2113
|
1 |
(*---------------------------------------------------------------------------
|
|
2 |
* This file defines a nested unification algorithm, then proves that it
|
|
3 |
* terminates, then proves 2 correctness theorems: that when the algorithm
|
|
4 |
* succeeds, it 1) returns an MGU; and 2) returns an idempotent substitution.
|
|
5 |
* Although the proofs may seem long, they are actually quite direct, in that
|
|
6 |
* the correctness and termination properties are not mingled as much as in
|
|
7 |
* previous proofs of this algorithm.
|
|
8 |
*
|
|
9 |
* Our approach for nested recursive functions is as follows:
|
|
10 |
*
|
|
11 |
* 0. Prove the wellfoundedness of the termination relation.
|
|
12 |
* 1. Prove the non-nested termination conditions.
|
|
13 |
* 2. Eliminate (0) and (1) from the recursion equations and the
|
|
14 |
* induction theorem.
|
|
15 |
* 3. Prove the nested termination conditions by using the induction
|
|
16 |
* theorem from (2) and by using the recursion equations from (2).
|
|
17 |
* These are constrained by the nested termination conditions, but
|
|
18 |
* things work out magically (by wellfoundedness of the termination
|
|
19 |
* relation).
|
|
20 |
* 4. Eliminate the nested TCs from the results of (2).
|
|
21 |
* 5. Prove further correctness properties using the results of (4).
|
|
22 |
*
|
|
23 |
* Deeper nestings require iteration of steps (3) and (4).
|
|
24 |
*---------------------------------------------------------------------------*)
|
|
25 |
|
|
26 |
(* This is just a wrapper for the definition mechanism. *)
|
|
27 |
local fun cread thy s = read_cterm (sign_of thy) (s, (TVar(("DUMMY",0),[])));
|
|
28 |
in
|
|
29 |
fun Rfunc thy R eqs =
|
|
30 |
let val read = term_of o cread thy;
|
|
31 |
in Tfl.Rfunction thy (read R) (read eqs)
|
|
32 |
end
|
|
33 |
end;
|
|
34 |
|
|
35 |
(*---------------------------------------------------------------------------
|
|
36 |
* The algorithm.
|
|
37 |
*---------------------------------------------------------------------------*)
|
|
38 |
val {theory,induction,rules,tcs} =
|
|
39 |
Rfunc Unify.thy "R"
|
|
40 |
"(Unify(Const m, Const n) = (if (m=n) then Subst[] else Fail)) & \
|
|
41 |
\ (Unify(Const m, Comb M N) = Fail) & \
|
|
42 |
\ (Unify(Const m, Var v) = Subst[(v,Const m)]) & \
|
|
43 |
\ (Unify(Var v, M) = (if (Var v <: M) then Fail else Subst[(v,M)])) & \
|
|
44 |
\ (Unify(Comb M N, Const x) = Fail) & \
|
|
45 |
\ (Unify(Comb M N, Var v) = (if (Var v <: Comb M N) then Fail \
|
|
46 |
\ else Subst[(v,Comb M N)])) & \
|
|
47 |
\ (Unify(Comb M1 N1, Comb M2 N2) = \
|
|
48 |
\ (case Unify(M1,M2) \
|
|
49 |
\ of Fail => Fail \
|
|
50 |
\ | Subst theta => (case Unify(N1 <| theta, N2 <| theta) \
|
|
51 |
\ of Fail => Fail \
|
|
52 |
\ | Subst sigma => Subst (theta <> sigma))))";
|
|
53 |
|
|
54 |
open Unify;
|
|
55 |
|
|
56 |
(*---------------------------------------------------------------------------
|
|
57 |
* A slightly augmented strip_tac.
|
|
58 |
*---------------------------------------------------------------------------*)
|
|
59 |
fun my_strip_tac i =
|
|
60 |
CHANGED (strip_tac i
|
|
61 |
THEN REPEAT ((etac exE ORELSE' etac conjE) i)
|
|
62 |
THEN TRY (hyp_subst_tac i));
|
|
63 |
|
|
64 |
(*---------------------------------------------------------------------------
|
|
65 |
* A slightly augmented fast_tac for sets. It handles the case where the
|
|
66 |
* top connective is "=".
|
|
67 |
*---------------------------------------------------------------------------*)
|
|
68 |
fun my_fast_set_tac i = (TRY(rtac set_ext i) THEN fast_tac set_cs i);
|
|
69 |
|
|
70 |
|
|
71 |
(*---------------------------------------------------------------------------
|
|
72 |
* Wellfoundedness of proper subset on finite sets.
