\<^sub>1 \<sqsubseteq> \<Gamma>\<^sub>2" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 219 | shows "valid (\<Delta> @ \<Gamma>\<^sub>2)" using assms | 
| 33189 | 220 | by (induct \<Delta>) | 
| 221 | (auto simp add: supp_list_cons fresh_star_Un_elim supp_prod | |
| 222 | fresh_list_append supp_atm fresh_star_insert_elim fresh_star_empty_elim) | |
| 223 | ||
| 224 | nominal_inductive2 typing | |
| 225 | avoids | |
| 226 |   Abs: "{x}"
 | |
| 227 | | Let: "(supp p)::name set" | |
| 228 | by (auto simp add: fresh_star_def abs_fresh fin_supp pat_var | |
| 229 | dest!: valid_typing valid_app_fresh) | |
| 230 | ||
| 231 | lemma better_T_Let [intro]: | |
| 232 | assumes t: "\<Gamma> \<turnstile> t : T" and p: "\<turnstile> p : T \<Rightarrow> \<Delta>" and u: "\<Delta> @ \<Gamma> \<turnstile> u : U" | |
| 233 | shows "\<Gamma> \<turnstile> (LET p = t IN u) : U" | |
| 234 | proof - | |
| 235 | obtain pi::"name prm" where pi: "(pi \<bullet> (supp p::name set)) \<sharp>* (t, Base u, \<Gamma>)" | |
| 236 | and pi': "set pi \<subseteq> supp p \<times> (pi \<bullet> supp p)" | |
| 237 | by (rule at_set_avoiding [OF at_name_inst fin_supp fin_supp]) | |
| 238 | from p u have p_fresh: "(supp p::name set) \<sharp>* \<Gamma>" | |
| 239 | by (auto simp add: fresh_star_def pat_var dest!: valid_typing valid_app_fresh) | |
| 240 | from pi have p_fresh': "(pi \<bullet> (supp p::name set)) \<sharp>* \<Gamma>" | |
| 241 | by (simp add: fresh_star_prod_elim) | |
| 242 | from pi have p_fresh'': "(pi \<bullet> (supp p::name set)) \<sharp>* Base u" | |
| 243 | by (simp add: fresh_star_prod_elim) | |
| 244 | from pi have "(supp (pi \<bullet> p)::name set) \<sharp>* t" | |
| 245 | by (simp add: fresh_star_prod_elim eqvts) | |
| 246 | moreover note t | |
| 247 | moreover from p have "pi \<bullet> (\<turnstile> p : T \<Rightarrow> \<Delta>)" by (rule perm_boolI) | |
| 248 | then have "\<turnstile> (pi \<bullet> p) : T \<Rightarrow> (pi \<bullet> \<Delta>)" by (simp add: eqvts perm_type) | |
| 249 | moreover from u have "pi \<bullet> (\<Delta> @ \<Gamma> \<turnstile> u : U)" by (rule perm_boolI) | |
| 250 | with pt_freshs_freshs [OF pt_name_inst at_name_inst pi' p_fresh p_fresh'] | |
| 251 | have "(pi \<bullet> \<Delta>) @ \<Gamma> \<turnstile> (pi \<bullet> u) : U" by (simp add: eqvts perm_type) | |
| 252 | ultimately have "\<Gamma> \<turnstile> (LET (pi \<bullet> p) = t IN (pi \<bullet> u)) : U" | |
| 253 | by (rule Let) | |
| 254 | then show ?thesis by (simp add: abs_pat_alpha [OF p_fresh'' pi'] pat_type_perm_eq) | |
| 255 | qed | |
| 256 | ||
| 257 | lemma weakening: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 258 | assumes "\<Gamma>\<^sub>1 \<turnstile> t : T" and "valid \<Gamma>\<^sub>2" and "\<Gamma>\<^sub>1 \<sqsubseteq> \<Gamma>\<^sub>2" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 259 | shows "\<Gamma>\<^sub>2 \<turnstile> t : T" using assms | 
| 80140 | 260 | proof (nominal_induct \<Gamma>\<^sub>1 t T avoiding: \<Gamma>\<^sub>2 rule: typing.strong_induct) | 
| 261 | case (Abs x T \<Gamma> t U) | |
| 262 | then show ?case | |
| 263 | by (simp add: typing.Abs valid.Cons) | |
| 264 | next | |
| 265 | case (Let p t \<Gamma> T \<Delta> u U) | |
| 266 | then show ?case | |
| 267 | by (smt (verit, ccfv_threshold) Un_iff pat_freshs set_append typing.simps valid_app_mono valid_typing) | |
| 268 | qed auto | |
| 33189 | 269 | |
| 270 | inductive | |
| 271 |   match :: "pat \<Rightarrow> trm \<Rightarrow> (name \<times> trm) list \<Rightarrow> bool"  ("\<turnstile> _ \<rhd> _ \<Rightarrow> _" [50, 50, 50] 50)
 | |
| 272 | where | |
| 273 | PVar: "\<turnstile> PVar x T \<rhd> t \<Rightarrow> [(x, t)]" | |
| 274 | | PProd: "\<turnstile> p \<rhd> t \<Rightarrow> \<theta> \<Longrightarrow> \<turnstile> q \<rhd> u \<Rightarrow> \<theta>' \<Longrightarrow> \<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> \<langle>t, u\<rangle> \<Rightarrow> \<theta> @ \<theta>'" | |
| 275 | ||
| 276 | fun | |
| 277 | lookup :: "(name \<times> trm) list \<Rightarrow> name \<Rightarrow> trm" | |
| 278 | where | |
| 279 | "lookup [] x = Var x" | |
| 280 | | "lookup ((y, e) # \<theta>) x = (if x = y then e else lookup \<theta> x)" | |
| 281 | ||
| 282 | lemma lookup_eqvt[eqvt]: | |
| 283 | fixes pi :: "name prm" | |
| 284 | and \<theta> :: "(name \<times> trm) list" | |
| 285 | and X :: "name" | |
| 286 | shows "pi \<bullet> (lookup \<theta> X) = lookup (pi \<bullet> \<theta>) (pi \<bullet> X)" | |
| 287 | by (induct \<theta>) (auto simp add: eqvts) | |
| 288 | ||
| 289 | nominal_primrec | |
| 290 |   psubst :: "(name \<times> trm) list \<Rightarrow> trm \<Rightarrow> trm"  ("_\<lparr>_\<rparr>" [95,0] 210)
 | |
| 291 |   and psubstb :: "(name \<times> trm) list \<Rightarrow> btrm \<Rightarrow> btrm"  ("_\<lparr>_\<rparr>\<^sub>b" [95,0] 210)
 | |
| 292 | where | |
| 293 | "\<theta>\<lparr>Var x\<rparr> = (lookup \<theta> x)" | |
| 294 | | "\<theta>\<lparr>t \<cdot> u\<rparr> = \<theta>\<lparr>t\<rparr> \<cdot> \<theta>\<lparr>u\<rparr>" | |
| 295 | | "\<theta>\<lparr>\<langle>t, u\<rangle>\<rparr> = \<langle>\<theta>\<lparr>t\<rparr>, \<theta>\<lparr>u\<rparr>\<rangle>" | |
| 296 | | "\<theta>\<lparr>Let T t u\<rparr> = Let T (\<theta>\<lparr>t\<rparr>) (\<theta>\<lparr>u\<rparr>\<^sub>b)" | |
| 297 | | "x \<sharp> \<theta> \<Longrightarrow> \<theta>\<lparr>\<lambda>x:T. t\<rparr> = (\<lambda>x:T. \<theta>\<lparr>t\<rparr>)" | |
| 298 | | "\<theta>\<lparr>Base t\<rparr>\<^sub>b = Base (\<theta>\<lparr>t\<rparr>)" | |
| 299 | | "x \<sharp> \<theta> \<Longrightarrow> \<theta>\<lparr>Bind T x t\<rparr>\<^sub>b = Bind T x (\<theta>\<lparr>t\<rparr>\<^sub>b)" | |
| 80140 | 300 | by (finite_guess | simp add: abs_fresh | fresh_guess)+ | 
| 33189 | 301 | |
| 302 | lemma lookup_fresh: | |
