| author | wenzelm |
| Thu, 30 Oct 1997 17:00:34 +0100 | |
| changeset 4047 | 67b5552b1067 |
| parent 4014 | df6cd80b6387 |
| child 4059 | 59c1422c9da5 |
| permissions | -rw-r--r-- |
| 1465 | 1 |
(* Title: HOL/Finite.thy |
| 923 | 2 |
ID: $Id$ |
| 1531 | 3 |
Author: Lawrence C Paulson & Tobias Nipkow |
4 |
Copyright 1995 University of Cambridge & TU Muenchen |
|
| 923 | 5 |
|
| 1531 | 6 |
Finite sets and their cardinality |
| 923 | 7 |
*) |
8 |
||
9 |
open Finite; |
|
10 |
||
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
11 |
section "finite"; |
| 1531 | 12 |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
13 |
(* |
| 923 | 14 |
goalw Finite.thy Fin.defs "!!A B. A<=B ==> Fin(A) <= Fin(B)"; |
| 1465 | 15 |
by (rtac lfp_mono 1); |
| 923 | 16 |
by (REPEAT (ares_tac basic_monos 1)); |
17 |
qed "Fin_mono"; |
|
18 |
||
19 |
goalw Finite.thy Fin.defs "Fin(A) <= Pow(A)"; |
|
| 2922 | 20 |
by (blast_tac (!claset addSIs [lfp_lowerbound]) 1); |
| 923 | 21 |
qed "Fin_subset_Pow"; |
22 |
||
23 |
(* A : Fin(B) ==> A <= B *) |
|
24 |
val FinD = Fin_subset_Pow RS subsetD RS PowD; |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
25 |
*) |
| 923 | 26 |
|
27 |
(*Discharging ~ x:y entails extra work*) |
|
28 |
val major::prems = goal Finite.thy |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
29 |
"[| finite F; P({}); \
|
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
30 |
\ !!F x. [| finite F; x ~: F; P(F) |] ==> P(insert x F) \ |
| 923 | 31 |
\ |] ==> P(F)"; |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
32 |
by (rtac (major RS Finites.induct) 1); |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
33 |
by (excluded_middle_tac "a:A" 2); |
| 923 | 34 |
by (etac (insert_absorb RS ssubst) 3 THEN assume_tac 3); (*backtracking!*) |
35 |
by (REPEAT (ares_tac prems 1)); |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
36 |
qed "finite_induct"; |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
37 |
|
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
38 |
val major::prems = goal Finite.thy |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
39 |
"[| finite F; \ |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
40 |
\ P({}); \
|
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
41 |
\ !!F a. [| finite F; a:A; a ~: F; P(F) |] ==> P(insert a F) \ |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
42 |
\ |] ==> F <= A --> P(F)"; |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
43 |
by (rtac (major RS finite_induct) 1); |
| 3457 | 44 |
by (ALLGOALS (blast_tac (!claset addIs prems))); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
45 |
val lemma = result(); |
| 923 | 46 |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
47 |
val prems = goal Finite.thy |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
48 |
"[| finite F; F <= A; \ |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
49 |
\ P({}); \
|
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
50 |
\ !!F a. [| finite F; a:A; a ~: F; P(F) |] ==> P(insert a F) \ |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
51 |
\ |] ==> P(F)"; |
| 3457 | 52 |
by (blast_tac (HOL_cs addIs ((lemma RS mp)::prems)) 1); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
53 |
qed "finite_subset_induct"; |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
54 |
|
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
55 |
Addsimps Finites.intrs; |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
56 |
AddSIs Finites.intrs; |
| 923 | 57 |
|
58 |
(*The union of two finite sets is finite*) |
|
59 |
val major::prems = goal Finite.thy |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
60 |
"[| finite F; finite G |] ==> finite(F Un G)"; |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
61 |
by (rtac (major RS finite_induct) 1); |
|
3517
2547f33fa33a
Removed redundant addsimps of Un_insert_left, which is now a default simprule
paulson
parents:
3457
diff
changeset
|
62 |
by (ALLGOALS (asm_simp_tac (!simpset addsimps prems))); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
63 |
qed "finite_UnI"; |
| 923 | 64 |
|
65 |
(*Every subset of a finite set is finite*) |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
66 |
val [subs,fin] = goal Finite.thy "[| A<=B; finite B |] ==> finite A"; |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
67 |
by (EVERY1 [subgoal_tac "ALL C. C<=B --> finite C", |
| 1465 | 68 |
rtac mp, etac spec, |
69 |
rtac subs]); |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
70 |
by (rtac (fin RS finite_induct) 1); |
| 1264 | 71 |
by (simp_tac (!simpset addsimps [subset_Un_eq]) 1); |
|
1786
8a31d85d27b8
best_tac, deepen_tac and safe_tac now also use default claset.
