| author | krauss | 
| Sun, 27 Mar 2011 16:56:16 +0200 | |
| changeset 42137 | 6803f2fd15c1 | 
| parent 41849 | 1a65b780bd56 | 
| child 42361 | 23f352990944 | 
| permissions | -rw-r--r-- | 
| 30439 | 1 | (* Title: HOL/Decision_Procs/Ferrack.thy | 
| 29789 | 2 | Author: Amine Chaieb | 
| 3 | *) | |
| 4 | ||
| 5 | theory Ferrack | |
| 41849 | 6 | imports Complex_Main Dense_Linear_Order DP_Library | 
| 7 | "~~/src/HOL/Library/Efficient_Nat" | |
| 29789 | 8 | uses ("ferrack_tac.ML")
 | 
| 9 | begin | |
| 10 | ||
| 11 | section {* Quantifier elimination for @{text "\<real> (0, 1, +, <)"} *}
 | |
| 12 | ||
| 13 | (*********************************************************************************) | |
| 14 | (**** SHADOW SYNTAX AND SEMANTICS ****) | |
| 15 | (*********************************************************************************) | |
| 16 | ||
| 17 | datatype num = C int | Bound nat | CN nat int num | Neg num | Add num num| Sub num num | |
| 18 | | Mul int num | |
| 19 | ||
| 20 | (* A size for num to make inductive proofs simpler*) | |
| 36853 | 21 | primrec num_size :: "num \<Rightarrow> nat" where | 
| 29789 | 22 | "num_size (C c) = 1" | 
| 36853 | 23 | | "num_size (Bound n) = 1" | 
| 24 | | "num_size (Neg a) = 1 + num_size a" | |
| 25 | | "num_size (Add a b) = 1 + num_size a + num_size b" | |
| 26 | | "num_size (Sub a b) = 3 + num_size a + num_size b" | |
| 27 | | "num_size (Mul c a) = 1 + num_size a" | |
| 28 | | "num_size (CN n c a) = 3 + num_size a " | |
| 29789 | 29 | |
| 30 | (* Semantics of numeral terms (num) *) | |
| 36853 | 31 | primrec Inum :: "real list \<Rightarrow> num \<Rightarrow> real" where | 
| 29789 | 32 | "Inum bs (C c) = (real c)" | 
| 36853 | 33 | | "Inum bs (Bound n) = bs!n" | 
| 34 | | "Inum bs (CN n c a) = (real c) * (bs!n) + (Inum bs a)" | |
| 35 | | "Inum bs (Neg a) = -(Inum bs a)" | |
| 36 | | "Inum bs (Add a b) = Inum bs a + Inum bs b" | |
| 37 | | "Inum bs (Sub a b) = Inum bs a - Inum bs b" | |
| 38 | | "Inum bs (Mul c a) = (real c) * Inum bs a" | |
| 29789 | 39 | (* FORMULAE *) | 
| 40 | datatype fm = | |
| 41 | T| F| Lt num| Le num| Gt num| Ge num| Eq num| NEq num| | |
| 42 | NOT fm| And fm fm| Or fm fm| Imp fm fm| Iff fm fm| E fm| A fm | |
| 43 | ||
| 44 | ||
| 45 | (* A size for fm *) | |
| 36853 | 46 | fun fmsize :: "fm \<Rightarrow> nat" where | 
| 29789 | 47 | "fmsize (NOT p) = 1 + fmsize p" | 
| 36853 | 48 | | "fmsize (And p q) = 1 + fmsize p + fmsize q" | 
| 49 | | "fmsize (Or p q) = 1 + fmsize p + fmsize q" | |
| 50 | | "fmsize (Imp p q) = 3 + fmsize p + fmsize q" | |
| 51 | | "fmsize (Iff p q) = 3 + 2*(fmsize p + fmsize q)" | |
| 52 | | "fmsize (E p) = 1 + fmsize p" | |
| 53 | | "fmsize (A p) = 4+ fmsize p" | |
| 54 | | "fmsize p = 1" | |
| 29789 | 55 | (* several lemmas about fmsize *) | 
| 56 | lemma fmsize_pos: "fmsize p > 0" | |
| 57 | by (induct p rule: fmsize.induct) simp_all | |
| 58 | ||
| 59 | (* Semantics of formulae (fm) *) | |
| 36853 | 60 | primrec Ifm ::"real list \<Rightarrow> fm \<Rightarrow> bool" where | 
| 29789 | 61 | "Ifm bs T = True" | 
| 36853 | 62 | | "Ifm bs F = False" | 
| 63 | | "Ifm bs (Lt a) = (Inum bs a < 0)" | |
| 64 | | "Ifm bs (Gt a) = (Inum bs a > 0)" | |
| 65 | | "Ifm bs (Le a) = (Inum bs a \<le> 0)" | |
| 66 | | "Ifm bs (Ge a) = (Inum bs a \<ge> 0)" | |
| 67 | | "Ifm bs (Eq a) = (Inum bs a = 0)" | |
| 68 | | "Ifm bs (NEq a) = (Inum bs a \<noteq> 0)" | |
| 69 | | "Ifm bs (NOT p) = (\<not> (Ifm bs p))" | |
| 70 | | "Ifm bs (And p q) = (Ifm bs p \<and> Ifm bs q)" | |
| 71 | | "Ifm bs (Or p q) = (Ifm bs p \<or> Ifm bs q)" | |
| 72 | | "Ifm bs (Imp p q) = ((Ifm bs p) \<longrightarrow> (Ifm bs q))" | |
| 73 | | "Ifm bs (Iff p q) = (Ifm bs p = Ifm bs q)" | |
| 74 | | "Ifm bs (E p) = (\<exists> x. Ifm (x#bs) p)" | |
| 75 | | "Ifm bs (A p) = (\<forall> x. Ifm (x#bs) p)" | |
| 29789 | 76 | |
| 77 | lemma IfmLeSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Le (Sub s t)) = (s' \<le> t')" | |
| 78 | apply simp | |
| 79 | done | |
| 80 | ||
| 81 | lemma IfmLtSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Lt (Sub s t)) = (s' < t')" | |
| 82 | apply simp | |
| 83 | done | |
| 84 | lemma IfmEqSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Eq (Sub s t)) = (s' = t')" | |
| 85 | apply simp | |
| 86 | done | |
| 87 | lemma IfmNOT: " (Ifm bs p = P) \<Longrightarrow> (Ifm bs (NOT p) = (\<not>P))" | |
| 88 | apply simp | |
| 89 | done | |
| 90 | lemma IfmAnd: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (And p q) = (P \<and> Q))" | |
| 91 | apply simp | |
| 92 | done | |
| 93 | lemma IfmOr: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Or p q) = (P \<or> Q))" | |
| 94 | apply simp | |
| 95 | done | |
| 96 | lemma IfmImp: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Imp p q) = (P \<longrightarrow> Q))" | |
| 97 | apply simp | |
| 98 | done | |
| 99 | lemma IfmIff: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Iff p q) = (P = Q))" | |
| 100 | apply simp | |
| 101 | done | |
| 102 | ||
| 103 | lemma IfmE: " (!! x. Ifm (x#bs) p = P x) \<Longrightarrow> (Ifm bs (E p) = (\<exists>x. P x))" | |
| 104 | apply simp | |
| 105 | done | |
| 106 | lemma IfmA: " (!! x. Ifm (x#bs) p = P x) \<Longrightarrow> (Ifm bs (A p) = (\<forall>x. P x))" | |
| 107 | apply simp | |
| 108 | done | |
| 109 | ||
| 36853 | 110 | fun not:: "fm \<Rightarrow> fm" where | 
| 29789 | 111 | "not (NOT p) = p" | 
| 36853 | 112 | | "not T = F" | 
| 113 | | "not F = T" | |
| 114 | | "not p = NOT p" | |
| 29789 | 115 | lemma not[simp]: "Ifm bs (not p) = Ifm bs (NOT p)" | 
| 116 | by (cases p) auto | |
| 117 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 118 | definition conj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where | 