| 303 | "x = y \<longrightarrow> x \<in> set (map fst \<theta>) \<Longrightarrow> \<forall>(y, t)\<in>set \<theta>. x \<sharp> t \<Longrightarrow> x \<sharp> lookup \<theta> y" | |
| 80140 | 304 | by (induct \<theta>) (use fresh_atm in force)+ | 
| 33189 | 305 | |
| 306 | lemma psubst_fresh: | |
| 307 | assumes "x \<in> set (map fst \<theta>)" and "\<forall>(y, t)\<in>set \<theta>. x \<sharp> t" | |
| 308 | shows "x \<sharp> \<theta>\<lparr>t\<rparr>" and "x \<sharp> \<theta>\<lparr>t'\<rparr>\<^sub>b" using assms | |
| 80140 | 309 | proof (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts) | 
| 310 | case (Var name) | |
| 311 | then show ?case | |
| 312 | by (metis lookup_fresh simps(1)) | |
| 313 | qed (auto simp: abs_fresh) | |
| 33189 | 314 | |
| 315 | lemma psubst_eqvt[eqvt]: | |
| 316 | fixes pi :: "name prm" | |
| 317 | shows "pi \<bullet> (\<theta>\<lparr>t\<rparr>) = (pi \<bullet> \<theta>)\<lparr>pi \<bullet> t\<rparr>" | |
| 318 | and "pi \<bullet> (\<theta>\<lparr>t'\<rparr>\<^sub>b) = (pi \<bullet> \<theta>)\<lparr>pi \<bullet> t'\<rparr>\<^sub>b" | |
| 319 | by (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts) | |
| 320 | (simp_all add: eqvts fresh_bij) | |
| 321 | ||
| 322 | abbreviation | |
| 323 |   subst :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm" ("_[_\<mapsto>_]" [100,0,0] 100)
 | |
| 324 | where | |
| 325 | "t[x\<mapsto>t'] \<equiv> [(x,t')]\<lparr>t\<rparr>" | |
| 326 | ||
| 327 | abbreviation | |
| 328 |   substb :: "btrm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> btrm" ("_[_\<mapsto>_]\<^sub>b" [100,0,0] 100)
 | |
| 329 | where | |
| 330 | "t[x\<mapsto>t']\<^sub>b \<equiv> [(x,t')]\<lparr>t\<rparr>\<^sub>b" | |
| 331 | ||
| 332 | lemma lookup_forget: | |
| 333 | "(supp (map fst \<theta>)::name set) \<sharp>* x \<Longrightarrow> lookup \<theta> x = Var x" | |
| 334 | by (induct \<theta>) (auto simp add: split_paired_all fresh_star_def fresh_atm supp_list_cons supp_atm) | |
| 335 | ||
| 336 | lemma supp_fst: "(x::name) \<in> supp (map fst (\<theta>::(name \<times> trm) list)) \<Longrightarrow> x \<in> supp \<theta>" | |
| 337 | by (induct \<theta>) (auto simp add: supp_list_nil supp_list_cons supp_prod) | |
| 338 | ||
| 339 | lemma psubst_forget: | |
| 340 | "(supp (map fst \<theta>)::name set) \<sharp>* t \<Longrightarrow> \<theta>\<lparr>t\<rparr> = t" | |
| 341 | "(supp (map fst \<theta>)::name set) \<sharp>* t' \<Longrightarrow> \<theta>\<lparr>t'\<rparr>\<^sub>b = t'" | |
| 80140 | 342 | proof (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts) | 
| 343 | case (Var name) | |
| 344 | then show ?case | |
| 345 | by (simp add: fresh_star_set lookup_forget) | |
| 346 | next | |
| 347 | case (Abs ty name trm) | |
| 348 | then show ?case | |
| 349 | apply (simp add: fresh_def) | |
| 350 | by (metis abs_fresh(1) fresh_star_set supp_fst trm.fresh(3)) | |
| 351 | next | |
| 352 | case (Bind ty name btrm) | |
| 353 | then show ?case | |
| 354 | apply (simp add: fresh_def) | |
| 355 | by (metis abs_fresh(1) btrm.fresh(2) fresh_star_set supp_fst) | |
| 356 | qed (auto simp: fresh_star_set) | |
| 33189 | 357 | |
| 80142 | 358 | lemma psubst_nil[simp]: "[]\<lparr>t\<rparr> = t" "[]\<lparr>t'\<rparr>\<^sub>b = t'" | 
| 33189 | 359 | by (induct t and t' rule: trm_btrm.inducts) (simp_all add: fresh_list_nil) | 
| 360 | ||
| 361 | lemma psubst_cons: | |
| 362 | assumes "(supp (map fst \<theta>)::name set) \<sharp>* u" | |
| 363 | shows "((x, u) # \<theta>)\<lparr>t\<rparr> = \<theta>\<lparr>t[x\<mapsto>u]\<rparr>" and "((x, u) # \<theta>)\<lparr>t'\<rparr>\<^sub>b = \<theta>\<lparr>t'[x\<mapsto>u]\<^sub>b\<rparr>\<^sub>b" | |
| 364 | using assms | |
| 365 | by (nominal_induct t and t' avoiding: x u \<theta> rule: trm_btrm.strong_inducts) | |
| 366 | (simp_all add: fresh_list_nil fresh_list_cons psubst_forget) | |
| 367 | ||
| 368 | lemma psubst_append: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 369 | "(supp (map fst (\<theta>\<^sub>1 @ \<theta>\<^sub>2))::name set) \<sharp>* map snd (\<theta>\<^sub>1 @ \<theta>\<^sub>2) \<Longrightarrow> (\<theta>\<^sub>1 @ \<theta>\<^sub>2)\<lparr>t\<rparr> = \<theta>\<^sub>2\<lparr>\<theta>\<^sub>1\<lparr>t\<rparr>\<rparr>" | 
| 80142 | 370 | proof (induct \<theta>\<^sub>1 arbitrary: t) | 
| 371 | case Nil | |
| 372 | then show ?case | |
| 373 | by (auto simp: psubst_nil) | |
| 374 | next | |
| 375 | case (Cons a \<theta>\<^sub>1) | |
| 376 | then show ?case | |
| 377 | proof (cases a) | |
| 378 | case (Pair a b) | |
| 379 | with Cons show ?thesis | |
| 380 | apply (simp add: supp_list_cons fresh_star_set fresh_list_cons) | |
| 381 | by (metis Un_iff fresh_star_set map_append psubst_cons(1) supp_list_append) | |
| 382 | qed | |
| 383 | qed | |
| 33189 | 384 | |
| 385 | lemma abs_pat_psubst [simp]: | |
| 386 | "(supp p::name set) \<sharp>* \<theta> \<Longrightarrow> \<theta>\<lparr>\<lambda>[p]. t\<rparr>\<^sub>b = (\<lambda>[p]. \<theta>\<lparr>t\<rparr>\<^sub>b)" | |
| 387 | by (induct p arbitrary: t) (auto simp add: fresh_star_def supp_atm) | |
| 388 | ||
| 389 | lemma valid_insert: | |
| 390 | assumes "valid (\<Delta> @ [(x, T)] @ \<Gamma>)" | |
| 391 | shows "valid (\<Delta> @ \<Gamma>)" using assms | |
| 392 | by (induct \<Delta>) | |
| 393 | (auto simp add: fresh_list_append fresh_list_cons) | |
| 394 | ||
| 395 | lemma fresh_set: | |
| 396 | shows "y \<sharp> xs = (\<forall>x\<in>set xs. y \<sharp> x)" | |
| 397 | by (induct xs) (simp_all add: fresh_list_nil fresh_list_cons) | |
| 398 | ||
| 399 | lemma context_unique: | |
| 400 | assumes "valid \<Gamma>" | |
| 401 | and "(x, T) \<in> set \<Gamma>" | |
| 402 | and "(x, U) \<in> set \<Gamma>" | |
| 403 | shows "T = U" using assms | |
| 404 | by induct (auto simp add: fresh_set fresh_prod fresh_atm) | |
| 405 | ||
| 406 | lemma subst_type_aux: | |
| 407 | assumes a: "\<Delta> @ [(x, U)] @ \<Gamma> \<turnstile> t : T" | |
| 408 | and b: "\<Gamma> \<turnstile> u : U" | |
