| author | fleury | 
| Mon, 16 Jun 2014 16:21:52 +0200 | |
| changeset 57258 | 67d85a8aa6cc | 
| parent 56796 | 9f84219715a7 | 
| child 57816 | d8bbb97689d3 | 
| permissions | -rw-r--r-- | 
| 11054 | 1  | 
(* Title: HOL/Library/Permutation.thy  | 
| 15005 | 2  | 
Author: Lawrence C Paulson and Thomas M Rasmussen and Norbert Voelker  | 
| 11054 | 3  | 
*)  | 
4  | 
||
| 14706 | 5  | 
header {* Permutations *}
 | 
| 11054 | 6  | 
|
| 15131 | 7  | 
theory Permutation  | 
| 51542 | 8  | 
imports Multiset  | 
| 15131 | 9  | 
begin  | 
| 11054 | 10  | 
|
| 53238 | 11  | 
inductive perm :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool"  ("_ <~~> _"  [50, 50] 50)  (* FIXME proper infix, without ambiguity!? *)
 | 
12  | 
where  | 
|
13  | 
Nil [intro!]: "[] <~~> []"  | 
|
14  | 
| swap [intro!]: "y # x # l <~~> x # y # l"  | 
|
15  | 
| Cons [intro!]: "xs <~~> ys \<Longrightarrow> z # xs <~~> z # ys"  | 
|
16  | 
| trans [intro]: "xs <~~> ys \<Longrightarrow> ys <~~> zs \<Longrightarrow> xs <~~> zs"  | 
|
| 11054 | 17  | 
|
18  | 
lemma perm_refl [iff]: "l <~~> l"  | 
|
| 17200 | 19  | 
by (induct l) auto  | 
| 11054 | 20  | 
|
21  | 
||
22  | 
subsection {* Some examples of rule induction on permutations *}
 | 
|
23  | 
||
| 53238 | 24  | 
lemma xperm_empty_imp: "[] <~~> ys \<Longrightarrow> ys = []"  | 
| 56796 | 25  | 
by (induct xs == "[] :: 'a list" ys pred: perm) simp_all  | 
| 11054 | 26  | 
|
27  | 
||
| 56796 | 28  | 
text {* \medskip This more general theorem is easier to understand! *}
 | 
| 11054 | 29  | 
|
| 53238 | 30  | 
lemma perm_length: "xs <~~> ys \<Longrightarrow> length xs = length ys"  | 
| 25379 | 31  | 
by (induct pred: perm) simp_all  | 
| 11054 | 32  | 
|
| 53238 | 33  | 
lemma perm_empty_imp: "[] <~~> xs \<Longrightarrow> xs = []"  | 
| 17200 | 34  | 
by (drule perm_length) auto  | 
| 11054 | 35  | 
|
| 53238 | 36  | 
lemma perm_sym: "xs <~~> ys \<Longrightarrow> ys <~~> xs"  | 
| 25379 | 37  | 
by (induct pred: perm) auto  | 
| 11054 | 38  | 
|
39  | 
||
40  | 
subsection {* Ways of making new permutations *}
 | 
|
41  | 
||
| 56796 | 42  | 
text {* We can insert the head anywhere in the list. *}
 | 
| 11054 | 43  | 
|
44  | 
lemma perm_append_Cons: "a # xs @ ys <~~> xs @ a # ys"  | 
|
| 17200 | 45  | 
by (induct xs) auto  | 
| 11054 | 46  | 
|
47  | 
lemma perm_append_swap: "xs @ ys <~~> ys @ xs"  | 
|
| 17200 | 48  | 
apply (induct xs)  | 
49  | 
apply simp_all  | 
|
| 11054 | 50  | 
apply (blast intro: perm_append_Cons)  | 
51  | 
done  | 
|
52  | 
||
53  | 
lemma perm_append_single: "a # xs <~~> xs @ [a]"  | 
|
| 17200 | 54  | 
by (rule perm.trans [OF _ perm_append_swap]) simp  | 
| 11054 | 55  | 
|
56  | 
lemma perm_rev: "rev xs <~~> xs"  | 
|
| 17200 | 57  | 
apply (induct xs)  | 
58  | 
apply simp_all  | 
|
| 11153 | 59  | 
apply (blast intro!: perm_append_single intro: perm_sym)  | 
| 11054 | 60  | 
done  | 
61  | 
||
| 53238 | 62  | 
lemma perm_append1: "xs <~~> ys \<Longrightarrow> l @ xs <~~> l @ ys"  | 
| 17200 | 63  | 
by (induct l) auto  | 
| 11054 | 64  | 
|
| 53238 | 65  | 
lemma perm_append2: "xs <~~> ys \<Longrightarrow> xs @ l <~~> ys @ l"  | 
| 17200 | 66  | 
by (blast intro!: perm_append_swap perm_append1)  | 
| 11054 | 67  | 
|
68  | 
||
69  | 
subsection {* Further results *}