| 36853 | 119 | "conj p q = (if (p = F \<or> q=F) then F else if p=T then q else if q=T then p else | 
| 29789 | 120 | if p = q then p else And p q)" | 
| 121 | lemma conj[simp]: "Ifm bs (conj p q) = Ifm bs (And p q)" | |
| 122 | by (cases "p=F \<or> q=F",simp_all add: conj_def) (cases p,simp_all) | |
| 123 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 124 | definition disj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where | 
| 36853 | 125 | "disj p q = (if (p = T \<or> q=T) then T else if p=F then q else if q=F then p | 
| 29789 | 126 | else if p=q then p else Or p q)" | 
| 127 | ||
| 128 | lemma disj[simp]: "Ifm bs (disj p q) = Ifm bs (Or p q)" | |
| 129 | by (cases "p=T \<or> q=T",simp_all add: disj_def) (cases p,simp_all) | |
| 130 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 131 | definition imp :: "fm \<Rightarrow> fm \<Rightarrow> fm" where | 
| 36853 | 132 | "imp p q = (if (p = F \<or> q=T \<or> p=q) then T else if p=T then q else if q=F then not p | 
| 29789 | 133 | else Imp p q)" | 
| 134 | lemma imp[simp]: "Ifm bs (imp p q) = Ifm bs (Imp p q)" | |
| 135 | by (cases "p=F \<or> q=T",simp_all add: imp_def) | |
| 136 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 137 | definition iff :: "fm \<Rightarrow> fm \<Rightarrow> fm" where | 
| 36853 | 138 | "iff p q = (if (p = q) then T else if (p = NOT q \<or> NOT p = q) then F else | 
| 29789 | 139 | if p=F then not q else if q=F then not p else if p=T then q else if q=T then p else | 
| 140 | Iff p q)" | |
| 141 | lemma iff[simp]: "Ifm bs (iff p q) = Ifm bs (Iff p q)" | |
| 142 | by (unfold iff_def,cases "p=q", simp,cases "p=NOT q", simp) (cases "NOT p= q", auto) | |
| 143 | ||
| 144 | lemma conj_simps: | |
| 145 | "conj F Q = F" | |
| 146 | "conj P F = F" | |
| 147 | "conj T Q = Q" | |
| 148 | "conj P T = P" | |
| 149 | "conj P P = P" | |
| 150 | "P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> conj P Q = And P Q" | |
| 151 | by (simp_all add: conj_def) | |
| 152 | ||
| 153 | lemma disj_simps: | |
| 154 | "disj T Q = T" | |
| 155 | "disj P T = T" | |
| 156 | "disj F Q = Q" | |
| 157 | "disj P F = P" | |
| 158 | "disj P P = P" | |
| 159 | "P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> disj P Q = Or P Q" | |
| 160 | by (simp_all add: disj_def) | |
| 161 | lemma imp_simps: | |
| 162 | "imp F Q = T" | |
| 163 | "imp P T = T" | |
| 164 | "imp T Q = Q" | |
| 165 | "imp P F = not P" | |
| 166 | "imp P P = T" | |
| 167 | "P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> imp P Q = Imp P Q" | |
| 168 | by (simp_all add: imp_def) | |
| 169 | lemma trivNOT: "p \<noteq> NOT p" "NOT p \<noteq> p" | |
| 170 | apply (induct p, auto) | |
| 171 | done | |
| 172 | ||
| 173 | lemma iff_simps: | |
| 174 | "iff p p = T" | |
| 175 | "iff p (NOT p) = F" | |
| 176 | "iff (NOT p) p = F" | |
| 177 | "iff p F = not p" | |
| 178 | "iff F p = not p" | |
| 179 | "p \<noteq> NOT T \<Longrightarrow> iff T p = p" | |
| 180 | "p\<noteq> NOT T \<Longrightarrow> iff p T = p" | |
| 181 | "p\<noteq>q \<Longrightarrow> p\<noteq> NOT q \<Longrightarrow> q\<noteq> NOT p \<Longrightarrow> p\<noteq> F \<Longrightarrow> q\<noteq> F \<Longrightarrow> p \<noteq> T \<Longrightarrow> q \<noteq> T \<Longrightarrow> iff p q = Iff p q" | |
| 182 | using trivNOT | |
| 183 | by (simp_all add: iff_def, cases p, auto) | |
| 184 | (* Quantifier freeness *) | |
| 36853 | 185 | fun qfree:: "fm \<Rightarrow> bool" where | 
| 29789 | 186 | "qfree (E p) = False" | 
| 36853 | 187 | | "qfree (A p) = False" | 
| 188 | | "qfree (NOT p) = qfree p" | |
| 189 | | "qfree (And p q) = (qfree p \<and> qfree q)" | |
| 190 | | "qfree (Or p q) = (qfree p \<and> qfree q)" | |
| 191 | | "qfree (Imp p q) = (qfree p \<and> qfree q)" | |
| 192 | | "qfree (Iff p q) = (qfree p \<and> qfree q)" | |
| 193 | | "qfree p = True" | |
| 29789 | 194 | |
| 195 | (* Boundedness and substitution *) | |
| 36853 | 196 | primrec numbound0:: "num \<Rightarrow> bool" (* a num is INDEPENDENT of Bound 0 *) where | 
| 29789 | 197 | "numbound0 (C c) = True" | 
| 36853 | 198 | | "numbound0 (Bound n) = (n>0)" | 
| 199 | | "numbound0 (CN n c a) = (n\<noteq>0 \<and> numbound0 a)" | |
| 200 | | "numbound0 (Neg a) = numbound0 a" | |
| 201 | | "numbound0 (Add a b) = (numbound0 a \<and> numbound0 b)" | |
| 202 | | "numbound0 (Sub a b) = (numbound0 a \<and> numbound0 b)" | |
| 203 | | "numbound0 (Mul i a) = numbound0 a" | |
| 204 | ||
| 29789 | 205 | lemma numbound0_I: | 
| 206 | assumes nb: "numbound0 a" | |
| 207 | shows "Inum (b#bs) a = Inum (b'#bs) a" | |
| 208 | using nb | |
| 41842 | 209 | by (induct a) simp_all | 
| 29789 | 210 | |
| 36853 | 211 | primrec bound0:: "fm \<Rightarrow> bool" (* A Formula is independent of Bound 0 *) where | 
| 29789 | 212 | "bound0 T = True" | 
| 36853 | 213 | | "bound0 F = True" | 
| 214 | | "bound0 (Lt a) = numbound0 a" | |
| 215 | | "bound0 (Le a) = numbound0 a" | |
| 216 | | "bound0 (Gt a) = numbound0 a" | |
| 217 | | "bound0 (Ge a) = numbound0 a" | |
| 218 | | "bound0 (Eq a) = numbound0 a" | |
| 219 | | "bound0 (NEq a) = numbound0 a" | |
| 220 | | "bound0 (NOT p) = bound0 p" | |
| 221 | | "bound0 (And p q) = (bound0 p \<and> bound0 q)" | |
| 222 | | "bound0 (Or p q) = (bound0 p \<and> bound0 q)" | |
| 223 | | "bound0 (Imp p q) = ((bound0 p) \<and> (bound0 q))" | |
| 224 | | "bound0 (Iff p q) = (bound0 p \<and> bound0 q)" | |
| 225 | | "bound0 (E p) = False" | |
| 226 | | "bound0 (A p) = False" | |
| 29789 | 227 | |
| 228 | lemma bound0_I: | |
| 229 | assumes bp: "bound0 p" | |
| 230 | shows "Ifm (b#bs) p = Ifm (b'#bs) p" | |
| 231 | using bp numbound0_I[where b="b" and bs="bs" and b'="b'"] | |
