68155
|
1 |
(* Author: Andreas Lochbihler, Digital Asset *)
|
|
2 |
|
|
3 |
section \<open>Laziness tests\<close>
|
|
4 |
|
|
5 |
theory Code_Lazy_Test imports
|
|
6 |
"HOL-Library.Code_Lazy"
|
|
7 |
"HOL-Library.Stream"
|
|
8 |
"HOL-Library.Code_Test"
|
|
9 |
"HOL-Library.BNF_Corec"
|
|
10 |
begin
|
|
11 |
|
|
12 |
subsection \<open>Linear codatatype\<close>
|
|
13 |
|
|
14 |
code_lazy_type stream
|
|
15 |
|
|
16 |
value [code] "cycle ''ab''"
|
|
17 |
value [code] "let x = cycle ''ab''; y = snth x 10 in x"
|
|
18 |
|
|
19 |
datatype 'a llist = LNil ("\<^bold>[\<^bold>]") | LCons (lhd: 'a) (ltl: "'a llist") (infixr "\<^bold>#" 65)
|
|
20 |
|
|
21 |
subsection \<open>Finite lazy lists\<close>
|
|
22 |
|
|
23 |
code_lazy_type llist
|
|
24 |
|
|
25 |
no_notation lazy_llist ("_")
|
|
26 |
syntax "_llist" :: "args => 'a list" ("\<^bold>[(_)\<^bold>]")
|
|
27 |
translations
|
|
28 |
"\<^bold>[x, xs\<^bold>]" == "x\<^bold>#\<^bold>[xs\<^bold>]"
|
|
29 |
"\<^bold>[x\<^bold>]" == "x\<^bold>#\<^bold>[\<^bold>]"
|
|
30 |
"\<^bold>[x\<^bold>]" == "CONST lazy_llist x"
|
|
31 |
|
|
32 |
definition llist :: "nat llist" where
|
|
33 |
"llist = \<^bold>[1, 2, 3, hd [], 4\<^bold>]"
|
|
34 |
|
|
35 |
fun lnth :: "nat \<Rightarrow> 'a llist \<Rightarrow> 'a" where
|
|
36 |
"lnth 0 (x \<^bold># xs) = x"
|
|
37 |
| "lnth (Suc n) (x \<^bold># xs) = lnth n xs"
|
|
38 |
|
|
39 |
value [code] "llist"
|
|
40 |
value [code] "let x = lnth 2 llist in (x, llist)"
|
|
41 |
value [code] "llist"
|
|
42 |
|
|
43 |
fun lfilter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a llist \<Rightarrow> 'a llist" where
|
|
44 |
"lfilter P \<^bold>[\<^bold>] = \<^bold>[\<^bold>]"
|
|
45 |
| "lfilter P (x \<^bold># xs) = (if P x then x \<^bold># lfilter P xs else lfilter P xs)"
|
|
46 |
|
|
47 |
value [code] "lhd (lfilter odd llist)"
|
|
48 |
|
|
49 |
definition lfilter_test :: "nat llist \<Rightarrow> _" where "lfilter_test xs = lhd (lfilter even xs)"
|
|
50 |
\<comment> \<open>Filtering @{term llist} for @{term even} fails because only the datatype is lazy, not the
|
|
51 |
filter function itself.\<close>
|
|
52 |
ML_val \<open> (@{code lfilter_test} @{code llist}; raise Fail "Failure expected") handle Match => () \<close>
|
|
53 |
|
|
54 |
subsection \<open>Records as free type\<close>
|
|
55 |
|
|
56 |
record ('a, 'b) rec =
|
|
57 |
rec1 :: 'a
|
|
58 |
rec2 :: 'b
|
|
59 |
|
|
60 |
free_constructors rec_ext for rec.rec_ext
|
|
61 |
subgoal by(rule rec.cases_scheme)
|
|
62 |
subgoal by(rule rec.ext_inject)
|
|
63 |
done
|
|
64 |
|
|
65 |
code_lazy_type rec_ext
|
|
66 |
|
|
67 |
definition rec_test1 where "rec_test1 = rec1 (\<lparr>rec1 = Suc 5, rec2 = True\<rparr>\<lparr>rec1 := 0\<rparr>)"
|
|
68 |
definition rec_test2 :: "(bool, bool) rec" where "rec_test2 = \<lparr>rec1 = hd [], rec2 = True\<rparr>"
|
|
69 |
test_code "rec_test1 = 0" in PolyML Scala
|
|
70 |