 | 
|
70  | 
||
| 56796 | 71  | 
lemma perm_empty [iff]: "[] <~~> xs \<longleftrightarrow> xs = []"  | 
| 17200 | 72  | 
by (blast intro: perm_empty_imp)  | 
| 11054 | 73  | 
|
| 56796 | 74  | 
lemma perm_empty2 [iff]: "xs <~~> [] \<longleftrightarrow> xs = []"  | 
| 11054 | 75  | 
apply auto  | 
76  | 
apply (erule perm_sym [THEN perm_empty_imp])  | 
|
77  | 
done  | 
|
78  | 
||
| 53238 | 79  | 
lemma perm_sing_imp: "ys <~~> xs \<Longrightarrow> xs = [y] \<Longrightarrow> ys = [y]"  | 
| 25379 | 80  | 
by (induct pred: perm) auto  | 
| 11054 | 81  | 
|
| 56796 | 82  | 
lemma perm_sing_eq [iff]: "ys <~~> [y] \<longleftrightarrow> ys = [y]"  | 
| 17200 | 83  | 
by (blast intro: perm_sing_imp)  | 
| 11054 | 84  | 
|
| 56796 | 85  | 
lemma perm_sing_eq2 [iff]: "[y] <~~> ys \<longleftrightarrow> ys = [y]"  | 
| 17200 | 86  | 
by (blast dest: perm_sym)  | 
| 11054 | 87  | 
|
88  | 
||
89  | 
subsection {* Removing elements *}
 | 
|
90  | 
||
| 53238 | 91  | 
lemma perm_remove: "x \<in> set ys \<Longrightarrow> ys <~~> x # remove1 x ys"  | 
| 17200 | 92  | 
by (induct ys) auto  | 
| 11054 | 93  | 
|
94  | 
||
95  | 
text {* \medskip Congruence rule *}
 | 
|
96  | 
||
| 53238 | 97  | 
lemma perm_remove_perm: "xs <~~> ys \<Longrightarrow> remove1 z xs <~~> remove1 z ys"  | 
| 25379 | 98  | 
by (induct pred: perm) auto  | 
| 11054 | 99  | 
|
| 36903 | 100  | 
lemma remove_hd [simp]: "remove1 z (z # xs) = xs"  | 
| 15072 | 101  | 
by auto  | 
| 11054 | 102  | 
|
| 53238 | 103  | 
lemma cons_perm_imp_perm: "z # xs <~~> z # ys \<Longrightarrow> xs <~~> ys"  | 
| 17200 | 104  | 
by (drule_tac z = z in perm_remove_perm) auto  | 
| 11054 | 105  | 
|
| 56796 | 106  | 
lemma cons_perm_eq [iff]: "z#xs <~~> z#ys \<longleftrightarrow> xs <~~> ys"  | 
| 17200 | 107  | 
by (blast intro: cons_perm_imp_perm)  | 
| 11054 | 108  | 
|
| 53238 | 109  | 
lemma append_perm_imp_perm: "zs @ xs <~~> zs @ ys \<Longrightarrow> xs <~~> ys"  | 
110  | 
by (induct zs arbitrary: xs ys rule: rev_induct) auto  | 
|
| 11054 | 111  | 
|
| 56796 | 112  | 
lemma perm_append1_eq [iff]: "zs @ xs <~~> zs @ ys \<longleftrightarrow> xs <~~> ys"  | 
| 17200 | 113  | 
by (blast intro: append_perm_imp_perm perm_append1)  | 
| 11054 | 114  | 
|
| 56796 | 115  | 
lemma perm_append2_eq [iff]: "xs @ zs <~~> ys @ zs \<longleftrightarrow> xs <~~> ys"  | 
| 11054 | 116  | 
apply (safe intro!: perm_append2)  | 
117  | 
apply (rule append_perm_imp_perm)  | 
|
118  | 
apply (rule perm_append_swap [THEN perm.trans])  | 
|
119  | 
    -- {* the previous step helps this @{text blast} call succeed quickly *}
 | 
|
120  | 
apply (blast intro: perm_append_swap)  | 
|
121  | 
done  | 
|
122  | 
||
| 56796 | 123  | 
lemma multiset_of_eq_perm: "multiset_of xs = multiset_of ys \<longleftrightarrow> xs <~~> ys"  | 
| 17200 | 124  | 
apply (rule iffI)  | 
| 56796 | 125  | 
apply (erule_tac [2] perm.induct)  | 
126  | 
apply (simp_all add: union_ac)  | 
|
127  | 
apply (erule rev_mp)  | 
|
128  | 
apply (rule_tac x=ys in spec)  | 
|
129  | 
apply (induct_tac xs)  | 
|
130  | 
apply auto  | 
|
131  | 
apply (erule_tac x = "remove1 a x" in allE)  | 
|
132  | 
apply (drule sym)  | 
|
133  | 
apply simp  | 
|
| 17200 | 134  | 
apply (subgoal_tac "a \<in> set x")  | 
| 53238 | 135  | 