berghofe
parents:
1782
diff
changeset
|
72 |
by (safe_tac (!claset addSDs [subset_insert_iff RS iffD1])); |
| 923 | 73 |
by (eres_inst_tac [("t","C")] (insert_Diff RS subst) 2);
|
| 1264 | 74 |
by (ALLGOALS Asm_simp_tac); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
75 |
qed "finite_subset"; |
| 923 | 76 |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
77 |
goal Finite.thy "finite(F Un G) = (finite F & finite G)"; |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
78 |
by (blast_tac (!claset addIs [finite_UnI] addDs |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
79 |
[Un_upper1 RS finite_subset, Un_upper2 RS finite_subset]) 1); |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
80 |
qed "finite_Un"; |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
81 |
AddIffs[finite_Un]; |
| 1531 | 82 |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
83 |
goal Finite.thy "finite(insert a A) = finite A"; |
| 1553 | 84 |
by (stac insert_is_Un 1); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
85 |
by (simp_tac (HOL_ss addsimps [finite_Un]) 1); |
|
3427
e7cef2081106
Removed a few redundant additions of simprules or classical rules
paulson
parents:
3416
diff
changeset
|
86 |
by (Blast_tac 1); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
87 |
qed "finite_insert"; |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
88 |
Addsimps[finite_insert]; |
| 1531 | 89 |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
90 |
(*The image of a finite set is finite *) |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
91 |
goal Finite.thy "!!F. finite F ==> finite(h``F)"; |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
92 |
by (etac finite_induct 1); |
| 1264 | 93 |
by (Simp_tac 1); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
94 |
by (Asm_simp_tac 1); |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
95 |
qed "finite_imageI"; |
| 923 | 96 |
|
97 |
val major::prems = goal Finite.thy |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
98 |
"[| finite c; finite b; \ |
| 1465 | 99 |
\ P(b); \ |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
100 |
\ !!x y. [| finite y; x:y; P(y) |] ==> P(y-{x}) \
|
| 923 | 101 |
\ |] ==> c<=b --> P(b-c)"; |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
102 |
by (rtac (major RS finite_induct) 1); |
| 2031 | 103 |
by (stac Diff_insert 2); |
| 923 | 104 |
by (ALLGOALS (asm_simp_tac |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
105 |
(!simpset addsimps (prems@[Diff_subset RS finite_subset])))); |
| 1531 | 106 |
val lemma = result(); |
| 923 | 107 |
|
108 |
val prems = goal Finite.thy |
|
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
109 |
"[| finite A; \ |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
110 |
\ P(A); \ |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
111 |
\ !!a A. [| finite A; a:A; P(A) |] ==> P(A-{a}) \
|
| 923 | 112 |
\ |] ==> P({})";
|
113 |
by (rtac (Diff_cancel RS subst) 1); |
|
| 1531 | 114 |
by (rtac (lemma RS mp) 1); |
| 923 | 115 |
by (REPEAT (ares_tac (subset_refl::prems) 1)); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