| 409 | shows "\<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : T" using a b | |
| 410 | proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, U)] @ \<Gamma>" t T avoiding: x u \<Delta> rule: typing.strong_induct) | |
| 34915 | 411 | case (Var y T x u \<Delta>) | 
| 63167 | 412 | from \<open>valid (\<Delta> @ [(x, U)] @ \<Gamma>)\<close> | 
| 34915 | 413 | have valid: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert) | 
| 33189 | 414 | show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T" | 
| 415 | proof cases | |
| 416 | assume eq: "x = y" | |
| 34915 | 417 | from Var eq have "T = U" by (auto intro: context_unique) | 
| 418 | with Var eq valid show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T" by (auto intro: weakening) | |
| 33189 | 419 | next | 
| 420 | assume ineq: "x \<noteq> y" | |
| 34915 | 421 | from Var ineq have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" by simp | 
| 422 | then show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T" using ineq valid by auto | |
| 33189 | 423 | qed | 
| 424 | next | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 425 | case (Tuple t\<^sub>1 T\<^sub>1 t\<^sub>2 T\<^sub>2) | 
| 63167 | 426 | from refl \<open>\<Gamma> \<turnstile> u : U\<close> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 427 | have "\<Delta> @ \<Gamma> \<turnstile> t\<^sub>1[x\<mapsto>u] : T\<^sub>1" by (rule Tuple) | 
| 63167 | 428 | moreover from refl \<open>\<Gamma> \<turnstile> u : U\<close> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 429 | have "\<Delta> @ \<Gamma> \<turnstile> t\<^sub>2[x\<mapsto>u] : T\<^sub>2" by (rule Tuple) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 430 | ultimately have "\<Delta> @ \<Gamma> \<turnstile> \<langle>t\<^sub>1[x\<mapsto>u], t\<^sub>2[x\<mapsto>u]\<rangle> : T\<^sub>1 \<otimes> T\<^sub>2" .. | 
| 33189 | 431 | then show ?case by simp | 
| 432 | next | |
| 34915 | 433 | case (Let p t T \<Delta>' s S) | 
| 63167 | 434 | from refl \<open>\<Gamma> \<turnstile> u : U\<close> | 
| 33189 | 435 | have "\<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : T" by (rule Let) | 
| 63167 | 436 | moreover note \<open>\<turnstile> p : T \<Rightarrow> \<Delta>'\<close> | 
| 34915 | 437 | moreover have "\<Delta>' @ (\<Delta> @ [(x, U)] @ \<Gamma>) = (\<Delta>' @ \<Delta>) @ [(x, U)] @ \<Gamma>" by simp | 
| 63167 | 438 | then have "(\<Delta>' @ \<Delta>) @ \<Gamma> \<turnstile> s[x\<mapsto>u] : S" using \<open>\<Gamma> \<turnstile> u : U\<close> by (rule Let) | 
| 33189 | 439 | then have "\<Delta>' @ \<Delta> @ \<Gamma> \<turnstile> s[x\<mapsto>u] : S" by simp | 
| 440 | ultimately have "\<Delta> @ \<Gamma> \<turnstile> (LET p = t[x\<mapsto>u] IN s[x\<mapsto>u]) : S" | |
| 441 | by (rule better_T_Let) | |
| 442 | moreover from Let have "(supp p::name set) \<sharp>* [(x, u)]" | |
| 443 | by (simp add: fresh_star_def fresh_list_nil fresh_list_cons) | |
| 444 | ultimately show ?case by simp | |
| 445 | next | |
| 34915 | 446 | case (Abs y T t S) | 
| 447 | have "(y, T) # \<Delta> @ [(x, U)] @ \<Gamma> = ((y, T) # \<Delta>) @ [(x, U)] @ \<Gamma>" | |
| 33189 | 448 | by simp | 
| 63167 | 449 | then have "((y, T) # \<Delta>) @ \<Gamma> \<turnstile> t[x\<mapsto>u] : S" using \<open>\<Gamma> \<turnstile> u : U\<close> by (rule Abs) | 
| 33189 | 450 | then have "(y, T) # \<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : S" by simp | 
| 451 | then have "\<Delta> @ \<Gamma> \<turnstile> (\<lambda>y:T. t[x\<mapsto>u]) : T \<rightarrow> S" | |
| 452 | by (rule typing.Abs) | |
| 453 | moreover from Abs have "y \<sharp> [(x, u)]" | |
| 454 | by (simp add: fresh_list_nil fresh_list_cons) | |
| 455 | ultimately show ?case by simp | |
| 456 | next | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 457 | case (App t\<^sub>1 T S t\<^sub>2) | 
| 63167 | 458 | from refl \<open>\<Gamma> \<turnstile> u : U\<close> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 459 | have "\<Delta> @ \<Gamma> \<turnstile> t\<^sub>1[x\<mapsto>u] : T \<rightarrow> S" by (rule App) | 
| 63167 | 460 | moreover from refl \<open>\<Gamma> \<turnstile> u : U\<close> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 461 | have "\<Delta> @ \<Gamma> \<turnstile> t\<^sub>2[x\<mapsto>u] : T" by (rule App) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 462 | ultimately have "\<Delta> @ \<Gamma> \<turnstile> (t\<^sub>1[x\<mapsto>u]) \<cdot> (t\<^sub>2[x\<mapsto>u]) : S" | 
| 33189 | 463 | by (rule typing.App) | 
| 464 | then show ?case by simp | |
| 465 | qed | |
| 466 | ||
| 467 | lemmas subst_type = subst_type_aux [of "[]", simplified] | |
| 468 | ||
| 469 | lemma match_supp_fst: | |
| 470 | assumes "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>" shows "(supp (map fst \<theta>)::name set) = supp p" using assms | |
| 471 | by induct (simp_all add: supp_list_nil supp_list_cons supp_list_append) | |
| 472 | ||
| 473 | lemma match_supp_snd: | |
| 474 | assumes "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>" shows "(supp (map snd \<theta>)::name set) = supp u" using assms | |
| 475 | by induct (simp_all add: supp_list_nil supp_list_cons supp_list_append trm.supp) | |
| 476 | ||
| 477 | lemma match_fresh: "\<turnstile> p \<rhd> u \<Rightarrow> \<theta> \<Longrightarrow> (supp p::name set) \<sharp>* u \<Longrightarrow> | |
| 478 | (supp (map fst \<theta>)::name set) \<sharp>* map snd \<theta>" | |
| 479 | by (simp add: fresh_star_def fresh_def match_supp_fst match_supp_snd) | |
| 480 | ||
| 481 | lemma match_type_aux: | |
| 482 | assumes "\<turnstile> p : U \<Rightarrow> \<Delta>" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 483 | and "\<Gamma>\<^sub>2 \<turnstile> u : U" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 484 | and "\<Gamma>\<^sub>1 @ \<Delta> @ \<Gamma>\<^sub>2 \<turnstile> t : T" | 