apply (drule_tac z = a in perm.Cons)  | 
| 56796 | 136  | 
apply (erule perm.trans)  | 
137  | 
apply (rule perm_sym)  | 
|
138  | 
apply (erule perm_remove)  | 
|
139  | 
apply (drule_tac f=set_of in arg_cong)  | 
|
140  | 
apply simp  | 
|
| 15005 | 141  | 
done  | 
142  | 
||
| 53238 | 143  | 
lemma multiset_of_le_perm_append: "multiset_of xs \<le> multiset_of ys \<longleftrightarrow> (\<exists>zs. xs @ zs <~~> ys)"  | 
| 17200 | 144  | 
apply (auto simp: multiset_of_eq_perm[THEN sym] mset_le_exists_conv)  | 
| 56796 | 145  | 
apply (insert surj_multiset_of)  | 
146  | 
apply (drule surjD)  | 
|
| 15072 | 147  | 
apply (blast intro: sym)+  | 
148  | 
done  | 
|
| 15005 | 149  | 
|
| 53238 | 150  | 
lemma perm_set_eq: "xs <~~> ys \<Longrightarrow> set xs = set ys"  | 
| 25379 | 151  | 
by (metis multiset_of_eq_perm multiset_of_eq_setD)  | 
| 25277 | 152  | 
|
| 53238 | 153  | 
lemma perm_distinct_iff: "xs <~~> ys \<Longrightarrow> distinct xs = distinct ys"  | 
| 25379 | 154  | 
apply (induct pred: perm)  | 
155  | 
apply simp_all  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
40122 
diff
changeset
 | 
156  | 
apply fastforce  | 
| 25379 | 157  | 
apply (metis perm_set_eq)  | 
158  | 
done  | 
|
| 25277 | 159  | 
|
| 53238 | 160  | 
lemma eq_set_perm_remdups: "set xs = set ys \<Longrightarrow> remdups xs <~~> remdups ys"  | 
| 25379 | 161  | 
apply (induct xs arbitrary: ys rule: length_induct)  | 
| 53238 | 162  | 
apply (case_tac "remdups xs")  | 
163  | 
apply simp_all  | 
|
164  | 
apply (subgoal_tac "a \<in> set (remdups ys)")  | 
|
| 55584 | 165  | 
prefer 2 apply (metis set_simps(2) insert_iff set_remdups)  | 
| 56796 | 166  | 
apply (drule split_list) apply (elim exE conjE)  | 
167  | 
apply (drule_tac x = list in spec) apply (erule impE) prefer 2  | 
|
168  | 
apply (drule_tac x = "ysa @ zs" in spec) apply (erule impE) prefer 2  | 
|
| 25379 | 169  | 
apply simp  | 
| 53238 | 170  | 
apply (subgoal_tac "a # list <~~> a # ysa @ zs")  | 
| 25379 | 171  | 
apply (metis Cons_eq_appendI perm_append_Cons trans)  | 
| 
40122
 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 
haftmann 
parents: 
39916 
diff
changeset
 | 
172  | 
apply (metis Cons Cons_eq_appendI distinct.simps(2)  | 
| 25379 | 173  | 
distinct_remdups distinct_remdups_id perm_append_swap perm_distinct_iff)  | 
| 56796 | 174  | 
apply (subgoal_tac "set (a # list) =  | 
175  | 
set (ysa @ a # zs) \<and> distinct (a # list) \<and> distinct (ysa @ a # zs)")  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
40122 
diff
changeset
 | 
176  | 
apply (fastforce simp add: insert_ident)  | 
| 25379 | 177  | 
apply (metis distinct_remdups set_remdups)  | 
| 30742 | 178  | 
apply (subgoal_tac "length (remdups xs) < Suc (length xs)")  | 
179  | 
apply simp  | 
|
180  | 
apply (subgoal_tac "length (remdups xs) \<le> length xs")  | 
|
181  | 
apply simp  | 
|
182  | 
apply (rule length_remdups_leq)  | 
|
| 25379 | 183  | 
done  | 
| 25287 | 184  | 
|
| 56796 | 185  | 
lemma perm_remdups_iff_eq_set: "remdups x <~~> remdups y \<longleftrightarrow> set x = set y"  | 
| 25379 | 186  | 
by (metis List.set_remdups perm_set_eq eq_set_perm_remdups)  | 
| 25287 | 187  | 
|
| 39075 | 188  | 
lemma permutation_Ex_bij:  | 
189  | 
assumes "xs <~~> ys"  | 