116 |
qed "finite_empty_induct"; |
| 1531 | 117 |
|
118 |
||
| 1618 | 119 |
(* finite B ==> finite (B - Ba) *) |
120 |
bind_thm ("finite_Diff", Diff_subset RS finite_subset);
|
|
| 1531 | 121 |
Addsimps [finite_Diff]; |
122 |
||
| 3368 | 123 |
goal Finite.thy "finite(A-{a}) = finite(A)";
|
124 |
by (case_tac "a:A" 1); |
|
| 3457 | 125 |
by (rtac (finite_insert RS sym RS trans) 1); |
| 3368 | 126 |
by (stac insert_Diff 1); |
127 |
by (ALLGOALS Asm_simp_tac); |
|
128 |
qed "finite_Diff_singleton"; |
|
129 |
AddIffs [finite_Diff_singleton]; |
|
130 |
||
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
131 |
goal Finite.thy "!!A. finite B ==> !A. f``A = B --> inj_onto f A --> finite A"; |
| 1553 | 132 |
by (etac finite_induct 1); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
133 |
by (ALLGOALS Asm_simp_tac); |
| 3708 | 134 |
by (Clarify_tac 1); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
135 |
by (subgoal_tac "EX y:A. f y = x & F = f``(A-{y})" 1);
|
| 3708 | 136 |
by (Clarify_tac 1); |
| 3457 | 137 |
by (rewtac inj_onto_def); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
138 |
by (Blast_tac 1); |
| 3368 | 139 |
by (thin_tac "ALL A. ?PP(A)" 1); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
140 |
by (forward_tac [[equalityD2, insertI1] MRS subsetD] 1); |
| 3708 | 141 |
by (Clarify_tac 1); |
| 3368 | 142 |
by (res_inst_tac [("x","xa")] bexI 1);
|
143 |
by (ALLGOALS Asm_simp_tac); |
|
| 3708 | 144 |
by (blast_tac (!claset addEs [equalityE]) 1); |
| 3368 | 145 |
val lemma = result(); |
146 |
||
147 |
goal Finite.thy "!!A. [| finite(f``A); inj_onto f A |] ==> finite A"; |
|
| 3457 | 148 |
by (dtac lemma 1); |
| 3368 | 149 |
by (Blast_tac 1); |
150 |
qed "finite_imageD"; |
|
151 |
||
| 4014 | 152 |
(** The finite UNION of finite sets **) |
153 |
||
154 |
val [prem] = goal Finite.thy |
|
155 |
"finite A ==> (!a:A. finite(B a)) --> finite(UN a:A. B a)"; |
|
156 |
br (prem RS finite_induct) 1; |
|
157 |
by(ALLGOALS Asm_simp_tac); |
|
158 |
bind_thm("finite_UnionI", ballI RSN (2, result() RS mp));
|
|
159 |
Addsimps [finite_UnionI]; |
|
160 |
||
161 |
(** Sigma of finite sets **) |
|
162 |
||
163 |
goalw Finite.thy [Sigma_def] |
|
164 |
"!!A. [| finite A; !a:A. finite(B a) |] ==> finite(SIGMA a:A. B a)"; |
|
165 |
by(blast_tac (!claset addSIs [finite_UnionI]) 1); |
|
166 |
bind_thm("finite_SigmaI", ballI RSN (2,result()));
|
|
167 |
Addsimps [finite_SigmaI]; |
|
| 3368 | 168 |
|
169 |
(** The powerset of a finite set **) |
|
170 |
||
171 |
goal Finite.thy "!!A. finite(Pow A) ==> finite A"; |
|
172 |
by (subgoal_tac "finite ((%x.{x})``A)" 1);
|
|
| 3457 | 173 |
by (rtac finite_subset 2); |
174 |
by (assume_tac 3); |
|
| 3368 | 175 |
by (ALLGOALS |
176 |
(fast_tac (!claset addSDs [rewrite_rule [inj_onto_def] finite_imageD]))); |
|
177 |
val lemma = result(); |
|
178 |
||
179 |
goal Finite.thy "finite(Pow A) = finite A"; |
|
| 3457 | 180 |
by (rtac iffI 1); |
181 |
by (etac lemma 1); |
|
| 3368 | 182 |
(*Opposite inclusion: finite A ==> finite (Pow A) *) |
| 3340 | 183 |