value [code] "rec_test2"
|
|
71 |
|
|
72 |
subsection \<open>Branching codatatypes\<close>
|
|
73 |
|
|
74 |
codatatype tree = L | Node tree tree (infix "\<triangle>" 900)
|
|
75 |
|
|
76 |
code_lazy_type tree
|
|
77 |
|
|
78 |
fun mk_tree :: "nat \<Rightarrow> tree" where
|
|
79 |
mk_tree_0: "mk_tree 0 = L"
|
|
80 |
| "mk_tree (Suc n) = (let t = mk_tree n in t \<triangle> t)"
|
|
81 |
|
|
82 |
function subtree :: "bool list \<Rightarrow> tree \<Rightarrow> tree" where
|
|
83 |
"subtree [] t = t"
|
|
84 |
| "subtree (True # p) (l \<triangle> r) = subtree p l"
|
|
85 |
| "subtree (False # p) (l \<triangle> r) = subtree p r"
|
|
86 |
| "subtree _ L = L"
|
|
87 |
by pat_completeness auto
|
|
88 |
termination by lexicographic_order
|
|
89 |
|
|
90 |
value [code] "mk_tree 10"
|
|
91 |
value [code] "let t = mk_tree 10; _ = subtree [True, True, False, False] t in t"
|
|
92 |
|
|
93 |
lemma mk_tree_Suc: "mk_tree (Suc n) = mk_tree n \<triangle> mk_tree n"
|
|
94 |
by(simp add: Let_def)
|
|
95 |
lemmas [code] = mk_tree_0 mk_tree_Suc
|
|
96 |
value [code] "let t = mk_tree 10; _ = subtree [True, True, False, False] t in t"
|
|
97 |
value [code] "let t = mk_tree 4; _ = subtree [True, True, False, False] t in t"
|
|
98 |
|
|
99 |
subsection \<open>Corecursion\<close>
|
|
100 |
|
|
101 |
corec (friend) plus :: "'a :: plus stream \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
|
|
102 |
"plus xs ys = (shd xs + shd ys) ## plus (stl xs) (stl ys)"
|
|
103 |
|
|
104 |
corec (friend) times :: "'a :: {plus, times} stream \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
|
|
105 |
"times xs ys = (shd xs * shd ys) ## plus (times (stl xs) ys) (times xs (stl ys))"
|
|
106 |
|
|
107 |
subsection \<open>Pattern-matching tests\<close>
|
|
108 |
|
|
109 |
definition f1 :: "bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> nat llist \<Rightarrow> unit" where
|
|
110 |
"f1 _ _ _ _ = ()"
|
|
111 |
|
|
112 |
declare [[code drop: f1]]
|
|
113 |
lemma f1_code1 [code]:
|
|
114 |
"f1 b c d ns = Code.abort (STR ''4'') (\<lambda>_. ())"
|
|
115 |
"f1 b c True \<^bold>[n, m\<^bold>] = Code.abort (STR ''3'') (\<lambda>_. ())"
|
|
116 |
"f1 b True d \<^bold>[n\<^bold>] = Code.abort (STR ''2'') (\<lambda>_. ())"
|
|
117 |
"f1 True c d \<^bold>[\<^bold>] = ()"
|
|
118 |
by(simp_all add: f1_def)
|
|
119 |
|
|
120 |
value [code] "f1 True False False \<^bold>[\<^bold>]"
|
|
121 |
deactivate_lazy_type llist
|
|
122 |
value [code] "f1 True False False \<^bold>[\<^bold>]"
|
|
123 |
declare f1_code1(1) [code del]
|
|
124 |
value [code] "f1 True False False \<^bold>[\<^bold>]"
|
|
125 |
activate_lazy_type llist
|
|
126 |
value [code] "f1 True False False \<^bold>[\<^bold>]"
|
|
127 |
|
|
128 |
declare [[code drop: f1]]
|
|
129 |
lemma f1_code2 [code]:
|
|
130 |
"f1 b c d ns = Code.abort (STR ''4'') (\<lambda>_. ())"
|
|
131 |
"f1 b c True \<^bold>[n, m\<^bold>] = Code.abort (STR ''3'') (\<lambda>_. ())"