| 41842 | 232 | by (induct p) auto | 
| 29789 | 233 | |
| 234 | lemma not_qf[simp]: "qfree p \<Longrightarrow> qfree (not p)" | |
| 235 | by (cases p, auto) | |
| 236 | lemma not_bn[simp]: "bound0 p \<Longrightarrow> bound0 (not p)" | |
| 237 | by (cases p, auto) | |
| 238 | ||
| 239 | ||
| 240 | lemma conj_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (conj p q)" | |
| 241 | using conj_def by auto | |
| 242 | lemma conj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (conj p q)" | |
| 243 | using conj_def by auto | |
| 244 | ||
| 245 | lemma disj_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (disj p q)" | |
| 246 | using disj_def by auto | |
| 247 | lemma disj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (disj p q)" | |
| 248 | using disj_def by auto | |
| 249 | ||
| 250 | lemma imp_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (imp p q)" | |
| 251 | using imp_def by (cases "p=F \<or> q=T",simp_all add: imp_def) | |
| 252 | lemma imp_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (imp p q)" | |
| 253 | using imp_def by (cases "p=F \<or> q=T \<or> p=q",simp_all add: imp_def) | |
| 254 | ||
| 255 | lemma iff_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (iff p q)" | |
| 256 | by (unfold iff_def,cases "p=q", auto) | |
| 257 | lemma iff_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (iff p q)" | |
| 258 | using iff_def by (unfold iff_def,cases "p=q", auto) | |
| 259 | ||
| 36853 | 260 | fun decrnum:: "num \<Rightarrow> num" where | 
| 29789 | 261 | "decrnum (Bound n) = Bound (n - 1)" | 
| 36853 | 262 | | "decrnum (Neg a) = Neg (decrnum a)" | 
| 263 | | "decrnum (Add a b) = Add (decrnum a) (decrnum b)" | |
| 264 | | "decrnum (Sub a b) = Sub (decrnum a) (decrnum b)" | |
| 265 | | "decrnum (Mul c a) = Mul c (decrnum a)" | |
| 266 | | "decrnum (CN n c a) = CN (n - 1) c (decrnum a)" | |
| 267 | | "decrnum a = a" | |
| 29789 | 268 | |
| 36853 | 269 | fun decr :: "fm \<Rightarrow> fm" where | 
| 29789 | 270 | "decr (Lt a) = Lt (decrnum a)" | 
| 36853 | 271 | | "decr (Le a) = Le (decrnum a)" | 
| 272 | | "decr (Gt a) = Gt (decrnum a)" | |
| 273 | | "decr (Ge a) = Ge (decrnum a)" | |
| 274 | | "decr (Eq a) = Eq (decrnum a)" | |
| 275 | | "decr (NEq a) = NEq (decrnum a)" | |
| 276 | | "decr (NOT p) = NOT (decr p)" | |
| 277 | | "decr (And p q) = conj (decr p) (decr q)" | |
| 278 | | "decr (Or p q) = disj (decr p) (decr q)" | |
| 279 | | "decr (Imp p q) = imp (decr p) (decr q)" | |
| 280 | | "decr (Iff p q) = iff (decr p) (decr q)" | |
| 281 | | "decr p = p" | |
| 29789 | 282 | |
| 283 | lemma decrnum: assumes nb: "numbound0 t" | |
| 284 | shows "Inum (x#bs) t = Inum bs (decrnum t)" | |
| 41842 | 285 | using nb by (induct t rule: decrnum.induct, simp_all) | 
| 29789 | 286 | |
| 287 | lemma decr: assumes nb: "bound0 p" | |
| 288 | shows "Ifm (x#bs) p = Ifm bs (decr p)" | |
| 289 | using nb | |
| 41842 | 290 | by (induct p rule: decr.induct, simp_all add: decrnum) | 
| 29789 | 291 | |
| 292 | lemma decr_qf: "bound0 p \<Longrightarrow> qfree (decr p)" | |
| 293 | by (induct p, simp_all) | |
| 294 | ||
| 36853 | 295 | fun isatom :: "fm \<Rightarrow> bool" (* test for atomicity *) where | 
| 29789 | 296 | "isatom T = True" | 
| 36853 | 297 | | "isatom F = True" | 
| 298 | | "isatom (Lt a) = True" | |
| 299 | | "isatom (Le a) = True" | |
| 300 | | "isatom (Gt a) = True" | |
| 301 | | "isatom (Ge a) = True" | |
| 302 | | "isatom (Eq a) = True" | |
| 303 | | "isatom (NEq a) = True" | |
| 304 | | "isatom p = False" | |
| 29789 | 305 | |
| 306 | lemma bound0_qf: "bound0 p \<Longrightarrow> qfree p" | |
| 307 | by (induct p, simp_all) | |
| 308 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 309 | definition djf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm" where
 | 
| 36853 | 310 | "djf f p q = (if q=T then T else if q=F then f p else | 
| 29789 | 311 | (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q))" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 312 | definition evaldjf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm" where
 | 
| 36853 | 313 | "evaldjf f ps = foldr (djf f) ps F" | 
| 29789 | 314 | |
| 315 | lemma djf_Or: "Ifm bs (djf f p q) = Ifm bs (Or (f p) q)" | |
| 316 | by (cases "q=T", simp add: djf_def,cases "q=F",simp add: djf_def) | |
| 317 | (cases "f p", simp_all add: Let_def djf_def) | |
| 318 | ||
| 319 | ||
| 320 | lemma djf_simps: | |
| 321 | "djf f p T = T" | |
| 322 | "djf f p F = f p" | |
| 323 | "q\<noteq>T \<Longrightarrow> q\<noteq>F \<Longrightarrow> djf f p q = (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q)" | |
| 324 | by (simp_all add: djf_def) | |
| 325 | ||
| 326 | lemma evaldjf_ex: "Ifm bs (evaldjf f ps) = (\<exists> p \<in> set ps. Ifm bs (f p))" | |
| 327 | by(induct ps, simp_all add: evaldjf_def djf_Or) | |
| 328 | ||
| 329 | lemma evaldjf_bound0: | |
| 330 | assumes nb: "\<forall> x\<in> set xs. bound0 (f x)" | |
| 331 | shows "bound0 (evaldjf f xs)" | |
| 332 | using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto) | |
| 333 | ||
| 334 | lemma evaldjf_qf: | |
| 335 | assumes nb: "\<forall> x\<in> set xs. qfree (f x)" | |
| 336 | shows "qfree (evaldjf f xs)" | |
| 337 | using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto) | |
| 338 | ||
| 36853 | 339 | fun disjuncts :: "fm \<Rightarrow> fm list" where | 
| 340 | "disjuncts (Or p q) = disjuncts p @ disjuncts q" | |
| 341 | | "disjuncts F = []" | |
| 342 | | "disjuncts p = [p]" | |
| 29789 | 343 | |
| 344 | lemma disjuncts: "(\<exists> q\<in> set (disjuncts p). Ifm bs q) = Ifm bs p" | |
| 345 | by(induct p rule: disjuncts.induct, auto) | |
| 346 | ||
| 347 | lemma disjuncts_nb: "bound0 p \<Longrightarrow> \<forall> q\<in> set (disjuncts p). bound0 q" | |