by (etac finite_induct 1); |
184 |
by (ALLGOALS |
|
185 |
(asm_simp_tac |
|
186 |
(!simpset addsimps [finite_UnI, finite_imageI, Pow_insert]))); |
|
| 3368 | 187 |
qed "finite_Pow_iff"; |
188 |
AddIffs [finite_Pow_iff]; |
|
| 3340 | 189 |
|
| 3439 | 190 |
goal Finite.thy "finite(r^-1) = finite r"; |
| 3457 | 191 |
by (subgoal_tac "r^-1 = (%(x,y).(y,x))``r" 1); |
192 |
by (Asm_simp_tac 1); |
|
193 |
by (rtac iffI 1); |
|
194 |
by (etac (rewrite_rule [inj_onto_def] finite_imageD) 1); |
|
| 3919 | 195 |
by (simp_tac (!simpset addsplits [expand_split]) 1); |
| 3457 | 196 |
by (etac finite_imageI 1); |
197 |
by (simp_tac (!simpset addsimps [inverse_def,image_def]) 1); |
|
198 |
by (Auto_tac()); |
|
199 |
by (rtac bexI 1); |
|
200 |
by (assume_tac 2); |
|
201 |
by (Simp_tac 1); |
|
202 |
by (split_all_tac 1); |
|
203 |
by (Asm_full_simp_tac 1); |
|
| 3439 | 204 |
qed "finite_inverse"; |
205 |
AddIffs [finite_inverse]; |
|
| 1531 | 206 |
|
| 1548 | 207 |
section "Finite cardinality -- 'card'"; |
| 1531 | 208 |
|
209 |
goal Set.thy "{f i |i. P i | i=n} = insert (f n) {f i|i. P i}";
|
|
| 2922 | 210 |
by (Blast_tac 1); |
| 1531 | 211 |
val Collect_conv_insert = result(); |
212 |
||
213 |
goalw Finite.thy [card_def] "card {} = 0";
|
|
| 1553 | 214 |
by (rtac Least_equality 1); |
215 |
by (ALLGOALS Asm_full_simp_tac); |
|
| 1531 | 216 |
qed "card_empty"; |
217 |
Addsimps [card_empty]; |
|
218 |
||
219 |
val [major] = goal Finite.thy |
|
220 |
"finite A ==> ? (n::nat) f. A = {f i |i. i<n}";
|
|
| 1553 | 221 |
by (rtac (major RS finite_induct) 1); |
222 |
by (res_inst_tac [("x","0")] exI 1);
|
|
223 |
by (Simp_tac 1); |
|
224 |
by (etac exE 1); |
|
225 |
by (etac exE 1); |
|
226 |
by (hyp_subst_tac 1); |
|
227 |
by (res_inst_tac [("x","Suc n")] exI 1);
|
|
228 |
by (res_inst_tac [("x","%i. if i<n then f i else x")] exI 1);
|
|
| 1660 | 229 |
by (asm_simp_tac (!simpset addsimps [Collect_conv_insert, less_Suc_eq] |
| 1548 | 230 |
addcongs [rev_conj_cong]) 1); |
| 1531 | 231 |
qed "finite_has_card"; |
232 |
||
233 |
goal Finite.thy |
|
| 3842 | 234 |
"!!A.[| x ~: A; insert x A = {f i|i. i<n} |] ==> \
|
235 |
\ ? m::nat. m<n & (? g. A = {g i|i. i<m})";
|
|
| 1553 | 236 |
by (res_inst_tac [("n","n")] natE 1);
|
237 |
by (hyp_subst_tac 1); |
|
238 |
by (Asm_full_simp_tac 1); |
|
239 |
by (rename_tac "m" 1); |
|
240 |
by (hyp_subst_tac 1); |
|
241 |
by (case_tac "? a. a:A" 1); |
|
242 |
by (res_inst_tac [("x","0")] exI 2);
|
|
243 |
by (Simp_tac 2); |
|
| 2922 | 244 |
by (Blast_tac 2); |
| 1553 | 245 |
by (etac exE 1); |
| 1660 | 246 |
by (simp_tac (!simpset addsimps [less_Suc_eq]) 1); |
| 1553 | 247 |
by (rtac exI 1); |
| 1782 | 248 |
by (rtac (refl RS disjI2 RS conjI) 1); |
| 1553 | 249 |
by (etac equalityE 1); |
250 |
by (asm_full_simp_tac |
|
| 1660 | 251 |
(!simpset addsimps [subset_insert,Collect_conv_insert, less_Suc_eq]) 1); |
| 2922 | 252 |
by (safe_tac (!claset)); |
| 1553 | 253 |
by (Asm_full_simp_tac 1); |
254 |
by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
|
|
|
1786
8a31d85d27b8
best_tac, deepen_tac and safe_tac now also use default claset.