|
|
132 |
"f1 b True d \<^bold>[n\<^bold>] = ()"
|
|
133 |
"f1 True c d \<^bold>[\<^bold>] = Code.abort (STR ''1'') (\<lambda>_. ())"
|
|
134 |
by(simp_all add: f1_def)
|
|
135 |
|
|
136 |
value [code] "f1 True True True \<^bold>[0\<^bold>]"
|
|
137 |
declare f1_code2(1)[code del]
|
|
138 |
value [code] "f1 True True True \<^bold>[0\<^bold>]"
|
|
139 |
|
|
140 |
declare [[code drop: f1]]
|
|
141 |
lemma f1_code3 [code]:
|
|
142 |
"f1 b c d ns = Code.abort (STR ''4'') (\<lambda>_. ())"
|
|
143 |
"f1 b c True \<^bold>[n, m\<^bold>] = ()"
|
|
144 |
"f1 b True d \<^bold>[n\<^bold>] = Code.abort (STR ''2'') (\<lambda>_. ())"
|
|
145 |
"f1 True c d \<^bold>[\<^bold>] = Code.abort (STR ''1'') (\<lambda>_. ())"
|
|
146 |
by(simp_all add: f1_def)
|
|
147 |
|
|
148 |
value [code] "f1 True True True \<^bold>[0, 1\<^bold>]"
|
|
149 |
declare f1_code3(1)[code del]
|
|
150 |
value [code] "f1 True True True \<^bold>[0, 1\<^bold>]"
|
|
151 |
|
|
152 |
declare [[code drop: f1]]
|
|
153 |
lemma f1_code4 [code]:
|
|
154 |
"f1 b c d ns = ()"
|
|
155 |
"f1 b c True \<^bold>[n, m\<^bold>] = Code.abort (STR ''3'') (\<lambda>_. ())"
|
|
156 |
"f1 b True d \<^bold>[n\<^bold>] = Code.abort (STR ''2'') (\<lambda>_. ())"
|
|
157 |
"f1 True c d \<^bold>[\<^bold>] = Code.abort (STR ''1'') (\<lambda>_. ())"
|
|
158 |
by(simp_all add: f1_def)
|
|
159 |
|
|
160 |
value [code] "f1 True True True \<^bold>[0, 1, 2\<^bold>]"
|
|
161 |
value [code] "f1 True True False \<^bold>[0, 1\<^bold>]"
|
|
162 |
value [code] "f1 True False True \<^bold>[0\<^bold>]"
|
|
163 |
value [code] "f1 False True True \<^bold>[\<^bold>]"
|
|
164 |
|
|
165 |
definition f2 :: "nat llist llist list \<Rightarrow> unit" where "f2 _ = ()"
|
|
166 |
|
|
167 |
declare [[code drop: f2]]
|
|
168 |
lemma f2_code1 [code]:
|
|
169 |
"f2 xs = Code.abort (STR ''a'') (\<lambda>_. ())"
|
|
170 |
"f2 [\<^bold>[\<^bold>[\<^bold>]\<^bold>]] = ()"
|
|
171 |
"f2 [\<^bold>[\<^bold>[Suc n\<^bold>]\<^bold>]] = ()"
|
|
172 |
"f2 [\<^bold>[\<^bold>[0, Suc n\<^bold>]\<^bold>]] = ()"
|
|
173 |
by(simp_all add: f2_def)
|
|
174 |
|
|
175 |
value [code] "f2 [\<^bold>[\<^bold>[\<^bold>]\<^bold>]]"
|
|
176 |
value [code] "f2 [\<^bold>[\<^bold>[4\<^bold>]\<^bold>]]"
|
|
177 |
value [code] "f2 [\<^bold>[\<^bold>[0, 1\<^bold>]\<^bold>]]"
|
|
178 |
ML_val \<open> (@{code f2} []; error "Fail expected") handle Fail _ => () \<close>
|
|
179 |
|
|
180 |
definition f3 :: "nat set llist \<Rightarrow> unit" where "f3 _ = ()"
|
|
181 |
|
|
182 |
declare [[code drop: f3]]
|
|
183 |
lemma f3_code1 [code]:
|
|
184 |
"f3 \<^bold>[\<^bold>] = ()"
|
|
185 |
"f3 \<^bold>[A\<^bold>] = ()"
|
|
186 |
by(simp_all add: f3_def)
|
|
187 |
|
|
188 |
value [code] "f3 \<^bold>[\<^bold>]"
|
|
189 |
value [code] "f3 \<^bold>[{}\<^bold>]"
|
|
190 |
value [code] "f3 \<^bold>[UNIV\<^bold>]"
|
|
191 |
|
|
192 |
end |