| 33189 | 485 | and "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>" | 
| 486 | and "(supp p::name set) \<sharp>* u" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 487 | shows "\<Gamma>\<^sub>1 @ \<Gamma>\<^sub>2 \<turnstile> \<theta>\<lparr>t\<rparr> : T" using assms | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 488 | proof (induct arbitrary: \<Gamma>\<^sub>1 \<Gamma>\<^sub>2 t u T \<theta>) | 
| 33189 | 489 | case (PVar x U) | 
| 63167 | 490 | from \<open>\<Gamma>\<^sub>1 @ [(x, U)] @ \<Gamma>\<^sub>2 \<turnstile> t : T\<close> \<open>\<Gamma>\<^sub>2 \<turnstile> u : U\<close> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 491 | have "\<Gamma>\<^sub>1 @ \<Gamma>\<^sub>2 \<turnstile> t[x\<mapsto>u] : T" by (rule subst_type_aux) | 
| 63167 | 492 | moreover from \<open>\<turnstile> PVar x U \<rhd> u \<Rightarrow> \<theta>\<close> have "\<theta> = [(x, u)]" | 
| 33189 | 493 | by cases simp_all | 
| 494 | ultimately show ?case by simp | |
| 495 | next | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 496 | case (PTuple p S \<Delta>\<^sub>1 q U \<Delta>\<^sub>2) | 
| 63167 | 497 | from \<open>\<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> u \<Rightarrow> \<theta>\<close> obtain u\<^sub>1 u\<^sub>2 \<theta>\<^sub>1 \<theta>\<^sub>2 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 498 | where u: "u = \<langle>u\<^sub>1, u\<^sub>2\<rangle>" and \<theta>: "\<theta> = \<theta>\<^sub>1 @ \<theta>\<^sub>2" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 499 | and p: "\<turnstile> p \<rhd> u\<^sub>1 \<Rightarrow> \<theta>\<^sub>1" and q: "\<turnstile> q \<rhd> u\<^sub>2 \<Rightarrow> \<theta>\<^sub>2" | 
| 33189 | 500 | by cases simp_all | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 501 | with PTuple have "\<Gamma>\<^sub>2 \<turnstile> \<langle>u\<^sub>1, u\<^sub>2\<rangle> : S \<otimes> U" by simp | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 502 | then obtain u\<^sub>1: "\<Gamma>\<^sub>2 \<turnstile> u\<^sub>1 : S" and u\<^sub>2: "\<Gamma>\<^sub>2 \<turnstile> u\<^sub>2 : U" | 
| 33189 | 503 | by cases (simp_all add: ty.inject trm.inject) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 504 | note u\<^sub>1 | 
| 63167 | 505 | moreover from \<open>\<Gamma>\<^sub>1 @ (\<Delta>\<^sub>2 @ \<Delta>\<^sub>1) @ \<Gamma>\<^sub>2 \<turnstile> t : T\<close> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 506 | have "(\<Gamma>\<^sub>1 @ \<Delta>\<^sub>2) @ \<Delta>\<^sub>1 @ \<Gamma>\<^sub>2 \<turnstile> t : T" by simp | 
| 33189 | 507 | moreover note p | 
| 63167 | 508 | moreover from \<open>supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u\<close> and u | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 509 | have "(supp p::name set) \<sharp>* u\<^sub>1" by (simp add: fresh_star_def) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 510 | ultimately have \<theta>\<^sub>1: "(\<Gamma>\<^sub>1 @ \<Delta>\<^sub>2) @ \<Gamma>\<^sub>2 \<turnstile> \<theta>\<^sub>1\<lparr>t\<rparr> : T" | 
| 33189 | 511 | by (rule PTuple) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 512 | note u\<^sub>2 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 513 | moreover from \<theta>\<^sub>1 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 514 | have "\<Gamma>\<^sub>1 @ \<Delta>\<^sub>2 @ \<Gamma>\<^sub>2 \<turnstile> \<theta>\<^sub>1\<lparr>t\<rparr> : T" by simp | 
| 33189 | 515 | moreover note q | 
| 63167 | 516 | moreover from \<open>supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u\<close> and u | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 517 | have "(supp q::name set) \<sharp>* u\<^sub>2" by (simp add: fresh_star_def) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 518 | ultimately have "\<Gamma>\<^sub>1 @ \<Gamma>\<^sub>2 \<turnstile> \<theta>\<^sub>2\<lparr>\<theta>\<^sub>1\<lparr>t\<rparr>\<rparr> : T" | 
| 33189 | 519 | by (rule PTuple) | 
| 63167 | 520 | moreover from \<open>\<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> u \<Rightarrow> \<theta>\<close> \<open>supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u\<close> | 
| 33189 | 521 | have "(supp (map fst \<theta>)::name set) \<sharp>* map snd \<theta>" | 
| 522 | by (rule match_fresh) | |
| 523 | ultimately show ?case using \<theta> by (simp add: psubst_append) | |
| 524 | qed | |
| 525 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 526 | lemmas match_type = match_type_aux [where \<Gamma>\<^sub>1="[]", simplified] | 
| 33189 | 527 | |
| 528 | inductive eval :: "trm \<Rightarrow> trm \<Rightarrow> bool" ("_ \<longmapsto> _" [60,60] 60)
 | |
| 529 | where | |
| 530 | TupleL: "t \<longmapsto> t' \<Longrightarrow> \<langle>t, u\<rangle> \<longmapsto> \<langle>t', u\<rangle>" | |
| 531 | | TupleR: "u \<longmapsto> u' \<Longrightarrow> \<langle>t, u\<rangle> \<longmapsto> \<langle>t, u'\<rangle>" | |
| 532 | | Abs: "t \<longmapsto> t' \<Longrightarrow> (\<lambda>x:T. t) \<longmapsto> (\<lambda>x:T. t')" | |
| 533 | | AppL: "t \<longmapsto> t' \<Longrightarrow> t \<cdot> u \<longmapsto> t' \<cdot> u" | |
| 534 | | AppR: "u \<longmapsto> u' \<Longrightarrow> t \<cdot> u \<longmapsto> t \<cdot> u'" | |
| 535 | | Beta: "x \<sharp> u \<Longrightarrow> (\<lambda>x:T. t) \<cdot> u \<longmapsto> t[x\<mapsto>u]" | |
| 536 | | Let: "((supp p)::name set) \<sharp>* t \<Longrightarrow> distinct (pat_vars p) \<Longrightarrow> | |
| 537 | \<turnstile> p \<rhd> t \<Rightarrow> \<theta> \<Longrightarrow> (LET p = t IN u) \<longmapsto> \<theta>\<lparr>u\<rparr>" | |
| 538 | ||
| 539 | equivariance match | |
| 540 | ||
| 541 | equivariance eval | |
| 542 | ||
| 543 | lemma match_vars: | |
| 544 | assumes "\<turnstile> p \<rhd> t \<Rightarrow> \<theta>" and "x \<in> supp p" | |
| 545 | shows "x \<in> set (map fst \<theta>)" using assms | |
| 546 | by induct (auto simp add: supp_atm) | |