berghofe
parents:
1782
diff
changeset
|
255 |
by (SELECT_GOAL(safe_tac (!claset))1); |
| 1553 | 256 |
by (subgoal_tac "x ~= f m" 1); |
| 2922 | 257 |
by (Blast_tac 2); |
| 1553 | 258 |
by (subgoal_tac "? k. f k = x & k<m" 1); |
| 2922 | 259 |
by (Blast_tac 2); |
|
1786
8a31d85d27b8
best_tac, deepen_tac and safe_tac now also use default claset.
berghofe
parents:
1782
diff
changeset
|
260 |
by (SELECT_GOAL(safe_tac (!claset))1); |
| 1553 | 261 |
by (res_inst_tac [("x","k")] exI 1);
|
262 |
by (Asm_simp_tac 1); |
|
| 3919 | 263 |
by (simp_tac (!simpset addsplits [expand_if]) 1); |
| 2922 | 264 |
by (Blast_tac 1); |
| 3457 | 265 |
by (dtac sym 1); |
| 1553 | 266 |
by (rotate_tac ~1 1); |
267 |
by (Asm_full_simp_tac 1); |
|
268 |
by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
|
|
|
1786
8a31d85d27b8
best_tac, deepen_tac and safe_tac now also use default claset.
berghofe
parents:
1782
diff
changeset
|
269 |
by (SELECT_GOAL(safe_tac (!claset))1); |
| 1553 | 270 |
by (subgoal_tac "x ~= f m" 1); |
| 2922 | 271 |
by (Blast_tac 2); |
| 1553 | 272 |
by (subgoal_tac "? k. f k = x & k<m" 1); |
| 2922 | 273 |
by (Blast_tac 2); |
|
1786
8a31d85d27b8
best_tac, deepen_tac and safe_tac now also use default claset.
berghofe
parents:
1782
diff
changeset
|
274 |
by (SELECT_GOAL(safe_tac (!claset))1); |
| 1553 | 275 |
by (res_inst_tac [("x","k")] exI 1);
|
276 |
by (Asm_simp_tac 1); |
|
| 3919 | 277 |
by (simp_tac (!simpset addsplits [expand_if]) 1); |
| 2922 | 278 |
by (Blast_tac 1); |
| 1553 | 279 |
by (res_inst_tac [("x","%j. if f j = f i then f m else f j")] exI 1);
|
|
1786
8a31d85d27b8
best_tac, deepen_tac and safe_tac now also use default claset.
berghofe
parents:
1782
diff
changeset
|
280 |
by (SELECT_GOAL(safe_tac (!claset))1); |
| 1553 | 281 |
by (subgoal_tac "x ~= f i" 1); |
| 2922 | 282 |
by (Blast_tac 2); |
| 1553 | 283 |
by (case_tac "x = f m" 1); |
284 |
by (res_inst_tac [("x","i")] exI 1);
|
|
285 |
by (Asm_simp_tac 1); |
|
286 |
by (subgoal_tac "? k. f k = x & k<m" 1); |
|
| 2922 | 287 |
by (Blast_tac 2); |
|
1786
8a31d85d27b8
best_tac, deepen_tac and safe_tac now also use default claset.