| 348 | proof- | |
| 349 | assume nb: "bound0 p" | |
| 350 | hence "list_all bound0 (disjuncts p)" by (induct p rule:disjuncts.induct,auto) | |
| 351 | thus ?thesis by (simp only: list_all_iff) | |
| 352 | qed | |
| 353 | ||
| 354 | lemma disjuncts_qf: "qfree p \<Longrightarrow> \<forall> q\<in> set (disjuncts p). qfree q" | |
| 355 | proof- | |
| 356 | assume qf: "qfree p" | |
| 357 | hence "list_all qfree (disjuncts p)" | |
| 358 | by (induct p rule: disjuncts.induct, auto) | |
| 359 | thus ?thesis by (simp only: list_all_iff) | |
| 360 | qed | |
| 361 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 362 | definition DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" where | 
| 36853 | 363 | "DJ f p = evaldjf f (disjuncts p)" | 
| 29789 | 364 | |
| 365 | lemma DJ: assumes fdj: "\<forall> p q. Ifm bs (f (Or p q)) = Ifm bs (Or (f p) (f q))" | |
| 366 | and fF: "f F = F" | |
| 367 | shows "Ifm bs (DJ f p) = Ifm bs (f p)" | |
| 368 | proof- | |
| 369 | have "Ifm bs (DJ f p) = (\<exists> q \<in> set (disjuncts p). Ifm bs (f q))" | |
| 370 | by (simp add: DJ_def evaldjf_ex) | |
| 371 | also have "\<dots> = Ifm bs (f p)" using fdj fF by (induct p rule: disjuncts.induct, auto) | |
| 372 | finally show ?thesis . | |
| 373 | qed | |
| 374 | ||
| 375 | lemma DJ_qf: assumes | |
| 376 | fqf: "\<forall> p. qfree p \<longrightarrow> qfree (f p)" | |
| 377 | shows "\<forall>p. qfree p \<longrightarrow> qfree (DJ f p) " | |
| 378 | proof(clarify) | |
| 379 | fix p assume qf: "qfree p" | |
| 380 | have th: "DJ f p = evaldjf f (disjuncts p)" by (simp add: DJ_def) | |
| 381 | from disjuncts_qf[OF qf] have "\<forall> q\<in> set (disjuncts p). qfree q" . | |
| 382 | with fqf have th':"\<forall> q\<in> set (disjuncts p). qfree (f q)" by blast | |
| 383 | ||
| 384 | from evaldjf_qf[OF th'] th show "qfree (DJ f p)" by simp | |
| 385 | qed | |
| 386 | ||
| 387 | lemma DJ_qe: assumes qe: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))" | |
| 388 | shows "\<forall> bs p. qfree p \<longrightarrow> qfree (DJ qe p) \<and> (Ifm bs ((DJ qe p)) = Ifm bs (E p))" | |
| 389 | proof(clarify) | |
| 390 | fix p::fm and bs | |
| 391 | assume qf: "qfree p" | |
| 392 | from qe have qth: "\<forall> p. qfree p \<longrightarrow> qfree (qe p)" by blast | |
| 393 | from DJ_qf[OF qth] qf have qfth:"qfree (DJ qe p)" by auto | |
| 394 | have "Ifm bs (DJ qe p) = (\<exists> q\<in> set (disjuncts p). Ifm bs (qe q))" | |
| 395 | by (simp add: DJ_def evaldjf_ex) | |
| 396 | also have "\<dots> = (\<exists> q \<in> set(disjuncts p). Ifm bs (E q))" using qe disjuncts_qf[OF qf] by auto | |
| 397 | also have "\<dots> = Ifm bs (E p)" by (induct p rule: disjuncts.induct, auto) | |
| 398 | finally show "qfree (DJ qe p) \<and> Ifm bs (DJ qe p) = Ifm bs (E p)" using qfth by blast | |
| 399 | qed | |
| 400 | (* Simplification *) | |
| 36853 | 401 | |
| 402 | fun maxcoeff:: "num \<Rightarrow> int" where | |
| 29789 | 403 | "maxcoeff (C i) = abs i" | 
| 36853 | 404 | | "maxcoeff (CN n c t) = max (abs c) (maxcoeff t)" | 
| 405 | | "maxcoeff t = 1" | |
| 29789 | 406 | |
| 407 | lemma maxcoeff_pos: "maxcoeff t \<ge> 0" | |
| 408 | by (induct t rule: maxcoeff.induct, auto) | |
| 409 | ||
| 36853 | 410 | fun numgcdh:: "num \<Rightarrow> int \<Rightarrow> int" where | 
| 31706 | 411 | "numgcdh (C i) = (\<lambda>g. gcd i g)" | 
| 36853 | 412 | | "numgcdh (CN n c t) = (\<lambda>g. gcd c (numgcdh t g))" | 
| 413 | | "numgcdh t = (\<lambda>g. 1)" | |
| 414 | ||
| 415 | definition numgcd :: "num \<Rightarrow> int" where | |
| 416 | "numgcd t = numgcdh t (maxcoeff t)" | |
| 29789 | 417 | |
| 36853 | 418 | fun reducecoeffh:: "num \<Rightarrow> int \<Rightarrow> num" where | 
| 29789 | 419 | "reducecoeffh (C i) = (\<lambda> g. C (i div g))" | 
| 36853 | 420 | | "reducecoeffh (CN n c t) = (\<lambda> g. CN n (c div g) (reducecoeffh t g))" | 
| 421 | | "reducecoeffh t = (\<lambda>g. t)" | |
| 29789 | 422 | |
| 36853 | 423 | definition reducecoeff :: "num \<Rightarrow> num" where | 
| 424 | "reducecoeff t = | |
| 29789 | 425 | (let g = numgcd t in | 
| 426 | if g = 0 then C 0 else if g=1 then t else reducecoeffh t g)" | |
| 427 | ||
| 36853 | 428 | fun dvdnumcoeff:: "num \<Rightarrow> int \<Rightarrow> bool" where | 
| 29789 | 429 | "dvdnumcoeff (C i) = (\<lambda> g. g dvd i)" | 
| 36853 | 430 | | "dvdnumcoeff (CN n c t) = (\<lambda> g. g dvd c \<and> (dvdnumcoeff t g))" | 
| 431 | | "dvdnumcoeff t = (\<lambda>g. False)" | |
| 29789 | 432 | |
| 433 | lemma dvdnumcoeff_trans: | |
| 434 | assumes gdg: "g dvd g'" and dgt':"dvdnumcoeff t g'" | |
| 435 | shows "dvdnumcoeff t g" | |
| 436 | using dgt' gdg | |
| 30042 | 437 | by (induct t rule: dvdnumcoeff.induct, simp_all add: gdg dvd_trans[OF gdg]) | 
| 29789 | 438 | |
| 30042 | 439 | declare dvd_trans [trans add] | 
| 29789 | 440 | |
| 441 | lemma natabs0: "(nat (abs x) = 0) = (x = 0)" | |
| 442 | by arith | |
| 443 | ||
| 444 | lemma numgcd0: | |
| 445 | assumes g0: "numgcd t = 0" | |
| 446 | shows "Inum bs t = 0" | |
| 447 | using g0[simplified numgcd_def] | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32441diff
changeset | 448 | by (induct t rule: numgcdh.induct, auto simp add: natabs0 maxcoeff_pos min_max.sup_absorb2) | 
| 29789 | 449 | |
| 450 | lemma numgcdh_pos: assumes gp: "g \<ge> 0" shows "numgcdh t g \<ge> 0" | |
| 451 | using gp | |
| 31706 | 452 | by (induct t rule: numgcdh.induct, auto) | 
| 29789 | 453 | |
| 454 | lemma numgcd_pos: "numgcd t \<ge>0" | |
| 455 | by (simp add: numgcd_def numgcdh_pos maxcoeff_pos) | |
| 456 | ||
| 457 | lemma reducecoeffh: | |
| 458 | assumes gt: "dvdnumcoeff t g" and gp: "g > 0" | |