|
|
73 |
*---------------------------------------------------------------------------*)
|
|
74 |
goalw Unify.thy [R0_def] "wf(R0)";
|
|
75 |
by (rtac ((wf_subset RS mp) RS mp) 1);
|
|
76 |
by (rtac wf_measure 1);
|
|
77 |
by(simp_tac(!simpset addsimps[measure_def,inv_image_def,symmetric less_def])1);
|
|
78 |
by (my_strip_tac 1);
|
|
79 |
by (forward_tac[ssubset_card] 1);
|
|
80 |
by (fast_tac set_cs 1);
|
|
81 |
val wf_R0 = result();
|
|
82 |
|
|
83 |
|
|
84 |
(*---------------------------------------------------------------------------
|
|
85 |
* Tactic for selecting and working on the first projection of R.
|
|
86 |
*---------------------------------------------------------------------------*)
|
|
87 |
fun R0_tac thms i =
|
|
88 |
(simp_tac (!simpset addsimps (thms@[R_def,lex_prod_def,
|
|
89 |
measure_def,inv_image_def,point_to_prod_def])) i THEN
|
|
90 |
REPEAT (rtac exI i) THEN
|
|
91 |
REPEAT ((rtac conjI THEN' rtac refl) i) THEN
|
|
92 |
rtac disjI1 i THEN
|
|
93 |
simp_tac (!simpset addsimps [R0_def,finite_vars_of]) i);
|
|
94 |
|
|
95 |
|
|
96 |
|
|
97 |
(*---------------------------------------------------------------------------
|
|
98 |
* Tactic for selecting and working on the second projection of R.
|
|
99 |
*---------------------------------------------------------------------------*)
|
|
100 |
fun R1_tac thms i =
|
|
101 |
(simp_tac (!simpset addsimps (thms@[R_def,lex_prod_def,
|
|
102 |
measure_def,inv_image_def,point_to_prod_def])) i THEN
|
|
103 |
REPEAT (rtac exI i) THEN
|
|
104 |
REPEAT ((rtac conjI THEN' rtac refl) i) THEN
|
|
105 |
rtac disjI2 i THEN
|
|
106 |
asm_simp_tac (!simpset addsimps [R1_def,rprod_def]) i);
|
|
107 |
|
|
108 |
|
|
109 |
(*---------------------------------------------------------------------------
|
|
110 |
* The non-nested TC plus the wellfoundedness of R.
|
|
111 |
*---------------------------------------------------------------------------*)
|
|
112 |
Tfl.tgoalw Unify.thy [] rules;
|
|
113 |
by (rtac conjI 1);
|
|
114 |
(* TC *)
|
|
115 |
by (my_strip_tac 1);
|
|
116 |
by (cut_facts_tac [monotone_vars_of] 1);
|
|
117 |
by (asm_full_simp_tac(!simpset addsimps [subseteq_iff_subset_eq]) 1);
|
|
118 |
by (etac disjE 1);
|
|
119 |
by (R0_tac[] 1);
|
|
120 |
by (R1_tac[] 1);
|
|
121 |
by (simp_tac
|
|
122 |
(!simpset addsimps [measure_def,inv_image_def,less_eq,less_add_Suc1]) 1);
|
|
123 |
|
|
124 |
(* Wellfoundedness of R *)
|
|
125 |
by (simp_tac (!simpset addsimps [Unify.R_def,Unify.R1_def]) 1);
|
|
126 |
by (REPEAT (resolve_tac [wf_inv_image,wf_lex_prod,wf_R0,
|
|
127 |
wf_rel_prod, wf_measure] 1));
|
|
128 |
val tc0 = result();
|
|
129 |
|
|
130 |
|
|
131 |
(*---------------------------------------------------------------------------
|
|
132 |
* Eliminate tc0 from the recursion equations and the induction theorem.
|
|
133 |
*---------------------------------------------------------------------------*)
|
|
134 |
val [tc,wfr] = Prim.Rules.CONJUNCTS tc0;
|
|
135 |
val rules1 = implies_intr_hyps rules;
|
|
136 |
val rules2 = wfr RS rules1;
|
|
137 |
|
|
138 |
val [a,b,c,d,e,f,g] = Prim.Rules.CONJUNCTS rules2;
|
|
139 |
val g' = tc RS (g RS mp);
|
|
140 |
val rules4 = standard (Prim.Rules.LIST_CONJ[a,b,c,d,e,f,g']);
|
|
141 |
|
|
142 |
val induction1 = implies_intr_hyps induction;
|
|
143 |
val induction2 = wfr RS induction1;
|
|
144 |
val induction3 = tc RS induction2;
|
|
145 |
|
|
146 |
val induction4 = standard
|
|
147 |
(rewrite_rule[fst_conv RS eq_reflection, snd_conv RS eq_reflection]
|
|
148 |
(induction3 RS (read_instantiate_sg (sign_of theory)
|
|
149 |
[("x","%p. Phi (fst p) (snd p)")] spec)));
|
|
150 |
|
|
151 |
|
|
152 |
(*---------------------------------------------------------------------------
|
|
153 |
* Some theorems about transitivity of WF combinators. Only the last
|
|
154 |
* (transR) is used, in the proof of termination. The others are generic and
|
|
155 |
* should maybe go somewhere.