berghofe
parents:
1782
diff
changeset
|
288 |
by (SELECT_GOAL(safe_tac (!claset))1); |
| 1553 | 289 |
by (res_inst_tac [("x","k")] exI 1);
|
290 |
by (Asm_simp_tac 1); |
|
| 3919 | 291 |
by (simp_tac (!simpset addsplits [expand_if]) 1); |
| 2922 | 292 |
by (Blast_tac 1); |
| 1531 | 293 |
val lemma = result(); |
294 |
||
295 |
goal Finite.thy "!!A. [| finite A; x ~: A |] ==> \ |
|
| 3842 | 296 |
\ (LEAST n. ? f. insert x A = {f i|i. i<n}) = Suc(LEAST n. ? f. A={f i|i. i<n})";
|
| 1553 | 297 |
by (rtac Least_equality 1); |
| 3457 | 298 |
by (dtac finite_has_card 1); |
299 |
by (etac exE 1); |
|
| 3842 | 300 |
by (dres_inst_tac [("P","%n.? f. A={f i|i. i<n}")] LeastI 1);
|
| 3457 | 301 |
by (etac exE 1); |
| 1553 | 302 |
by (res_inst_tac |
| 1531 | 303 |
[("x","%i. if i<(LEAST n. ? f. A={f i |i. i < n}) then f i else x")] exI 1);
|
| 1553 | 304 |
by (simp_tac |
| 1660 | 305 |
(!simpset addsimps [Collect_conv_insert, less_Suc_eq] |
| 2031 | 306 |
addcongs [rev_conj_cong]) 1); |
| 3457 | 307 |
by (etac subst 1); |
308 |
by (rtac refl 1); |
|
| 1553 | 309 |
by (rtac notI 1); |
310 |
by (etac exE 1); |
|
311 |
by (dtac lemma 1); |
|
| 3457 | 312 |
by (assume_tac 1); |
| 1553 | 313 |
by (etac exE 1); |
314 |
by (etac conjE 1); |
|
315 |
by (dres_inst_tac [("P","%x. ? g. A = {g i |i. i < x}")] Least_le 1);
|
|
316 |
by (dtac le_less_trans 1 THEN atac 1); |
|
| 1660 | 317 |
by (asm_full_simp_tac (!simpset addsimps [less_Suc_eq]) 1); |
| 1553 | 318 |
by (etac disjE 1); |
319 |
by (etac less_asym 1 THEN atac 1); |
|
320 |
by (hyp_subst_tac 1); |
|
321 |
by (Asm_full_simp_tac 1); |
|
| 1531 | 322 |
val lemma = result(); |
323 |
||
324 |
goalw Finite.thy [card_def] |
|
325 |
"!!A. [| finite A; x ~: A |] ==> card(insert x A) = Suc(card A)"; |
|
| 1553 | 326 |
by (etac lemma 1); |
327 |
by (assume_tac 1); |
|
| 1531 | 328 |
qed "card_insert_disjoint"; |
| 3352 | 329 |
Addsimps [card_insert_disjoint]; |
330 |
||
331 |
goal Finite.thy "!!A. finite A ==> !B. B <= A --> card(B) <= card(A)"; |
|
332 |
by (etac finite_induct 1); |
|
333 |
by (Simp_tac 1); |
|
| 3708 | 334 |
by (Clarify_tac 1); |
| 3352 | 335 |
by (case_tac "x:B" 1); |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
336 |
by (dres_inst_tac [("A","B")] mk_disjoint_insert 1);
|
| 3352 | 337 |
by (SELECT_GOAL(safe_tac (!claset))1); |
338 |
by (rotate_tac ~1 1); |
|
339 |
by (asm_full_simp_tac (!simpset addsimps [subset_insert_iff,finite_subset]) 1); |
|
340 |
by (rotate_tac ~1 1); |
|
341 |
by (asm_full_simp_tac (!simpset addsimps [subset_insert_iff,finite_subset]) 1); |
|
342 |
qed_spec_mp "card_mono"; |
|
343 |
||
344 |
goal Finite.thy "!!A B. [| finite A; finite B |]\ |
|
345 |
\ ==> A Int B = {} --> card(A Un B) = card A + card B";
|
|
346 |
by (etac finite_induct 1); |
|
347 |
by (ALLGOALS |
|
|
3517
2547f33fa33a
Removed redundant addsimps of Un_insert_left, which is now a default simprule
paulson
parents:
3457
diff
changeset
|
348 |
(asm_simp_tac (!simpset addsimps [Int_insert_left] |
| 3919 | 349 |
addsplits [expand_if]))); |
| 3352 | 350 |
qed_spec_mp "card_Un_disjoint"; |
351 |
||
352 |
goal Finite.thy "!!A. [| finite A; B<=A |] ==> card A - card B = card (A - B)"; |
|
353 |
by (subgoal_tac "(A-B) Un B = A" 1); |