| 547 | ||
| 548 | lemma match_fresh_mono: | |
| 549 | assumes "\<turnstile> p \<rhd> t \<Rightarrow> \<theta>" and "(x::name) \<sharp> t" | |
| 550 | shows "\<forall>(y, t)\<in>set \<theta>. x \<sharp> t" using assms | |
| 551 | by induct auto | |
| 552 | ||
| 553 | nominal_inductive2 eval | |
| 554 | avoids | |
| 555 |   Abs: "{x}"
 | |
| 556 | | Beta: "{x}"
 | |
| 557 | | Let: "(supp p)::name set" | |
| 80140 | 558 | proof (simp_all add: fresh_star_def abs_fresh fin_supp) | 
| 559 | show "x \<sharp> t[x\<mapsto>u]" if "x \<sharp> u" for x t u | |
| 560 | by (simp add: \<open>x \<sharp> u\<close> psubst_fresh(1)) | |
| 561 | next | |
| 562 | show "\<forall>x\<in>supp p. (x::name) \<sharp> \<theta>\<lparr>u\<rparr>" | |
| 563 | if "\<forall>x\<in>supp p. (x::name) \<sharp> t" and "\<turnstile> p \<rhd> t \<Rightarrow> \<theta>" | |
| 564 | for p t \<theta> u | |
| 565 | by (meson that match_fresh_mono match_vars psubst_fresh(1)) | |
| 566 | qed | |
| 33189 | 567 | |
| 568 | lemma typing_case_Abs: | |
| 569 | assumes ty: "\<Gamma> \<turnstile> (\<lambda>x:T. t) : S" | |
| 570 | and fresh: "x \<sharp> \<Gamma>" | |
| 571 | and R: "\<And>U. S = T \<rightarrow> U \<Longrightarrow> (x, T) # \<Gamma> \<turnstile> t : U \<Longrightarrow> P" | |
| 572 | shows P using ty | |
| 573 | proof cases | |
| 34990 | 574 | case (Abs x' T' t' U) | 
| 33189 | 575 | obtain y::name where y: "y \<sharp> (x, \<Gamma>, \<lambda>x':T'. t')" | 
| 576 | by (rule exists_fresh) (auto intro: fin_supp) | |
| 63167 | 577 | from \<open>(\<lambda>x:T. t) = (\<lambda>x':T'. t')\<close> [symmetric] | 
| 33189 | 578 | have x: "x \<sharp> (\<lambda>x':T'. t')" by (simp add: abs_fresh) | 
| 579 | have x': "x' \<sharp> (\<lambda>x':T'. t')" by (simp add: abs_fresh) | |
| 63167 | 580 | from \<open>(x', T') # \<Gamma> \<turnstile> t' : U\<close> have x'': "x' \<sharp> \<Gamma>" | 
| 33189 | 581 | by (auto dest: valid_typing) | 
| 582 | have "(\<lambda>x:T. t) = (\<lambda>x':T'. t')" by fact | |
| 583 | also from x x' y have "\<dots> = [(x, y)] \<bullet> [(x', y)] \<bullet> (\<lambda>x':T'. t')" | |
| 584 | by (simp only: perm_fresh_fresh fresh_prod) | |
| 585 | also have "\<dots> = (\<lambda>x:T'. [(x, y)] \<bullet> [(x', y)] \<bullet> t')" | |
| 586 | by (simp add: swap_simps perm_fresh_fresh) | |
| 587 | finally have "(\<lambda>x:T. t) = (\<lambda>x:T'. [(x, y)] \<bullet> [(x', y)] \<bullet> t')" . | |
| 588 | then have T: "T = T'" and t: "[(x, y)] \<bullet> [(x', y)] \<bullet> t' = t" | |
| 589 | by (simp_all add: trm.inject alpha) | |
| 590 | from Abs T have "S = T \<rightarrow> U" by simp | |
| 63167 | 591 | moreover from \<open>(x', T') # \<Gamma> \<turnstile> t' : U\<close> | 
| 34990 | 592 | have "[(x, y)] \<bullet> [(x', y)] \<bullet> ((x', T') # \<Gamma> \<turnstile> t' : U)" | 
| 33189 | 593 | by (simp add: perm_bool) | 
| 34990 | 594 | with T t y x'' fresh have "(x, T) # \<Gamma> \<turnstile> t : U" | 
| 33189 | 595 | by (simp add: eqvts swap_simps perm_fresh_fresh fresh_prod) | 
| 596 | ultimately show ?thesis by (rule R) | |
| 597 | qed simp_all | |
| 598 | ||
| 599 | nominal_primrec ty_size :: "ty \<Rightarrow> nat" | |
| 600 | where | |
| 601 | "ty_size (Atom n) = 0" | |
| 602 | | "ty_size (T \<rightarrow> U) = ty_size T + ty_size U + 1" | |
| 603 | | "ty_size (T \<otimes> U) = ty_size T + ty_size U + 1" | |
| 604 | by (rule TrueI)+ | |
| 605 | ||
| 606 | lemma bind_tuple_ineq: | |
| 607 | "ty_size (pat_type p) < ty_size U \<Longrightarrow> Bind U x t \<noteq> (\<lambda>[p]. u)" | |
| 608 | by (induct p arbitrary: U x t u) (auto simp add: btrm.inject) | |
| 609 | ||
| 610 | lemma valid_appD: assumes "valid (\<Gamma> @ \<Delta>)" | |
| 611 | shows "valid \<Gamma>" "valid \<Delta>" using assms | |
| 612 | by (induct \<Gamma>'\<equiv>"\<Gamma> @ \<Delta>" arbitrary: \<Gamma> \<Delta>) | |
| 613 | (auto simp add: Cons_eq_append_conv fresh_list_append) | |
| 614 | ||
| 615 | lemma valid_app_freshs: assumes "valid (\<Gamma> @ \<Delta>)" | |
| 616 | shows "(supp \<Gamma>::name set) \<sharp>* \<Delta>" "(supp \<Delta>::name set) \<sharp>* \<Gamma>" using assms | |
| 617 | by (induct \<Gamma>'\<equiv>"\<Gamma> @ \<Delta>" arbitrary: \<Gamma> \<Delta>) | |
| 618 | (auto simp add: Cons_eq_append_conv fresh_star_def | |
| 619 | fresh_list_nil fresh_list_cons supp_list_nil supp_list_cons fresh_list_append | |
| 620 | supp_prod fresh_prod supp_atm fresh_atm | |
| 44687 | 621 | dest: notE [OF iffD1 [OF fresh_def]]) | 
| 33189 | 622 | |
| 623 | lemma perm_mem_left: "(x::name) \<in> ((pi::name prm) \<bullet> A) \<Longrightarrow> (rev pi \<bullet> x) \<in> A" | |
| 624 | by (drule perm_boolI [of _ "rev pi"]) (simp add: eqvts perm_pi_simp) | |
| 625 | ||
| 626 | lemma perm_mem_right: "(rev (pi::name prm) \<bullet> (x::name)) \<in> A \<Longrightarrow> x \<in> (pi \<bullet> A)" | |
| 627 | by (drule perm_boolI [of _ pi]) (simp add: eqvts perm_pi_simp) | |
| 628 | ||
| 629 | lemma perm_cases: | |
| 630 | assumes pi: "set pi \<subseteq> A \<times> A" | |
| 631 | shows "((pi::name prm) \<bullet> B) \<subseteq> A \<union> B" | |
| 632 | proof | |
| 633 | fix x assume "x \<in> pi \<bullet> B" | |
| 634 | then show "x \<in> A \<union> B" using pi | |
| 80140 | 635 | proof (induct pi arbitrary: x B rule: rev_induct) | 
| 636 | case Nil | |
| 637 | then show ?case | |
| 638 | by simp | |
| 639 | next | |
| 640 | case (snoc y xs) | |
| 641 | then show ?case | |
| 642 | apply simp | |
| 643 | by (metis SigmaE perm_mem_left perm_pi_simp(2) pt_name2 swap_simps(3)) | |
| 644 | qed | |
| 33189 | 645 | qed | 
| 646 | ||
| 647 | lemma abs_pat_alpha': | |
| 648 | assumes eq: "(\<lambda>[p]. t) = (\<lambda>[q]. u)" | |
| 649 | and ty: "pat_type p = pat_type q" | |
| 650 | and pv: "distinct (pat_vars p)" | |
| 651 | and qv: "distinct (pat_vars q)" | |