|
|
156 |
*---------------------------------------------------------------------------*)
|
|
157 |
goalw WF1.thy [trans_def,lex_prod_def,mem_Collect_eq RS eq_reflection]
|
|
158 |
"trans R1 & trans R2 --> trans (R1 ** R2)";
|
|
159 |
by (my_strip_tac 1);
|
|
160 |
by (res_inst_tac [("x","a")] exI 1);
|
|
161 |
by (res_inst_tac [("x","a'a")] exI 1);
|
|
162 |
by (res_inst_tac [("x","b")] exI 1);
|
|
163 |
by (res_inst_tac [("x","b'a")] exI 1);
|
|
164 |
by (REPEAT (rewrite_tac [Pair_eq RS eq_reflection] THEN my_strip_tac 1));
|
|
165 |
by (Simp_tac 1);
|
|
166 |
by (REPEAT (etac disjE 1));
|
|
167 |
by (rtac disjI1 1);
|
|
168 |
by (ALLGOALS (fast_tac set_cs));
|
|
169 |
val trans_lex_prod = result() RS mp;
|
|
170 |
|
|
171 |
|
|
172 |
goalw WF1.thy [trans_def,rprod_def,mem_Collect_eq RS eq_reflection]
|
|
173 |
"trans R1 & trans R2 --> trans (rprod R1 R2)";
|
|
174 |
by (my_strip_tac 1);
|
|
175 |
by (res_inst_tac [("x","a")] exI 1);
|
|
176 |
by (res_inst_tac [("x","a'a")] exI 1);
|
|
177 |
by (res_inst_tac [("x","b")] exI 1);
|
|
178 |
by (res_inst_tac [("x","b'a")] exI 1);
|
|
179 |
by (REPEAT (rewrite_tac [Pair_eq RS eq_reflection] THEN my_strip_tac 1));
|
|
180 |
by (Simp_tac 1);
|
|
181 |
by (fast_tac set_cs 1);
|
|
182 |
val trans_rprod = result() RS mp;
|
|
183 |
|
|
184 |
|
|
185 |
goalw Unify.thy [trans_def,inv_image_def,mem_Collect_eq RS eq_reflection]
|
|
186 |
"trans r --> trans (inv_image r f)";
|
|
187 |
by (rewrite_tac [fst_conv RS eq_reflection, snd_conv RS eq_reflection]);
|
|
188 |
by (fast_tac set_cs 1);
|
|
189 |
val trans_inv_image = result() RS mp;
|
|
190 |
|
|
191 |
goalw Unify.thy [R0_def, trans_def, mem_Collect_eq RS eq_reflection]
|
|
192 |
"trans R0";
|
|
193 |
by (rewrite_tac [fst_conv RS eq_reflection,snd_conv RS eq_reflection,
|
|
194 |
ssubset_def, set_eq_subset RS eq_reflection]);
|
|
195 |
by (fast_tac set_cs 1);
|
|
196 |
val trans_R0 = result();
|
|
197 |
|
|
198 |
goalw Unify.thy [R_def,R1_def,measure_def] "trans R";
|
|
199 |
by (REPEAT (resolve_tac[trans_inv_image,trans_lex_prod,conjI, trans_R0,
|
|
200 |
trans_rprod, trans_inv_image, trans_trancl] 1));
|
|
201 |
val transR = result();
|
|
202 |
|
|
203 |
|
|
204 |
(*---------------------------------------------------------------------------
|
|
205 |
* The following lemma is used in the last step of the termination proof for
|
|
206 |
* the nested call in Unify. Loosely, it says that R doesn't care so much
|
|
207 |
* about term structure.