|
354 |
by (Blast_tac 2); |
|
| 3457 | 355 |
by (rtac (add_right_cancel RS iffD1) 1); |
356 |
by (rtac (card_Un_disjoint RS subst) 1); |
|
357 |
by (etac ssubst 4); |
|
| 3352 | 358 |
by (Blast_tac 3); |
359 |
by (ALLGOALS |
|
360 |
(asm_simp_tac |
|
361 |
(!simpset addsimps [add_commute, not_less_iff_le, |
|
362 |
add_diff_inverse, card_mono, finite_subset]))); |
|
363 |
qed "card_Diff_subset"; |
|
| 1531 | 364 |
|
| 1618 | 365 |
goal Finite.thy "!!A. [| finite A; x: A |] ==> Suc(card(A-{x})) = card A";
|
366 |
by (res_inst_tac [("t", "A")] (insert_Diff RS subst) 1);
|
|
367 |
by (assume_tac 1); |
|
| 3352 | 368 |
by (Asm_simp_tac 1); |
| 1618 | 369 |
qed "card_Suc_Diff"; |
370 |
||
371 |
goal Finite.thy "!!A. [| finite A; x: A |] ==> card(A-{x}) < card A";
|
|
| 2031 | 372 |
by (rtac Suc_less_SucD 1); |
| 1618 | 373 |
by (asm_simp_tac (!simpset addsimps [card_Suc_Diff]) 1); |
374 |
qed "card_Diff"; |
|
375 |
||
|
3389
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
376 |
|
|
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
377 |
(*** Cardinality of the Powerset ***) |
|
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
378 |
|
| 1531 | 379 |
val [major] = goal Finite.thy |
380 |
"finite A ==> card(insert x A) = Suc(card(A-{x}))";
|
|
| 1553 | 381 |
by (case_tac "x:A" 1); |
382 |
by (asm_simp_tac (!simpset addsimps [insert_absorb]) 1); |
|
383 |
by (dtac mk_disjoint_insert 1); |
|
384 |
by (etac exE 1); |
|
385 |
by (Asm_simp_tac 1); |
|
386 |
by (rtac card_insert_disjoint 1); |
|
387 |
by (rtac (major RSN (2,finite_subset)) 1); |
|
| 2922 | 388 |
by (Blast_tac 1); |
389 |
by (Blast_tac 1); |
|
| 1553 | 390 |
by (asm_simp_tac (!simpset addsimps [major RS card_insert_disjoint]) 1); |
| 1531 | 391 |
qed "card_insert"; |
392 |
Addsimps [card_insert]; |
|
393 |
||
| 3340 | 394 |
goal Finite.thy "!!A. finite(A) ==> inj_onto f A --> card (f `` A) = card A"; |
395 |
by (etac finite_induct 1); |
|
396 |
by (ALLGOALS Asm_simp_tac); |
|
| 3724 | 397 |
by Safe_tac; |
| 3457 | 398 |
by (rewtac inj_onto_def); |
| 3340 | 399 |
by (Blast_tac 1); |
400 |
by (stac card_insert_disjoint 1); |
|
401 |
by (etac finite_imageI 1); |
|
402 |
by (Blast_tac 1); |
|
403 |
by (Blast_tac 1); |
|
404 |
qed_spec_mp "card_image"; |
|
405 |
||
|
3389
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
406 |
goal thy "!!A. finite A ==> card (Pow A) = 2 ^ card A"; |
|
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
407 |
by (etac finite_induct 1); |
|
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
408 |
by (ALLGOALS (asm_simp_tac (!simpset addsimps [Pow_insert]))); |
|
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
409 |
by (stac card_Un_disjoint 1); |
|
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
410 |
by (EVERY (map (blast_tac (!claset addIs [finite_imageI])) [3,2,1])); |
|
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
411 |
by (subgoal_tac "inj_onto (insert x) (Pow F)" 1); |
|
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
412 |
by (asm_simp_tac (!simpset addsimps [card_image, Pow_insert]) 1); |
| 3457 | 413 |
by (rewtac inj_onto_def); |
|
3389
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
414 |