|
190  | 
  shows "\<exists>f. bij_betw f {..<length xs} {..<length ys} \<and> (\<forall>i<length xs. xs ! i = ys ! (f i))"
 | 
|
| 56796 | 191  | 
using assms  | 
192  | 
proof induct  | 
|
| 53238 | 193  | 
case Nil  | 
| 56796 | 194  | 
then show ?case  | 
195  | 
unfolding bij_betw_def by simp  | 
|
| 39075 | 196  | 
next  | 
197  | 
case (swap y x l)  | 
|
198  | 
show ?case  | 
|
199  | 
proof (intro exI[of _ "Fun.swap 0 1 id"] conjI allI impI)  | 
|
200  | 
    show "bij_betw (Fun.swap 0 1 id) {..<length (y # x # l)} {..<length (x # y # l)}"
 | 
|
| 50037 | 201  | 
by (auto simp: bij_betw_def)  | 
| 53238 | 202  | 
fix i  | 
| 56796 | 203  | 
assume "i < length (y # x # l)"  | 
| 39075 | 204  | 
show "(y # x # l) ! i = (x # y # l) ! (Fun.swap 0 1 id) i"  | 
205  | 
by (cases i) (auto simp: Fun.swap_def gr0_conv_Suc)  | 
|
206  | 
qed  | 
|
207  | 
next  | 
|
208  | 
case (Cons xs ys z)  | 
|
| 56796 | 209  | 
  then obtain f where bij: "bij_betw f {..<length xs} {..<length ys}"
 | 
210  | 
and perm: "\<forall>i<length xs. xs ! i = ys ! (f i)"  | 
|
211  | 
by blast  | 
|
| 53238 | 212  | 
let ?f = "\<lambda>i. case i of Suc n \<Rightarrow> Suc (f n) | 0 \<Rightarrow> 0"  | 
| 39075 | 213  | 
show ?case  | 
214  | 
proof (intro exI[of _ ?f] allI conjI impI)  | 
|
215  | 
    have *: "{..<length (z#xs)} = {0} \<union> Suc ` {..<length xs}"
 | 
|
216  | 
            "{..<length (z#ys)} = {0} \<union> Suc ` {..<length ys}"
 | 
|
| 39078 | 217  | 
by (simp_all add: lessThan_Suc_eq_insert_0)  | 
| 53238 | 218  | 
    show "bij_betw ?f {..<length (z#xs)} {..<length (z#ys)}"
 | 
219  | 
unfolding *  | 
|
| 39075 | 220  | 
proof (rule bij_betw_combine)  | 
221  | 
      show "bij_betw ?f (Suc ` {..<length xs}) (Suc ` {..<length ys})"
 | 
|
222  | 
using bij unfolding bij_betw_def  | 
|
| 
56154
 
f0a927235162
more complete set of lemmas wrt. image and composition
 
haftmann 
parents: 
55584 
diff
changeset
 | 
223  | 
by (auto intro!: inj_onI imageI dest: inj_onD simp: image_comp comp_def)  | 
| 39075 | 224  | 
qed (auto simp: bij_betw_def)  | 
| 53238 | 225  | 
fix i  | 
| 56796 | 226  | 
assume "i < length (z # xs)"  | 
| 39075 | 227  | 
then show "(z # xs) ! i = (z # ys) ! (?f i)"  | 
228  | 
using perm by (cases i) auto  | 
|
229  | 
qed  | 
|
230  | 
next  | 
|
231  | 
case (trans xs ys zs)  | 
|
| 56796 | 232  | 
then obtain f g  | 
233  | 
    where bij: "bij_betw f {..<length xs} {..<length ys}" "bij_betw g {..<length ys} {..<length zs}"
 | 
|
234  | 
and perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" "\<forall>i<length ys. ys ! i = zs ! (g i)"  | 
|
235  | 
by blast  | 
|
| 39075 | 236  | 
show ?case  | 
| 53238 | 237  | 
proof (intro exI[of _ "g \<circ> f"] conjI allI impI)  | 
| 39075 | 238  | 
    show "bij_betw (g \<circ> f) {..<length xs} {..<length zs}"
 | 
239  | 
using bij by (rule bij_betw_trans)  | 
|
| 56796 | 240  | 
fix i  | 
241  | 
assume "i < length xs"  | 
|
242  | 
with bij have "f i < length ys"  | 
|
243  | 
unfolding bij_betw_def by force  | 
|
| 39075 | 244  | 
with `i < length xs` show "xs ! i = zs ! (g \<circ> f) i"  | 
| 53238 | 245  | 
using trans(1,3)[THEN perm_length] perm by auto  | 
| 39075 | 246  | 
qed  | 
247  | 
qed  | 
|
248  | 
||
| 11054 | 249  | 
end  |