| 459 | shows "real g *(Inum bs (reducecoeffh t g)) = Inum bs t" | |
| 460 | using gt | |
| 41807 | 461 | proof (induct t rule: reducecoeffh.induct) | 
| 462 | case (1 i) | |
| 463 | hence gd: "g dvd i" by simp | |
| 29789 | 464 | from gp have gnz: "g \<noteq> 0" by simp | 
| 41807 | 465 | with assms show ?case by (simp add: real_of_int_div[OF gnz gd]) | 
| 29789 | 466 | next | 
| 41807 | 467 | case (2 n c t) | 
| 468 | hence gd: "g dvd c" by simp | |
| 29789 | 469 | from gp have gnz: "g \<noteq> 0" by simp | 
| 41807 | 470 | from assms 2 show ?case by (simp add: real_of_int_div[OF gnz gd] algebra_simps) | 
| 29789 | 471 | qed (auto simp add: numgcd_def gp) | 
| 36853 | 472 | |
| 473 | fun ismaxcoeff:: "num \<Rightarrow> int \<Rightarrow> bool" where | |
| 29789 | 474 | "ismaxcoeff (C i) = (\<lambda> x. abs i \<le> x)" | 
| 36853 | 475 | | "ismaxcoeff (CN n c t) = (\<lambda>x. abs c \<le> x \<and> (ismaxcoeff t x))" | 
| 476 | | "ismaxcoeff t = (\<lambda>x. True)" | |
| 29789 | 477 | |
| 478 | lemma ismaxcoeff_mono: "ismaxcoeff t c \<Longrightarrow> c \<le> c' \<Longrightarrow> ismaxcoeff t c'" | |
| 41807 | 479 | by (induct t rule: ismaxcoeff.induct) auto | 
| 29789 | 480 | |
| 481 | lemma maxcoeff_ismaxcoeff: "ismaxcoeff t (maxcoeff t)" | |
| 482 | proof (induct t rule: maxcoeff.induct) | |
| 483 | case (2 n c t) | |
| 484 | hence H:"ismaxcoeff t (maxcoeff t)" . | |
| 41807 | 485 | have thh: "maxcoeff t \<le> max (abs c) (maxcoeff t)" by simp | 
| 486 | from ismaxcoeff_mono[OF H thh] show ?case by simp | |
| 29789 | 487 | qed simp_all | 
| 488 | ||
| 31706 | 489 | lemma zgcd_gt1: "gcd i j > (1::int) \<Longrightarrow> ((abs i > 1 \<and> abs j > 1) \<or> (abs i = 0 \<and> abs j > 1) \<or> (abs i > 1 \<and> abs j = 0))" | 
| 490 | apply (cases "abs i = 0", simp_all add: gcd_int_def) | |
| 29789 | 491 | apply (cases "abs j = 0", simp_all) | 
| 492 | apply (cases "abs i = 1", simp_all) | |
| 493 | apply (cases "abs j = 1", simp_all) | |
| 494 | apply auto | |
| 495 | done | |
| 496 | lemma numgcdh0:"numgcdh t m = 0 \<Longrightarrow> m =0" | |
| 31706 | 497 | by (induct t rule: numgcdh.induct, auto) | 
| 29789 | 498 | |
| 499 | lemma dvdnumcoeff_aux: | |
| 500 | assumes "ismaxcoeff t m" and mp:"m \<ge> 0" and "numgcdh t m > 1" | |
| 501 | shows "dvdnumcoeff t (numgcdh t m)" | |
| 41807 | 502 | using assms | 
| 29789 | 503 | proof(induct t rule: numgcdh.induct) | 
| 504 | case (2 n c t) | |
| 505 | let ?g = "numgcdh t m" | |
| 41807 | 506 | from 2 have th:"gcd c ?g > 1" by simp | 
| 29789 | 507 | from zgcd_gt1[OF th] numgcdh_pos[OF mp, where t="t"] | 
| 508 | have "(abs c > 1 \<and> ?g > 1) \<or> (abs c = 0 \<and> ?g > 1) \<or> (abs c > 1 \<and> ?g = 0)" by simp | |
| 41807 | 509 |   moreover {assume "abs c > 1" and gp: "?g > 1" with 2
 | 
| 29789 | 510 | have th: "dvdnumcoeff t ?g" by simp | 
| 31706 | 511 | have th': "gcd c ?g dvd ?g" by simp | 
| 512 | from dvdnumcoeff_trans[OF th' th] have ?case by simp } | |
| 29789 | 513 |   moreover {assume "abs c = 0 \<and> ?g > 1"
 | 
| 41807 | 514 | with 2 have th: "dvdnumcoeff t ?g" by simp | 
| 31706 | 515 | have th': "gcd c ?g dvd ?g" by simp | 
| 516 | from dvdnumcoeff_trans[OF th' th] have ?case by simp | |
| 29789 | 517 | hence ?case by simp } | 
| 518 |   moreover {assume "abs c > 1" and g0:"?g = 0" 
 | |
| 41807 | 519 | from numgcdh0[OF g0] have "m=0". with 2 g0 have ?case by simp } | 
| 29789 | 520 | ultimately show ?case by blast | 
| 31706 | 521 | qed auto | 
| 29789 | 522 | |
| 523 | lemma dvdnumcoeff_aux2: | |
| 41807 | 524 | assumes "numgcd t > 1" | 
| 525 | shows "dvdnumcoeff t (numgcd t) \<and> numgcd t > 0" | |
| 526 | using assms | |
| 29789 | 527 | proof (simp add: numgcd_def) | 
| 528 | let ?mc = "maxcoeff t" | |
| 529 | let ?g = "numgcdh t ?mc" | |
| 530 | have th1: "ismaxcoeff t ?mc" by (rule maxcoeff_ismaxcoeff) | |
| 531 | have th2: "?mc \<ge> 0" by (rule maxcoeff_pos) | |
| 532 | assume H: "numgcdh t ?mc > 1" | |
| 533 | from dvdnumcoeff_aux[OF th1 th2 H] show "dvdnumcoeff t ?g" . | |
| 534 | qed | |
| 535 | ||
| 536 | lemma reducecoeff: "real (numgcd t) * (Inum bs (reducecoeff t)) = Inum bs t" | |
| 537 | proof- | |
| 538 | let ?g = "numgcd t" | |
| 539 | have "?g \<ge> 0" by (simp add: numgcd_pos) | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 540 | hence "?g = 0 \<or> ?g = 1 \<or> ?g > 1" by auto | 
| 29789 | 541 |   moreover {assume "?g = 0" hence ?thesis by (simp add: numgcd0)} 
 | 
| 542 |   moreover {assume "?g = 1" hence ?thesis by (simp add: reducecoeff_def)} 
 | |
| 543 |   moreover { assume g1:"?g > 1"
 | |
| 544 | from dvdnumcoeff_aux2[OF g1] have th1:"dvdnumcoeff t ?g" and g0: "?g > 0" by blast+ | |
| 545 | from reducecoeffh[OF th1 g0, where bs="bs"] g1 have ?thesis | |
| 546 | by (simp add: reducecoeff_def Let_def)} | |
| 547 | ultimately show ?thesis by blast | |
| 548 | qed | |
| 549 | ||
| 550 | lemma reducecoeffh_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeffh t g)" | |
| 551 | by (induct t rule: reducecoeffh.induct, auto) | |
| 552 | ||
| 553 | lemma reducecoeff_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeff t)" | |
| 554 | using reducecoeffh_numbound0 by (simp add: reducecoeff_def Let_def) | |
| 555 | ||
| 556 | consts | |
| 557 | numadd:: "num \<times> num \<Rightarrow> num" | |
| 36853 | 558 | |
| 29789 | 559 | recdef numadd "measure (\<lambda> (t,s). size t + size s)" | 
| 560 | "numadd (CN n1 c1 r1,CN n2 c2 r2) = | |
| 561 | (if n1=n2 then | |
| 562 | (let c = c1 + c2 | |
| 563 | in (if c=0 then numadd(r1,r2) else CN n1 c (numadd (r1,r2)))) | |
| 564 | else if n1 \<le> n2 then (CN n1 c1 (numadd (r1,CN n2 c2 r2))) | |
| 565 | else (CN n2 c2 (numadd (CN n1 c1 r1,r2))))" | |