| 652 | shows "\<exists>pi::name prm. p = pi \<bullet> q \<and> t = pi \<bullet> u \<and> | |
| 653 | set pi \<subseteq> (supp p \<union> supp q) \<times> (supp p \<union> supp q)" | |
| 654 | using assms | |
| 45129 
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
 wenzelm parents: 
44687diff
changeset | 655 | proof (induct p arbitrary: q t u) | 
| 33189 | 656 | case (PVar x T) | 
| 657 | note PVar' = this | |
| 658 | show ?case | |
| 659 | proof (cases q) | |
| 660 | case (PVar x' T') | |
| 63167 | 661 | with \<open>(\<lambda>[PVar x T]. t) = (\<lambda>[q]. u)\<close> | 
| 33189 | 662 | have "x = x' \<and> t = u \<or> x \<noteq> x' \<and> t = [(x, x')] \<bullet> u \<and> x \<sharp> u" | 
| 663 | by (simp add: btrm.inject alpha) | |
| 664 | then show ?thesis | |
| 665 | proof | |
| 666 | assume "x = x' \<and> t = u" | |
| 667 | with PVar PVar' have "PVar x T = ([]::name prm) \<bullet> q \<and> | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33189diff
changeset | 668 | t = ([]::name prm) \<bullet> u \<and> | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33189diff
changeset | 669 | set ([]::name prm) \<subseteq> (supp (PVar x T) \<union> supp q) \<times> | 
| 33189 | 670 | (supp (PVar x T) \<union> supp q)" by simp | 
| 671 | then show ?thesis .. | |
| 672 | next | |
| 673 | assume "x \<noteq> x' \<and> t = [(x, x')] \<bullet> u \<and> x \<sharp> u" | |
| 674 | with PVar PVar' have "PVar x T = [(x, x')] \<bullet> q \<and> | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33189diff
changeset | 675 | t = [(x, x')] \<bullet> u \<and> | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33189diff
changeset | 676 | set [(x, x')] \<subseteq> (supp (PVar x T) \<union> supp q) \<times> | 
| 33189 | 677 | (supp (PVar x T) \<union> supp q)" | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33189diff
changeset | 678 | by (simp add: perm_swap swap_simps supp_atm perm_type) | 
| 33189 | 679 | then show ?thesis .. | 
| 680 | qed | |
| 681 | next | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 682 | case (PTuple p\<^sub>1 p\<^sub>2) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 683 | with PVar have "ty_size (pat_type p\<^sub>1) < ty_size T" by simp | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 684 | then have "Bind T x t \<noteq> (\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. u)" | 
| 33189 | 685 | by (rule bind_tuple_ineq) | 
| 686 | moreover from PTuple PVar | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 687 | have "Bind T x t = (\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. u)" by simp | 
| 33189 | 688 | ultimately show ?thesis .. | 
| 689 | qed | |
| 690 | next | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 691 | case (PTuple p\<^sub>1 p\<^sub>2) | 
| 33189 | 692 | note PTuple' = this | 
| 693 | show ?case | |
| 694 | proof (cases q) | |
| 695 | case (PVar x T) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 696 | with PTuple have "ty_size (pat_type p\<^sub>1) < ty_size T" by auto | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 697 | then have "Bind T x u \<noteq> (\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. t)" | 
| 33189 | 698 | by (rule bind_tuple_ineq) | 
| 699 | moreover from PTuple PVar | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 700 | have "Bind T x u = (\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. t)" by simp | 
| 33189 | 701 | ultimately show ?thesis .. | 
| 702 | next | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 703 | case (PTuple p\<^sub>1' p\<^sub>2') | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 704 | with PTuple' have "(\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. t) = (\<lambda>[p\<^sub>1']. \<lambda>[p\<^sub>2']. u)" by simp | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 705 | moreover from PTuple PTuple' have "pat_type p\<^sub>1 = pat_type p\<^sub>1'" | 
| 33189 | 706 | by (simp add: ty.inject) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 707 | moreover from PTuple' have "distinct (pat_vars p\<^sub>1)" by simp | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 708 | moreover from PTuple PTuple' have "distinct (pat_vars p\<^sub>1')" by simp | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 709 | ultimately have "\<exists>pi::name prm. p\<^sub>1 = pi \<bullet> p\<^sub>1' \<and> | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 710 | (\<lambda>[p\<^sub>2]. t) = pi \<bullet> (\<lambda>[p\<^sub>2']. u) \<and> | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 711 | set pi \<subseteq> (supp p\<^sub>1 \<union> supp p\<^sub>1') \<times> (supp p\<^sub>1 \<union> supp p\<^sub>1')" | 
| 33189 | 712 | by (rule PTuple') | 
| 713 | then obtain pi::"name prm" where | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 714 | "p\<^sub>1 = pi \<bullet> p\<^sub>1'" "(\<lambda>[p\<^sub>2]. t) = pi \<bullet> (\<lambda>[p\<^sub>2']. u)" and | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 715 | pi: "set pi \<subseteq> (supp p\<^sub>1 \<union> supp p\<^sub>1') \<times> (supp p\<^sub>1 \<union> supp p\<^sub>1')" by auto | 
| 63167 | 716 | from \<open>(\<lambda>[p\<^sub>2]. t) = pi \<bullet> (\<lambda>[p\<^sub>2']. u)\<close> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 717 | have "(\<lambda>[p\<^sub>2]. t) = (\<lambda>[pi \<bullet> p\<^sub>2']. pi \<bullet> u)" | 
| 33189 | 718 | by (simp add: eqvts) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 719 | moreover from PTuple PTuple' have "pat_type p\<^sub>2 = pat_type (pi \<bullet> p\<^sub>2')" | 
| 33189 | 720 | by (simp add: ty.inject pat_type_perm_eq) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 721 | moreover from PTuple' have "distinct (pat_vars p\<^sub>2)" by simp | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 722 | moreover from PTuple PTuple' have "distinct (pat_vars (pi \<bullet> p\<^sub>2'))" | 
