| 
61224
 | 
     1  | 
theory Tree2
  | 
| 
 | 
     2  | 
imports Main
  | 
| 
 | 
     3  | 
begin
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
datatype ('a,'b) tree =
 | 
| 
 | 
     6  | 
  Leaf ("\<langle>\<rangle>") |
 | 
| 
62160
 | 
     7  | 
  Node 'b "('a,'b)tree" 'a "('a,'b) tree" ("(1\<langle>_,/ _,/ _,/ _\<rangle>)")
 | 
| 
61224
 | 
     8  | 
  | 
| 
 | 
     9  | 
fun inorder :: "('a,'b)tree \<Rightarrow> 'a list" where
 | 
| 
 | 
    10  | 
"inorder Leaf = []" |
  | 
| 
 | 
    11  | 
"inorder (Node _ l a r) = inorder l @ a # inorder r"
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
fun height :: "('a,'b) tree \<Rightarrow> nat" where
 | 
| 
 | 
    14  | 
"height Leaf = 0" |
  | 
| 
 | 
    15  | 
"height (Node _ l a r) = max (height l) (height r) + 1"
  | 
| 
 | 
    16  | 
  | 
| 
62650
 | 
    17  | 
definition size1 :: "('a,'b) tree \<Rightarrow> nat" where
 | 
| 
 | 
    18  | 
"size1 t = size t + 1"
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
lemma size1_simps[simp]:
  | 
| 
 | 
    21  | 
  "size1 \<langle>\<rangle> = 1"
  | 
| 
 | 
    22  | 
  "size1 \<langle>u, l, x, r\<rangle> = size1 l + size1 r"
  | 
| 
 | 
    23  | 
by (simp_all add: size1_def)
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
lemma size1_ge0[simp]: "0 < size1 t"
  | 
| 
 | 
    26  | 
by (simp add: size1_def)
  | 
| 
 | 
    27  | 
  | 
| 
62390
 | 
    28  | 
end
  |