| 566 | "numadd (CN n1 c1 r1,t) = CN n1 c1 (numadd (r1, t))" | |
| 567 | "numadd (t,CN n2 c2 r2) = CN n2 c2 (numadd (t,r2))" | |
| 568 | "numadd (C b1, C b2) = C (b1+b2)" | |
| 569 | "numadd (a,b) = Add a b" | |
| 570 | ||
| 571 | lemma numadd[simp]: "Inum bs (numadd (t,s)) = Inum bs (Add t s)" | |
| 572 | apply (induct t s rule: numadd.induct, simp_all add: Let_def) | |
| 573 | apply (case_tac "c1+c2 = 0",case_tac "n1 \<le> n2", simp_all) | |
| 574 | apply (case_tac "n1 = n2", simp_all add: algebra_simps) | |
| 575 | by (simp only: left_distrib[symmetric],simp) | |
| 576 | ||
| 577 | lemma numadd_nb[simp]: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numadd (t,s))" | |
| 578 | by (induct t s rule: numadd.induct, auto simp add: Let_def) | |
| 579 | ||
| 36853 | 580 | fun nummul:: "num \<Rightarrow> int \<Rightarrow> num" where | 
| 29789 | 581 | "nummul (C j) = (\<lambda> i. C (i*j))" | 
| 36853 | 582 | | "nummul (CN n c a) = (\<lambda> i. CN n (i*c) (nummul a i))" | 
| 583 | | "nummul t = (\<lambda> i. Mul i t)" | |
| 29789 | 584 | |
| 585 | lemma nummul[simp]: "\<And> i. Inum bs (nummul t i) = Inum bs (Mul i t)" | |
| 586 | by (induct t rule: nummul.induct, auto simp add: algebra_simps) | |
| 587 | ||
| 588 | lemma nummul_nb[simp]: "\<And> i. numbound0 t \<Longrightarrow> numbound0 (nummul t i)" | |
| 589 | by (induct t rule: nummul.induct, auto ) | |
| 590 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 591 | definition numneg :: "num \<Rightarrow> num" where | 
| 36853 | 592 | "numneg t = nummul t (- 1)" | 
| 29789 | 593 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 594 | definition numsub :: "num \<Rightarrow> num \<Rightarrow> num" where | 
| 36853 | 595 | "numsub s t = (if s = t then C 0 else numadd (s,numneg t))" | 
| 29789 | 596 | |
| 597 | lemma numneg[simp]: "Inum bs (numneg t) = Inum bs (Neg t)" | |
| 598 | using numneg_def by simp | |
| 599 | ||
| 600 | lemma numneg_nb[simp]: "numbound0 t \<Longrightarrow> numbound0 (numneg t)" | |
| 601 | using numneg_def by simp | |
| 602 | ||
| 603 | lemma numsub[simp]: "Inum bs (numsub a b) = Inum bs (Sub a b)" | |
| 604 | using numsub_def by simp | |
| 605 | ||
| 606 | lemma numsub_nb[simp]: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numsub t s)" | |
| 607 | using numsub_def by simp | |
| 608 | ||
| 36853 | 609 | primrec simpnum:: "num \<Rightarrow> num" where | 
| 29789 | 610 | "simpnum (C j) = C j" | 
| 36853 | 611 | | "simpnum (Bound n) = CN n 1 (C 0)" | 
| 612 | | "simpnum (Neg t) = numneg (simpnum t)" | |
| 613 | | "simpnum (Add t s) = numadd (simpnum t,simpnum s)" | |
| 614 | | "simpnum (Sub t s) = numsub (simpnum t) (simpnum s)" | |
| 615 | | "simpnum (Mul i t) = (if i = 0 then (C 0) else nummul (simpnum t) i)" | |
| 616 | | "simpnum (CN n c t) = (if c = 0 then simpnum t else numadd (CN n c (C 0),simpnum t))" | |
| 29789 | 617 | |
| 618 | lemma simpnum_ci[simp]: "Inum bs (simpnum t) = Inum bs t" | |
| 36853 | 619 | by (induct t) simp_all | 
| 29789 | 620 | |
| 621 | lemma simpnum_numbound0[simp]: | |
| 622 | "numbound0 t \<Longrightarrow> numbound0 (simpnum t)" | |
| 36853 | 623 | by (induct t) simp_all | 
| 29789 | 624 | |
| 36853 | 625 | fun nozerocoeff:: "num \<Rightarrow> bool" where | 
| 29789 | 626 | "nozerocoeff (C c) = True" | 
| 36853 | 627 | | "nozerocoeff (CN n c t) = (c\<noteq>0 \<and> nozerocoeff t)" | 
| 628 | | "nozerocoeff t = True" | |
| 29789 | 629 | |
| 630 | lemma numadd_nz : "nozerocoeff a \<Longrightarrow> nozerocoeff b \<Longrightarrow> nozerocoeff (numadd (a,b))" | |
| 631 | by (induct a b rule: numadd.induct,auto simp add: Let_def) | |
| 632 | ||
| 633 | lemma nummul_nz : "\<And> i. i\<noteq>0 \<Longrightarrow> nozerocoeff a \<Longrightarrow> nozerocoeff (nummul a i)" | |
| 634 | by (induct a rule: nummul.induct,auto simp add: Let_def numadd_nz) | |
| 635 | ||
| 636 | lemma numneg_nz : "nozerocoeff a \<Longrightarrow> nozerocoeff (numneg a)" | |
| 637 | by (simp add: numneg_def nummul_nz) | |
| 638 | ||
| 639 | lemma numsub_nz: "nozerocoeff a \<Longrightarrow> nozerocoeff b \<Longrightarrow> nozerocoeff (numsub a b)" | |
| 640 | by (simp add: numsub_def numneg_nz numadd_nz) | |
| 641 | ||
| 642 | lemma simpnum_nz: "nozerocoeff (simpnum t)" | |
| 36853 | 643 | by(induct t) (simp_all add: numadd_nz numneg_nz numsub_nz nummul_nz) | 
| 29789 | 644 | |
| 645 | lemma maxcoeff_nz: "nozerocoeff t \<Longrightarrow> maxcoeff t = 0 \<Longrightarrow> t = C 0" | |
| 646 | proof (induct t rule: maxcoeff.induct) | |
| 647 | case (2 n c t) | |
| 41807 | 648 | hence cnz: "c \<noteq>0" and mx: "max (abs c) (maxcoeff t) = 0" by simp_all | 
| 649 | have "max (abs c) (maxcoeff t) \<ge> abs c" by simp | |
| 29789 | 650 | with cnz have "max (abs c) (maxcoeff t) > 0" by arith | 
| 41807 | 651 | with 2 show ?case by simp | 
| 29789 | 652 | qed auto | 
| 653 | ||
| 654 | lemma numgcd_nz: assumes nz: "nozerocoeff t" and g0: "numgcd t = 0" shows "t = C 0" | |
| 655 | proof- | |
| 656 | from g0 have th:"numgcdh t (maxcoeff t) = 0" by (simp add: numgcd_def) | |
| 657 | from numgcdh0[OF th] have th:"maxcoeff t = 0" . | |
| 658 | from maxcoeff_nz[OF nz th] show ?thesis . | |
| 659 | qed | |
| 660 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 661 | definition simp_num_pair :: "(num \<times> int) \<Rightarrow> num \<times> int" where | 
| 36853 | 662 | "simp_num_pair = (\<lambda> (t,n). (if n = 0 then (C 0, 0) else | 
| 29789 | 663 | (let t' = simpnum t ; g = numgcd t' in | 
| 31706 | 664 | if g > 1 then (let g' = gcd n g in | 
| 29789 | 665 | if g' = 1 then (t',n) | 
| 666 | else (reducecoeffh t' g', n div g')) | |
| 667 | else (t',n))))" | |
| 668 | ||
| 669 | lemma simp_num_pair_ci: | |