|
|
208 |
*---------------------------------------------------------------------------*)
|
|
209 |
goalw Unify.thy [R_def,lex_prod_def, inv_image_def,point_to_prod_def]
|
|
210 |
"((X,Y), (Comb A (Comb B C), Comb D (Comb E F))) : R --> \
|
|
211 |
\ ((X,Y), (Comb (Comb A B) C, Comb (Comb D E) F)) : R";
|
|
212 |
by (Simp_tac 1);
|
|
213 |
by (rtac conjI 1);
|
|
214 |
by (strip_tac 1);
|
|
215 |
by (rtac disjI1 1);
|
|
216 |
by (subgoal_tac "(vars_of A Un vars_of B Un vars_of C Un \
|
|
217 |
\ (vars_of D Un vars_of E Un vars_of F)) = \
|
|
218 |
\ (vars_of A Un (vars_of B Un vars_of C) Un \
|
|
219 |
\ (vars_of D Un (vars_of E Un vars_of F)))" 1);
|
|
220 |
by (my_fast_set_tac 2);
|
|
221 |
by (Asm_simp_tac 1);
|
|
222 |
by (strip_tac 1);
|
|
223 |
by (rtac disjI2 1);
|
|
224 |
by (etac conjE 1);
|
|
225 |
by (Asm_simp_tac 1);
|
|
226 |
by (rtac conjI 1);
|
|
227 |
by (my_fast_set_tac 1);
|
|
228 |
by (asm_full_simp_tac (!simpset addsimps [R1_def, measure_def, rprod_def,
|
|
229 |
less_eq, inv_image_def,add_assoc]) 1);
|
|
230 |
val Rassoc = result() RS mp;
|
|
231 |
|
|
232 |
(*---------------------------------------------------------------------------
|
|
233 |
* Rewriting support.
|
|
234 |
*---------------------------------------------------------------------------*)
|
|
235 |
|
|
236 |
val termin_ss = (!simpset addsimps (srange_iff::(subst_rews@al_rews)));
|
|
237 |
|
|
238 |
|
|
239 |
(*---------------------------------------------------------------------------
|
|
240 |
* This lemma proves the nested termination condition for the base cases
|
|
241 |
* 3, 4, and 6. It's a clumsy formulation (requiring two conjuncts, each with
|
|
242 |
* exactly the same proof) of a more general theorem.
|
|
243 |
*---------------------------------------------------------------------------*)
|
|
244 |
goal theory "(~(Var x <: M)) --> [(x, M)] = theta --> \
|
|
245 |
\ (! N1 N2. (((N1 <| theta, N2 <| theta), (Comb M N1, Comb (Var x) N2)) : R) \
|
|
246 |
\ & (((N1 <| theta, N2 <| theta), (Comb(Var x) N1, Comb M N2)) : R))";
|
|
247 |
by (my_strip_tac 1);
|
|
248 |
by (case_tac "Var x = M" 1);
|
|
249 |
by (hyp_subst_tac 1);
|
|
250 |
by (case_tac "x:(vars_of N1 Un vars_of N2)" 1);
|
|
251 |
let val case1 =
|
|
252 |
EVERY1[R1_tac[id_subst_lemma], rtac conjI, my_fast_set_tac,
|
|
253 |
REPEAT o (rtac exI), REPEAT o (rtac conjI THEN' rtac refl),
|
|
254 |
simp_tac (!simpset addsimps [measure_def,inv_image_def,less_eq])];
|
|
255 |
in by (rtac conjI 1);
|
|
256 |
by case1;
|
|
257 |
by case1
|
|
258 |
end;
|
|
259 |
|
|
260 |
let val case2 =
|
|
261 |
EVERY1[R0_tac[id_subst_lemma],
|
|
262 |
simp_tac (!simpset addsimps [ssubset_def,set_eq_subset]),
|
|
263 |
fast_tac set_cs]
|
|
264 |
in by (rtac conjI 1);
|
|
265 |
by case2;
|
|
266 |
by case2
|
|
267 |
end;
|
|
268 |
|
|
269 |
let val case3 =
|
|
270 |
EVERY1 [R0_tac[],
|
|
271 |
cut_inst_tac [("s2","[(x, M)]"), ("v2", "x"), ("t2","N1")] Var_elim]
|
|
272 |
THEN ALLGOALS(asm_simp_tac(termin_ss addsimps [vars_iff_occseq]))
|
|
273 |
THEN cut_inst_tac [("s2","[(x, M)]"),("v2", "x"), ("t2","N2")] Var_elim 1
|
|
274 |
THEN ALLGOALS(asm_simp_tac(termin_ss addsimps [vars_iff_occseq]))
|
|
275 |
THEN EVERY1 [simp_tac (HOL_ss addsimps [ssubset_def]),
|
|
276 |
rtac conjI, simp_tac (HOL_ss addsimps [subset_iff]),
|
|
277 |
my_strip_tac, etac UnE, dtac Var_intro]
|
|
278 |
THEN dtac Var_intro 2
|
|
279 |
THEN ALLGOALS (asm_full_simp_tac (termin_ss addsimps [set_eq_subset]))
|
|
280 |
THEN TRYALL (fast_tac set_cs)
|
|
281 |
in
|
|
282 |
by (rtac conjI 1);
|
|
283 |
by case3;
|
|
284 |
by case3
|
|
285 |
end;
|
|
286 |
val var_elimR = result() RS mp RS mp RS spec RS spec;
|
|
287 |
|
|
288 |
|
|
289 |
val Some{nchotomy = subst_nchotomy,...} = assoc(!datatypes,"subst");
|
|
290 |
|
|
291 |
(*---------------------------------------------------------------------------
|
|
292 |
* Do a case analysis on something of type 'a subst.