| 33189 | 723 | by (simp add: pat_vars_eqvt [symmetric] distinct_eqvt [symmetric]) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 724 | ultimately have "\<exists>pi'::name prm. p\<^sub>2 = pi' \<bullet> pi \<bullet> p\<^sub>2' \<and> | 
| 33189 | 725 | t = pi' \<bullet> pi \<bullet> u \<and> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 726 | set pi' \<subseteq> (supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2')) \<times> (supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2'))" | 
| 33189 | 727 | by (rule PTuple') | 
| 728 | then obtain pi'::"name prm" where | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 729 | "p\<^sub>2 = pi' \<bullet> pi \<bullet> p\<^sub>2'" "t = pi' \<bullet> pi \<bullet> u" and | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 730 | pi': "set pi' \<subseteq> (supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2')) \<times> | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 731 | (supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2'))" by auto | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 732 | from PTuple PTuple' have "pi \<bullet> distinct (pat_vars \<langle>\<langle>p\<^sub>1', p\<^sub>2'\<rangle>\<rangle>)" by simp | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 733 | then have "distinct (pat_vars \<langle>\<langle>pi \<bullet> p\<^sub>1', pi \<bullet> p\<^sub>2'\<rangle>\<rangle>)" by (simp only: eqvts) | 
| 63167 | 734 | with \<open>p\<^sub>1 = pi \<bullet> p\<^sub>1'\<close> PTuple' | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 735 | have fresh: "(supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2') :: name set) \<sharp>* p\<^sub>1" | 
| 33189 | 736 | by (auto simp add: set_pat_vars_supp fresh_star_def fresh_def eqvts) | 
| 63167 | 737 | from \<open>p\<^sub>1 = pi \<bullet> p\<^sub>1'\<close> have "pi' \<bullet> (p\<^sub>1 = pi \<bullet> p\<^sub>1')" by (rule perm_boolI) | 
| 33189 | 738 | with pt_freshs_freshs [OF pt_name_inst at_name_inst pi' fresh fresh] | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 739 | have "p\<^sub>1 = pi' \<bullet> pi \<bullet> p\<^sub>1'" by (simp add: eqvts) | 
| 63167 | 740 | with \<open>p\<^sub>2 = pi' \<bullet> pi \<bullet> p\<^sub>2'\<close> have "\<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> = (pi' @ pi) \<bullet> \<langle>\<langle>p\<^sub>1', p\<^sub>2'\<rangle>\<rangle>" | 
| 33189 | 741 | by (simp add: pt_name2) | 
| 742 | moreover | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 743 | have "((supp p\<^sub>2 \<union> (pi \<bullet> supp p\<^sub>2')) \<times> (supp p\<^sub>2 \<union> (pi \<bullet> supp p\<^sub>2'))::(name \<times> name) set) \<subseteq> | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 744 | (supp p\<^sub>2 \<union> (supp p\<^sub>1 \<union> supp p\<^sub>1' \<union> supp p\<^sub>2')) \<times> (supp p\<^sub>2 \<union> (supp p\<^sub>1 \<union> supp p\<^sub>1' \<union> supp p\<^sub>2'))" | 
| 33189 | 745 | by (rule subset_refl Sigma_mono Un_mono perm_cases [OF pi])+ | 
| 746 | with pi' have "set pi' \<subseteq> \<dots>" by (simp add: supp_eqvt [symmetric]) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 747 | with pi have "set (pi' @ pi) \<subseteq> (supp \<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> \<union> supp \<langle>\<langle>p\<^sub>1', p\<^sub>2'\<rangle>\<rangle>) \<times> | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 748 | (supp \<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> \<union> supp \<langle>\<langle>p\<^sub>1', p\<^sub>2'\<rangle>\<rangle>)" | 
| 33189 | 749 | by (simp add: Sigma_Un_distrib1 Sigma_Un_distrib2 Un_ac) blast | 
| 63167 | 750 | moreover note \<open>t = pi' \<bullet> pi \<bullet> u\<close> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 751 | ultimately have "\<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> = (pi' @ pi) \<bullet> q \<and> t = (pi' @ pi) \<bullet> u \<and> | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 752 | set (pi' @ pi) \<subseteq> (supp \<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> \<union> supp q) \<times> | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 753 | (supp \<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> \<union> supp q)" using PTuple | 
| 33189 | 754 | by (simp add: pt_name2) | 
| 755 | then show ?thesis .. | |
| 756 | qed | |
| 757 | qed | |
| 758 | ||
| 759 | lemma typing_case_Let: | |
| 760 | assumes ty: "\<Gamma> \<turnstile> (LET p = t IN u) : U" | |
| 761 | and fresh: "(supp p::name set) \<sharp>* \<Gamma>" | |
| 762 | and distinct: "distinct (pat_vars p)" | |
| 763 | and R: "\<And>T \<Delta>. \<Gamma> \<turnstile> t : T \<Longrightarrow> \<turnstile> p : T \<Rightarrow> \<Delta> \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> u : U \<Longrightarrow> P" | |
| 764 | shows P using ty | |
| 765 | proof cases | |
| 34990 | 766 | case (Let p' t' T \<Delta> u') | 
| 33189 | 767 | then have "(supp \<Delta>::name set) \<sharp>* \<Gamma>" | 
| 768 | by (auto intro: valid_typing valid_app_freshs) | |
| 769 | with Let have "(supp p'::name set) \<sharp>* \<Gamma>" | |
| 770 | by (simp add: pat_var) | |
| 771 | with fresh have fresh': "(supp p \<union> supp p' :: name set) \<sharp>* \<Gamma>" | |
| 772 | by (auto simp add: fresh_star_def) | |
| 773 | from Let have "(\<lambda>[p]. Base u) = (\<lambda>[p']. Base u')" | |
| 774 | by (simp add: trm.inject) | |
| 775 | moreover from Let have "pat_type p = pat_type p'" | |
| 776 | by (simp add: trm.inject) | |
| 777 | moreover note distinct | |
| 63167 | 778 | moreover from \<open>\<Delta> @ \<Gamma> \<turnstile> u' : U\<close> have "valid (\<Delta> @ \<Gamma>)" | 
| 33189 | 779 | by (rule valid_typing) | 
| 780 | then have "valid \<Delta>" by (rule valid_appD) | |
| 63167 | 781 | with \<open>\<turnstile> p' : T \<Rightarrow> \<Delta>\<close> have "distinct (pat_vars p')" | 