| 670 | shows "((\<lambda> (t,n). Inum bs t / real n) (simp_num_pair (t,n))) = ((\<lambda> (t,n). Inum bs t / real n) (t,n))" | |
| 671 | (is "?lhs = ?rhs") | |
| 672 | proof- | |
| 673 | let ?t' = "simpnum t" | |
| 674 | let ?g = "numgcd ?t'" | |
| 31706 | 675 | let ?g' = "gcd n ?g" | 
| 29789 | 676 |   {assume nz: "n = 0" hence ?thesis by (simp add: Let_def simp_num_pair_def)}
 | 
| 677 | moreover | |
| 678 |   { assume nnz: "n \<noteq> 0"
 | |
| 41807 | 679 |     {assume "\<not> ?g > 1" hence ?thesis by (simp add: Let_def simp_num_pair_def simpnum_ci) }
 | 
| 29789 | 680 | moreover | 
| 681 |     {assume g1:"?g>1" hence g0: "?g > 0" by simp
 | |
| 31706 | 682 | from g1 nnz have gp0: "?g' \<noteq> 0" by simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31706diff
changeset | 683 | hence g'p: "?g' > 0" using gcd_ge_0_int[where x="n" and y="numgcd ?t'"] by arith | 
| 29789 | 684 | hence "?g'= 1 \<or> ?g' > 1" by arith | 
| 685 |       moreover {assume "?g'=1" hence ?thesis by (simp add: Let_def simp_num_pair_def simpnum_ci)}
 | |
| 686 |       moreover {assume g'1:"?g'>1"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 687 | from dvdnumcoeff_aux2[OF g1] have th1:"dvdnumcoeff ?t' ?g" .. | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 688 | let ?tt = "reducecoeffh ?t' ?g'" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 689 | let ?t = "Inum bs ?tt" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 690 | have gpdg: "?g' dvd ?g" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 691 | have gpdd: "?g' dvd n" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 692 | have gpdgp: "?g' dvd ?g'" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 693 | from reducecoeffh[OF dvdnumcoeff_trans[OF gpdg th1] g'p] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 694 | have th2:"real ?g' * ?t = Inum bs ?t'" by simp | 
| 41807 | 695 | from g1 g'1 have "?lhs = ?t / real (n div ?g')" by (simp add: simp_num_pair_def Let_def) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 696 | also have "\<dots> = (real ?g' * ?t) / (real ?g' * (real (n div ?g')))" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 697 | also have "\<dots> = (Inum bs ?t' / real n)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 698 | using real_of_int_div[OF gp0 gpdd] th2 gp0 by simp | 
| 41807 | 699 | finally have "?lhs = Inum bs t / real n" by simp | 
| 700 | then have ?thesis by (simp add: simp_num_pair_def) } | |
| 701 | ultimately have ?thesis by blast } | |
| 702 | ultimately have ?thesis by blast } | |
| 29789 | 703 | ultimately show ?thesis by blast | 
| 704 | qed | |
| 705 | ||
| 706 | lemma simp_num_pair_l: assumes tnb: "numbound0 t" and np: "n >0" and tn: "simp_num_pair (t,n) = (t',n')" | |
| 707 | shows "numbound0 t' \<and> n' >0" | |
| 708 | proof- | |
| 41807 | 709 | let ?t' = "simpnum t" | 
| 29789 | 710 | let ?g = "numgcd ?t'" | 
| 31706 | 711 | let ?g' = "gcd n ?g" | 
| 41807 | 712 |   { assume nz: "n = 0" hence ?thesis using assms by (simp add: Let_def simp_num_pair_def) }
 | 
| 29789 | 713 | moreover | 
| 714 |   { assume nnz: "n \<noteq> 0"
 | |
| 41807 | 715 |     { assume "\<not> ?g > 1" hence ?thesis using assms
 | 
| 716 | by (auto simp add: Let_def simp_num_pair_def simpnum_numbound0) } | |
| 29789 | 717 | moreover | 
| 41807 | 718 |     { assume g1:"?g>1" hence g0: "?g > 0" by simp
 | 
| 31706 | 719 | from g1 nnz have gp0: "?g' \<noteq> 0" by simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31706diff
changeset | 720 | hence g'p: "?g' > 0" using gcd_ge_0_int[where x="n" and y="numgcd ?t'"] by arith | 
| 29789 | 721 | hence "?g'= 1 \<or> ?g' > 1" by arith | 
| 41807 | 722 |       moreover {
 | 
| 723 | assume "?g' = 1" hence ?thesis using assms g1 | |
| 724 | by (auto simp add: Let_def simp_num_pair_def simpnum_numbound0) } | |
| 725 |       moreover {
 | |
| 726 | assume g'1: "?g' > 1" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 727 | have gpdg: "?g' dvd ?g" by simp | 
| 41807 | 728 | have gpdd: "?g' dvd n" by simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 729 | have gpdgp: "?g' dvd ?g'" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 730 | from zdvd_imp_le[OF gpdd np] have g'n: "?g' \<le> n" . | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 731 | from zdiv_mono1[OF g'n g'p, simplified zdiv_self[OF gp0]] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 732 | have "n div ?g' >0" by simp | 
| 41807 | 733 | hence ?thesis using assms g1 g'1 | 
| 734 | by(auto simp add: simp_num_pair_def Let_def reducecoeffh_numbound0 simpnum_numbound0) } | |
| 735 | ultimately have ?thesis by blast } | |
| 736 | ultimately have ?thesis by blast } | |
| 29789 | 737 | ultimately show ?thesis by blast | 
| 738 | qed | |
| 739 | ||
| 36853 | 740 | fun simpfm :: "fm \<Rightarrow> fm" where | 
| 29789 | 741 | "simpfm (And p q) = conj (simpfm p) (simpfm q)" | 
| 36853 | 742 | | "simpfm (Or p q) = disj (simpfm p) (simpfm q)" | 
| 743 | | "simpfm (Imp p q) = imp (simpfm p) (simpfm q)" | |
| 744 | | "simpfm (Iff p q) = iff (simpfm p) (simpfm q)" | |
| 745 | | "simpfm (NOT p) = not (simpfm p)" | |
| 746 | | "simpfm (Lt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v < 0) then T else F | |
| 29789 | 747 | | _ \<Rightarrow> Lt a')" | 
| 36853 | 748 | | "simpfm (Le a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<le> 0) then T else F | _ \<Rightarrow> Le a')" | 
| 749 | | "simpfm (Gt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v > 0) then T else F | _ \<Rightarrow> Gt a')" | |
| 750 | | "simpfm (Ge a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<ge> 0) then T else F | _ \<Rightarrow> Ge a')" | |