|
|
293 |
*---------------------------------------------------------------------------*)
|
|
294 |
|
|
295 |
fun Subst_case_tac theta =
|
|
296 |
(cut_inst_tac theta (standard (Prim.Rules.SPEC_ALL subst_nchotomy)) 1
|
|
297 |
THEN etac disjE 1
|
|
298 |
THEN rotate_tac ~1 1
|
|
299 |
THEN Asm_full_simp_tac 1
|
|
300 |
THEN etac exE 1
|
|
301 |
THEN rotate_tac ~1 1
|
|
302 |
THEN Asm_full_simp_tac 1);
|
|
303 |
|
|
304 |
|
|
305 |
goals_limit := 1;
|
|
306 |
|
|
307 |
(*---------------------------------------------------------------------------
|
|
308 |
* The nested TC. Proved by recursion induction.
|
|
309 |
*---------------------------------------------------------------------------*)
|
|
310 |
goalw_cterm []
|
|
311 |
(hd(tl(tl(map (cterm_of (sign_of theory) o USyntax.mk_prop) tcs))));
|
|
312 |
(*---------------------------------------------------------------------------
|
|
313 |
* The extracted TC needs the scope of its quantifiers adjusted, so our
|
|
314 |
* first step is to restrict the scopes of N1 and N2.
|
|
315 |
*---------------------------------------------------------------------------*)
|
|
316 |
by (subgoal_tac "!M1 M2 theta. \
|
|
317 |
\ Unify (M1, M2) = Subst theta --> \
|
|
318 |
\ (!N1 N2. ((N1 <| theta, N2 <| theta), Comb M1 N1, Comb M2 N2) : R)" 1);
|
|
319 |
by (fast_tac HOL_cs 1);
|
|
320 |
by (rtac allI 1);
|
|
321 |
by (rtac allI 1);
|
|
322 |
(* Apply induction *)
|
|
323 |
by (res_inst_tac [("xa","M1"),("x","M2")]
|
|
324 |
(standard (induction4 RS mp RS spec RS spec)) 1);
|
|
325 |
by (simp_tac (!simpset addsimps (rules4::(subst_rews@al_rews))
|
|
326 |
setloop (split_tac [expand_if])) 1);
|
|
327 |
(* 1 *)
|
|
328 |
by (rtac conjI 1);
|
|
329 |
by (my_strip_tac 1);
|
|
330 |
by (R1_tac[subst_Nil] 1);
|
|
331 |
by (REPEAT (rtac exI 1) THEN REPEAT ((rtac conjI THEN' rtac refl) 1));
|
|
332 |
by (simp_tac (!simpset addsimps [measure_def,inv_image_def,less_eq]) 1);
|
|
333 |
|
|
334 |
(* 3 *)
|
|
335 |
by (rtac conjI 1);
|
|
336 |
by (my_strip_tac 1);
|
|
337 |
by (rtac (Prim.Rules.CONJUNCT1 var_elimR) 1);
|
|
338 |
by (Simp_tac 1);
|
|
339 |
by (rtac refl 1);
|
|
340 |
|
|
341 |
(* 4 *)
|
|
342 |
by (rtac conjI 1);
|
|
343 |
by (strip_tac 1);
|
|
344 |
by (rtac (Prim.Rules.CONJUNCT2 var_elimR) 1);
|
|
345 |
by (assume_tac 1);
|
|
346 |
by (rtac refl 1);
|
|
347 |
|
|
348 |
(* 6 *)
|
|
349 |
by (rtac conjI 1);
|
|
350 |
by (rewrite_tac [symmetric (occs_Comb RS eq_reflection)]);
|
|
351 |
by (my_strip_tac 1);
|
|
352 |
by (rtac (Prim.Rules.CONJUNCT1 var_elimR) 1);
|
|
353 |
by (Asm_simp_tac 1);
|
|
354 |
by (rtac refl 1);
|
|
355 |
|
|
356 |
(* 7 *)
|
|
357 |
by (REPEAT (rtac allI 1));
|
|
358 |
by (rtac impI 1);
|
|
359 |
by (etac conjE 1);
|
|
360 |
by (rename_tac "foo bar M1 N1 M2 N2" 1);
|
|
361 |
by (Subst_case_tac [("v","Unify(M1, M2)")]);
|
|
362 |
by (rename_tac "foo bar M1 N1 M2 N2 theta" 1);
|
|
363 |
|
|
364 |
by (Subst_case_tac [("v","Unify(N1 <| theta, N2 <| theta)")]);
|
|
365 |
by (rename_tac "foo bar M1 N1 M2 N2 theta sigma" 1);
|
|
366 |
by (REPEAT (rtac allI 1));
|
|
367 |
by (rename_tac "foo bar M1 N1 M2 N2 theta sigma P Q" 1);
|
|
368 |
by (simp_tac (HOL_ss addsimps [subst_comp]) 1);
|
|
369 |