| 33189 | 782 | by (simp add: valid_distinct pat_vars_ptyping) | 
| 783 | ultimately have "\<exists>pi::name prm. p = pi \<bullet> p' \<and> Base u = pi \<bullet> Base u' \<and> | |
| 784 | set pi \<subseteq> (supp p \<union> supp p') \<times> (supp p \<union> supp p')" | |
| 785 | by (rule abs_pat_alpha') | |
| 786 | then obtain pi::"name prm" where pi: "p = pi \<bullet> p'" "u = pi \<bullet> u'" | |
| 787 | and pi': "set pi \<subseteq> (supp p \<union> supp p') \<times> (supp p \<union> supp p')" | |
| 788 | by (auto simp add: btrm.inject) | |
| 789 | from Let have "\<Gamma> \<turnstile> t : T" by (simp add: trm.inject) | |
| 63167 | 790 | moreover from \<open>\<turnstile> p' : T \<Rightarrow> \<Delta>\<close> have "\<turnstile> (pi \<bullet> p') : (pi \<bullet> T) \<Rightarrow> (pi \<bullet> \<Delta>)" | 
| 33189 | 791 | by (simp add: ptyping.eqvt) | 
| 792 | with pi have "\<turnstile> p : T \<Rightarrow> (pi \<bullet> \<Delta>)" by (simp add: perm_type) | |
| 793 | moreover from Let | |
| 794 | have "(pi \<bullet> \<Delta>) @ (pi \<bullet> \<Gamma>) \<turnstile> (pi \<bullet> u') : (pi \<bullet> U)" | |
| 795 | by (simp add: append_eqvt [symmetric] typing.eqvt) | |
| 796 | with pi have "(pi \<bullet> \<Delta>) @ \<Gamma> \<turnstile> u : U" | |
| 797 | by (simp add: perm_type pt_freshs_freshs | |
| 798 | [OF pt_name_inst at_name_inst pi' fresh' fresh']) | |
| 799 | ultimately show ?thesis by (rule R) | |
| 800 | qed simp_all | |
| 801 | ||
| 802 | lemma preservation: | |
| 803 | assumes "t \<longmapsto> t'" and "\<Gamma> \<turnstile> t : T" | |
| 804 | shows "\<Gamma> \<turnstile> t' : T" using assms | |
| 805 | proof (nominal_induct avoiding: \<Gamma> T rule: eval.strong_induct) | |
| 806 | case (TupleL t t' u) | |
| 63167 | 807 | from \<open>\<Gamma> \<turnstile> \<langle>t, u\<rangle> : T\<close> obtain T\<^sub>1 T\<^sub>2 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 808 | where "T = T\<^sub>1 \<otimes> T\<^sub>2" "\<Gamma> \<turnstile> t : T\<^sub>1" "\<Gamma> \<turnstile> u : T\<^sub>2" | 
| 33189 | 809 | by cases (simp_all add: trm.inject) | 
| 63167 | 810 | from \<open>\<Gamma> \<turnstile> t : T\<^sub>1\<close> have "\<Gamma> \<turnstile> t' : T\<^sub>1" by (rule TupleL) | 
| 811 | then have "\<Gamma> \<turnstile> \<langle>t', u\<rangle> : T\<^sub>1 \<otimes> T\<^sub>2" using \<open>\<Gamma> \<turnstile> u : T\<^sub>2\<close> | |
| 33189 | 812 | by (rule Tuple) | 
| 63167 | 813 | with \<open>T = T\<^sub>1 \<otimes> T\<^sub>2\<close> show ?case by simp | 
| 33189 | 814 | next | 
| 815 | case (TupleR u u' t) | |
| 63167 | 816 | from \<open>\<Gamma> \<turnstile> \<langle>t, u\<rangle> : T\<close> obtain T\<^sub>1 T\<^sub>2 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
45129diff
changeset | 817 | where "T = T\<^sub>1 \<otimes> T\<^sub>2" "\<Gamma> \<turnstile> t : T\<^sub>1" "\<Gamma> \<turnstile> u : T\<^sub>2" | 
| 33189 | 818 | by cases (simp_all add: trm.inject) | 
| 63167 | 819 | from \<open>\<Gamma> \<turnstile> u : T\<^sub>2\<close> have "\<Gamma> \<turnstile> u' : T\<^sub>2" by (rule TupleR) | 
| 820 | with \<open>\<Gamma> \<turnstile> t : T\<^sub>1\<close> have "\<Gamma> \<turnstile> \<langle>t, u'\<rangle> : T\<^sub>1 \<otimes> T\<^sub>2" | |
| 33189 | 821 | by (rule Tuple) | 
| 63167 | 822 | with \<open>T = T\<^sub>1 \<otimes> T\<^sub>2\<close> show ?case by simp | 
| 33189 | 823 | next | 
| 824 | case (Abs t t' x S) | |
| 63167 | 825 | from \<open>\<Gamma> \<turnstile> (\<lambda>x:S. t) : T\<close> \<open>x \<sharp> \<Gamma>\<close> obtain U where | 
| 33189 | 826 | T: "T = S \<rightarrow> U" and U: "(x, S) # \<Gamma> \<turnstile> t : U" | 
| 827 | by (rule typing_case_Abs) | |
| 828 | from U have "(x, S) # \<Gamma> \<turnstile> t' : U" by (rule Abs) | |
| 829 | then have "\<Gamma> \<turnstile> (\<lambda>x:S. t') : S \<rightarrow> U" | |
| 830 | by (rule typing.Abs) | |
| 831 | with T show ?case by simp | |
| 832 | next | |
| 833 | case (Beta x u S t) | |
| 63167 | 834 | from \<open>\<Gamma> \<turnstile> (\<lambda>x:S. t) \<cdot> u : T\<close> \<open>x \<sharp> \<Gamma>\<close> | 
| 33189 | 835 | obtain "(x, S) # \<Gamma> \<turnstile> t : T" and "\<Gamma> \<turnstile> u : S" | 
| 836 | by cases (auto simp add: trm.inject ty.inject elim: typing_case_Abs) | |
| 837 | then show ?case by (rule subst_type) | |
| 838 | next | |
| 839 | case (Let p t \<theta> u) | |
| 63167 | 840 | from \<open>\<Gamma> \<turnstile> (LET p = t IN u) : T\<close> \<open>supp p \<sharp>* \<Gamma>\<close> \<open>distinct (pat_vars p)\<close> | 
| 33189 | 841 | obtain U \<Delta> where "\<turnstile> p : U \<Rightarrow> \<Delta>" "\<Gamma> \<turnstile> t : U" "\<Delta> @ \<Gamma> \<turnstile> u : T" | 
| 842 | by (rule typing_case_Let) | |
| 63167 | 843 | then show ?case using \<open>\<turnstile> p \<rhd> t \<Rightarrow> \<theta>\<close> \<open>supp p \<sharp>* t\<close> | 
| 33189 | 844 | by (rule match_type) | 
| 845 | next | |
| 846 | case (AppL t t' u) | |
| 63167 | 847 | from \<open>\<Gamma> \<turnstile> t \<cdot> u : T\<close> obtain U where | 
| 33189 | 848 | t: "\<Gamma> \<turnstile> t : U \<rightarrow> T" and u: "\<Gamma> \<turnstile> u : U" | 
| 849 | by cases (auto simp add: trm.inject) | |
| 850 | from t have "\<Gamma> \<turnstile> t' : U \<rightarrow> T" by (rule AppL) | |
| 851 | then show ?case using u by (rule typing.App) | |
| 852 | next | |
| 853 | case (AppR u u' t) | |
| 63167 | 854 | from \<open>\<Gamma> \<turnstile> t \<cdot> u : T\<close> obtain U where | 
| 33189 | 855 | t: "\<Gamma> \<turnstile> t : U \<rightarrow> T" and u: "\<Gamma> \<turnstile> u : U" | 
| 856 | by cases (auto simp add: trm.inject) | |
| 857 | from u have "\<Gamma> \<turnstile> u' : U" by (rule AppR) | |
| 858 | with t show ?case by (rule typing.App) | |
| 859 | qed | |
| 860 | ||
| 861 | end |