by (blast_tac (!claset addSEs [equalityE]) 1); |
|
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
415 |
qed "card_Pow"; |
|
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
416 |
Addsimps [card_Pow]; |
| 3340 | 417 |
|
|
3389
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
418 |
|
|
3150eba724a1
New theorem about the cardinality of the powerset (uses exponentiation)
paulson
parents:
3382
diff
changeset
|
419 |
(*Proper subsets*) |
|
3222
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
420 |
goalw Finite.thy [psubset_def] |
|
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
421 |
"!!B. finite B ==> !A. A < B --> card(A) < card(B)"; |
|
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
422 |
by (etac finite_induct 1); |
|
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
423 |
by (Simp_tac 1); |
| 3708 | 424 |
by (Clarify_tac 1); |
|
3222
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
425 |
by (case_tac "x:A" 1); |
|
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
426 |
(*1*) |
|
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3389
diff
changeset
|
427 |
by (dres_inst_tac [("A","A")]mk_disjoint_insert 1);
|
|
3222
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
428 |
by (etac exE 1); |
|
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
429 |
by (etac conjE 1); |
|
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
430 |
by (hyp_subst_tac 1); |
|
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
431 |
by (rotate_tac ~1 1); |
|
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
432 |
by (asm_full_simp_tac (!simpset addsimps [subset_insert_iff,finite_subset]) 1); |
| 3708 | 433 |
by (Blast_tac 1); |
|
3222
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
434 |
(*2*) |
|
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
435 |
by (rotate_tac ~1 1); |
| 3708 | 436 |
by (eres_inst_tac [("P","?a<?b")] notE 1);
|
|
3222
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
437 |
by (asm_full_simp_tac (!simpset addsimps [subset_insert_iff,finite_subset]) 1); |
|
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
438 |
by (case_tac "A=F" 1); |
| 3708 | 439 |
by (ALLGOALS Asm_simp_tac); |
|
3222
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
nipkow
parents:
2922
diff
changeset
|
440 |
qed_spec_mp "psubset_card" ; |
| 3368 | 441 |
|
442 |
||
| 3430 | 443 |
(*Relates to equivalence classes. Based on a theorem of F. Kammueller's. |
| 3368 | 444 |
The "finite C" premise is redundant*) |
445 |
goal thy "!!C. finite C ==> finite (Union C) --> \ |
|
446 |
\ (! c : C. k dvd card c) --> \ |
|
447 |
\ (! c1: C. ! c2: C. c1 ~= c2 --> c1 Int c2 = {}) \
|
|
448 |
\ --> k dvd card(Union C)"; |
|
449 |
by (etac finite_induct 1); |
|
450 |
by (ALLGOALS Asm_simp_tac); |
|
| 3708 | 451 |
by (Clarify_tac 1); |
| 3368 | 452 |
by (stac card_Un_disjoint 1); |
453 |
by (ALLGOALS |
|
454 |
(asm_full_simp_tac (!simpset |
|
455 |
addsimps [dvd_add, disjoint_eq_subset_Compl]))); |
|
456 |
by (thin_tac "!c:F. ?PP(c)" 1); |
|
457 |
by (thin_tac "!c:F. ?PP(c) & ?QQ(c)" 1); |
|
| 3708 | 458 |
by (Clarify_tac 1); |
| 3368 | 459 |
by (ball_tac 1); |
460 |
by (Blast_tac 1); |
|
461 |
qed_spec_mp "dvd_partition"; |
|
462 |