by(rtac(rewrite_rule[trans_def] transR RS spec RS spec RS spec RS mp RS mp) 1);
|
|
370 |
by (fast_tac HOL_cs 1);
|
|
371 |
by (simp_tac (HOL_ss addsimps [symmetric (subst_Comb RS eq_reflection)]) 1);
|
|
372 |
by (subgoal_tac "((Comb N1 P <| theta, Comb N2 Q <| theta), \
|
|
373 |
\ (Comb M1 (Comb N1 P), Comb M2 (Comb N2 Q))) :R" 1);
|
|
374 |
by (asm_simp_tac HOL_ss 2);
|
|
375 |
|
|
376 |
by (rtac Rassoc 1);
|
|
377 |
by (assume_tac 1);
|
|
378 |
val Unify_TC2 = result();
|
|
379 |
|
|
380 |
|
|
381 |
(*---------------------------------------------------------------------------
|
|
382 |
* Now for elimination of nested TC from rules and induction. This step
|
|
383 |
* would be easier if "rewrite_rule" used context.
|
|
384 |
*---------------------------------------------------------------------------*)
|
|
385 |
goal theory
|
|
386 |
"(Unify (Comb M1 N1, Comb M2 N2) = \
|
|
387 |
\ (case Unify (M1, M2) of Fail => Fail \
|
|
388 |
\ | Subst theta => \
|
|
389 |
\ (case if ((N1 <| theta, N2 <| theta), Comb M1 N1, Comb M2 N2) : R \
|
|
390 |
\ then Unify (N1 <| theta, N2 <| theta) else @ z. True of \
|
|
391 |
\ Fail => Fail | Subst sigma => Subst (theta <> sigma)))) \
|
|
392 |
\ = \
|
|
393 |
\ (Unify (Comb M1 N1, Comb M2 N2) = \
|
|
394 |
\ (case Unify (M1, M2) \
|
|
395 |
\ of Fail => Fail \
|
|
396 |
\ | Subst theta => (case Unify (N1 <| theta, N2 <| theta) \
|
|
397 |
\ of Fail => Fail \
|
|
398 |
\ | Subst sigma => Subst (theta <> sigma))))";
|
|
399 |
by (cut_inst_tac [("v","Unify(M1, M2)")]
|
|
400 |
(standard (Prim.Rules.SPEC_ALL subst_nchotomy)) 1);
|
|
401 |
by (etac disjE 1);
|
|
402 |
by (Asm_simp_tac 1);
|
|
403 |
by (etac exE 1);
|
|
404 |
by (Asm_simp_tac 1);
|
|
405 |
by (cut_inst_tac
|
|
406 |
[("x","list"), ("xb","N1"), ("xa","N2"),("xc","M2"), ("xd","M1")]
|
|
407 |
(standard(Unify_TC2 RS spec RS spec RS spec RS spec RS spec)) 1);
|
|
408 |
by (Asm_full_simp_tac 1);
|
|
409 |
val Unify_rec_simpl = result() RS eq_reflection;
|
|
410 |
|
|
411 |
val Unify_rules = rewrite_rule[Unify_rec_simpl] rules4;
|
|
412 |
|
|
413 |
|
|
414 |
goal theory
|
|
415 |
"(! M1 N1 M2 N2. \
|
|
416 |
\ (! theta. \
|
|
417 |
\ Unify (M1, M2) = Subst theta --> \
|
|
418 |
\ ((N1 <| theta, N2 <| theta), Comb M1 N1, Comb M2 N2) : R --> \
|
|
419 |
\ ?Phi (N1 <| theta) (N2 <| theta)) & ?Phi M1 M2 --> \
|
|
420 |
\ ?Phi (Comb M1 N1) (Comb M2 N2)) \
|
|
421 |
\ = \
|
|
422 |
\ (! M1 N1 M2 N2. \
|
|
423 |
\ (! theta. \
|
|
424 |
\ Unify (M1, M2) = Subst theta --> \
|
|
425 |
\ ?Phi (N1 <| theta) (N2 <| theta)) & ?Phi M1 M2 --> \
|
|
426 |
\ ?Phi (Comb M1 N1) (Comb M2 N2))";
|
|
427 |
by (simp_tac (HOL_ss addsimps [Unify_TC2]) 1);
|
|
428 |
val Unify_induction = rewrite_rule[result() RS eq_reflection] induction4;
|
|
429 |
|
|
430 |
|
|
431 |
|
|
432 |
(*---------------------------------------------------------------------------
|
|
433 |
* Correctness. Notice that idempotence is not needed to prove that the
|
|
434 |
* algorithm terminates and is not needed to prove the algorithm correct,
|
|
435 |
* if you are only interested in an MGU. This is in contrast to the
|
|
436 |
* approach of M&W, who used idempotence and MGU-ness in the termination proof.
|
|
437 |
*---------------------------------------------------------------------------*)
|
|
438 |
|
|
439 |
goal theory "!theta. Unify (P,Q) = Subst theta --> MGUnifier theta P Q";
|
|
440 |
by (res_inst_tac [("xa","P"),("x","Q")]
|
|
441 |
(standard (Unify_induction RS mp RS spec RS spec)) 1);
|
|
442 |
by (simp_tac (!simpset addsimps [Unify_rules]
|
|
443 |
setloop (split_tac [expand_if])) 1);
|
|
444 |
(*1*)
|
|
445 |
by (rtac conjI 1);
|
|
446 |
by (REPEAT (rtac allI 1));
|
|
447 |
by (simp_tac (!simpset addsimps [MGUnifier_def,Unifier_def]) 1);
|
|
448 |
by (my_strip_tac 1);
|
|
449 |
by (rtac MoreGen_Nil 1);
|
|
450 |
|
|
451 |
(*3*)
|
|
452 |
by (rtac conjI 1);
|
|
453 |
by (my_strip_tac 1);
|
|
454 |
by (rtac (mgu_sym RS iffD1) 1);
|
|
455 |
by (rtac MGUnifier_Var 1);
|
|
456 |
by (Simp_tac 1);
|
|
457 |
|
|
458 |
(*4*)
|
|
459 |
by (rtac conjI 1);
|
|
460 |
by (my_strip_tac 1);
|
|
461 |
by (rtac MGUnifier_Var 1);
|
|
462 |
by (assume_tac 1);
|
|
463 |
|
|
464 |
(*6*)
|
|
465 |
by (rtac conjI 1);
|
|
466 |
by (rewrite_tac NNF_rews);
|
|
467 |
by (my_strip_tac 1);
|
|
468 |
by (rtac (mgu_sym RS iffD1) 1);
|
|
469 |
by (rtac MGUnifier_Var 1);
|
|
470 |
by (Asm_simp_tac 1);
|
|
471 |
|
|
472 |
(*7*)
|
|
473 |
by (safe_tac HOL_cs);
|
|
474 |
by (Subst_case_tac [("v","Unify(M1, M2)")]);
|
|
475 |
by (Subst_case_tac [("v","Unify(N1 <| list, N2 <| list)")]);
|
|
476 |
by (hyp_subst_tac 1);
|
|
477 |
by (asm_full_simp_tac(HOL_ss addsimps [MGUnifier_def,Unifier_def])1);
|
|
478 |
by (asm_simp_tac (!simpset addsimps [subst_comp]) 1); (* It's a unifier.*)
|
|
479 |
|
|
480 |
by (prune_params_tac);
|
|
481 |
by (safe_tac HOL_cs);
|
|
482 |
by (rename_tac "M1 N1 M2 N2 theta sigma gamma" 1);
|
|
483 |
|
|
484 |
by (rewrite_tac [MoreGeneral_def]);
|
|
485 |
by (rotate_tac ~3 1);
|
|
486 |
by (eres_inst_tac [("x","gamma")] allE 1);
|
|
487 |
by (Asm_full_simp_tac 1);
|
|
488 |
by (etac exE 1);
|
|
489 |
by (rename_tac "M1 N1 M2 N2 theta sigma gamma delta" 1);
|
|
490 |
by (eres_inst_tac [("x","delta")] allE 1);
|
|
491 |
by (subgoal_tac "N1 <| theta <| delta = N2 <| theta <| delta" 1);
|
|
492 |
by (dtac mp 1);
|
|
493 |
by (atac 1);
|
|
494 |
by (etac exE 1);
|
|
495 |
by (rename_tac "M1 N1 M2 N2 theta sigma gamma delta rho" 1);
|
|
496 |
|
|
497 |
by (rtac exI 1);
|
|
498 |
by (rtac subst_trans 1);
|
|
499 |
by (assume_tac 1);
|
|
500 |
|
|
501 |
by (rtac subst_trans 1);
|
|
502 |
by (rtac (comp_assoc RS subst_sym) 2);
|
|
503 |
by (rtac subst_cong 1);
|
|
504 |
by (rtac (refl RS subst_refl) 1);
|
|
505 |
by (assume_tac 1);
|
|
506 |
|
|
507 |
by (asm_full_simp_tac (!simpset addsimps [subst_eq_iff,subst_comp]) 1);
|
|
508 |
by (forw_inst_tac [("x","N1")] spec 1);
|
|
509 |
by (dres_inst_tac [("x","N2")] spec 1);
|
|
510 |
by (Asm_full_simp_tac 1);
|
|
511 |
val Unify_gives_MGU = standard(result() RS spec RS mp);
|
|
512 |
|
|
513 |
|
|
514 |
(*---------------------------------------------------------------------------
|
|
515 |
* Unify returns idempotent substitutions, when it succeeds.
|
|
516 |
*---------------------------------------------------------------------------*)
|
|
517 |
goal theory "!theta. Unify (P,Q) = Subst theta --> Idem theta";
|
|
518 |
by (res_inst_tac [("xa","P"),("x","Q")]
|
|
519 |
(standard (Unify_induction RS mp RS spec RS spec)) 1);
|
|
520 |
(* Blows away all base cases automatically *)
|
|
521 |
by (simp_tac (!simpset addsimps [Unify_rules,Idem_Nil,Var_Idem]
|
|
522 |
setloop (split_tac [expand_if])) 1);
|
|
523 |
|
|
524 |
(*7*)
|
|
525 |
by (safe_tac HOL_cs);
|
|
526 |
by (Subst_case_tac [("v","Unify(M1, M2)")]);
|
|
527 |
by (Subst_case_tac [("v","Unify(N1 <| list, N2 <| list)")]);
|
|
528 |
by (hyp_subst_tac 1);
|
|
529 |
by prune_params_tac;
|
|
530 |
by (rename_tac "M1 N1 M2 N2 theta sigma" 1);
|
|
531 |
|
|
532 |
by (dtac Unify_gives_MGU 1);
|
|
533 |
by (dtac Unify_gives_MGU 1);
|
|
534 |
by (rewrite_tac [MGUnifier_def]);
|
|
535 |
by (my_strip_tac 1);
|
|
536 |
by (rtac Idem_comp 1);
|
|
537 |
by (atac 1);
|
|
538 |
by (atac 1);
|
|
539 |
|
|
540 |
by (my_strip_tac 1);
|
|
541 |
by (eres_inst_tac [("x","q")] allE 1);
|
|
542 |
by (Asm_full_simp_tac 1);
|
|
543 |
by (rewrite_tac [MoreGeneral_def]);
|
|
544 |
by (my_strip_tac 1);
|
|
545 |
by (asm_full_simp_tac(termin_ss addsimps [subst_eq_iff,subst_comp,Idem_def])1);
|
|
546 |
val Unify_gives_Idem = result() RS spec RS mp;
|
|
547 |
|
|
548 |
|
|
549 |
|
|
550 |
(*---------------------------------------------------------------------------
|
|
551 |
* Exercise. The given algorithm is a bit inelegant. What about the
|
|
552 |
* following "improvement", which adds a few recursive calls in former
|
|
553 |
* base cases? It seems that the termination relation needs another
|
|
554 |
* case in the lexico. product.
|
|
555 |
|
|
556 |
val {theory,induction,rules,tcs,typechecks} =
|
|
557 |
Rfunc Unify.thy ??
|
|
558 |
`(Unify(Const m, Const n) = (if (m=n) then Subst[] else Fail)) &
|
|
559 |
(Unify(Const m, Comb M N) = Fail) &
|
|
560 |
(Unify(Const m, Var v) = Unify(Var v, Const m)) &
|
|
561 |
(Unify(Var v, M) = (if (Var v <: M) then Fail else Subst[(v,M)])) &
|
|
562 |
(Unify(Comb M N, Const x) = Fail) &
|
|
563 |
(Unify(Comb M N, Var v) = Unify(Var v, Comb M N)) &
|
|
564 |
(Unify(Comb M1 N1, Comb M2 N2) =
|
|
565 |
(case Unify(M1,M2)
|
|
566 |
of Fail => Fail
|
|
567 |
| Subst theta => (case Unify(N1 <| theta, N2 <| theta)
|
|
568 |
of Fail => Fail
|
|
569 |
| Subst sigma => Subst (theta <> sigma))))`;
|
|
570 |
|
|
571 |
*---------------------------------------------------------------------------*)
|