| 751 | | "simpfm (Eq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v = 0) then T else F | _ \<Rightarrow> Eq a')" | |
| 752 | | "simpfm (NEq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<noteq> 0) then T else F | _ \<Rightarrow> NEq a')" | |
| 753 | | "simpfm p = p" | |
| 29789 | 754 | lemma simpfm: "Ifm bs (simpfm p) = Ifm bs p" | 
| 755 | proof(induct p rule: simpfm.induct) | |
| 756 | case (6 a) let ?sa = "simpnum a" from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 757 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 758 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 759 | by (cases ?sa, simp_all add: Let_def)} | |
| 760 | ultimately show ?case by blast | |
| 761 | next | |
| 762 | case (7 a) let ?sa = "simpnum a" | |
| 763 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 764 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 765 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 766 | by (cases ?sa, simp_all add: Let_def)} | |
| 767 | ultimately show ?case by blast | |
| 768 | next | |
| 769 | case (8 a) let ?sa = "simpnum a" | |
| 770 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 771 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 772 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 773 | by (cases ?sa, simp_all add: Let_def)} | |
| 774 | ultimately show ?case by blast | |
| 775 | next | |
| 776 | case (9 a) let ?sa = "simpnum a" | |
| 777 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 778 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 779 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 780 | by (cases ?sa, simp_all add: Let_def)} | |
| 781 | ultimately show ?case by blast | |
| 782 | next | |
| 783 | case (10 a) let ?sa = "simpnum a" | |
| 784 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 785 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 786 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 787 | by (cases ?sa, simp_all add: Let_def)} | |
| 788 | ultimately show ?case by blast | |
| 789 | next | |
| 790 | case (11 a) let ?sa = "simpnum a" | |
| 791 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 792 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 793 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 794 | by (cases ?sa, simp_all add: Let_def)} | |
| 795 | ultimately show ?case by blast | |
| 796 | qed (induct p rule: simpfm.induct, simp_all add: conj disj imp iff not) | |
| 797 | ||
| 798 | ||
| 799 | lemma simpfm_bound0: "bound0 p \<Longrightarrow> bound0 (simpfm p)" | |
| 800 | proof(induct p rule: simpfm.induct) | |
| 801 | case (6 a) hence nb: "numbound0 a" by simp | |
| 802 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 803 | thus ?case by (cases "simpnum a", auto simp add: Let_def) | |
| 804 | next | |
| 805 | case (7 a) hence nb: "numbound0 a" by simp | |
| 806 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 807 | thus ?case by (cases "simpnum a", auto simp add: Let_def) | |
| 808 | next | |
| 809 | case (8 a) hence nb: "numbound0 a" by simp | |
| 810 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 811 | thus ?case by (cases "simpnum a", auto simp add: Let_def) | |
| 812 | next | |
| 813 | case (9 a) hence nb: "numbound0 a" by simp | |
| 814 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 815 | thus ?case by (cases "simpnum a", auto simp add: Let_def) | |
| 816 | next | |
| 817 | case (10 a) hence nb: "numbound0 a" by simp | |
| 818 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 819 | thus ?case by (cases "simpnum a", auto simp add: Let_def) | |
| 820 | next | |
| 821 | case (11 a) hence nb: "numbound0 a" by simp | |
| 822 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 823 | thus ?case by (cases "simpnum a", auto simp add: Let_def) | |
| 824 | qed(auto simp add: disj_def imp_def iff_def conj_def not_bn) | |
| 825 | ||
| 826 | lemma simpfm_qf: "qfree p \<Longrightarrow> qfree (simpfm p)" | |
| 827 | by (induct p rule: simpfm.induct, auto simp add: disj_qf imp_qf iff_qf conj_qf not_qf Let_def) | |
| 828 | (case_tac "simpnum a",auto)+ | |
| 829 | ||
| 830 | consts prep :: "fm \<Rightarrow> fm" | |
| 831 | recdef prep "measure fmsize" | |
| 832 | "prep (E T) = T" | |
| 833 | "prep (E F) = F" | |
| 834 | "prep (E (Or p q)) = disj (prep (E p)) (prep (E q))" | |
| 835 | "prep (E (Imp p q)) = disj (prep (E (NOT p))) (prep (E q))" | |
| 836 | "prep (E (Iff p q)) = disj (prep (E (And p q))) (prep (E (And (NOT p) (NOT q))))" | |
| 837 | "prep (E (NOT (And p q))) = disj (prep (E (NOT p))) (prep (E(NOT q)))" | |
| 838 | "prep (E (NOT (Imp p q))) = prep (E (And p (NOT q)))" | |
| 839 | "prep (E (NOT (Iff p q))) = disj (prep (E (And p (NOT q)))) (prep (E(And (NOT p) q)))" | |
| 840 | "prep (E p) = E (prep p)" | |
| 841 | "prep (A (And p q)) = conj (prep (A p)) (prep (A q))" | |
| 842 | "prep (A p) = prep (NOT (E (NOT p)))" | |
| 843 | "prep (NOT (NOT p)) = prep p" | |
| 844 | "prep (NOT (And p q)) = disj (prep (NOT p)) (prep (NOT q))" | |
| 845 | "prep (NOT (A p)) = prep (E (NOT p))" | |
| 846 | "prep (NOT (Or p q)) = conj (prep (NOT p)) (prep (NOT q))" | |
| 847 | "prep (NOT (Imp p q)) = conj (prep p) (prep (NOT q))" | |
| 848 | "prep (NOT (Iff p q)) = disj (prep (And p (NOT q))) (prep (And (NOT p) q))" | |
| 849 | "prep (NOT p) = not (prep p)" | |
| 850 | "prep (Or p q) = disj (prep p) (prep q)" | |
| 851 | "prep (And p q) = conj (prep p) (prep q)" | |
| 852 | "prep (Imp p q) = prep (Or (NOT p) q)" | |
| 853 | "prep (Iff p q) = disj (prep (And p q)) (prep (And (NOT p) (NOT q)))" | |
| 854 | "prep p = p" | |
| 855 | (hints simp add: fmsize_pos) | |
| 856 | lemma prep: "\<And> bs. Ifm bs (prep p) = Ifm bs p" | |
| 857 | by (induct p rule: prep.induct, auto) | |
| 858 | ||
| 859 | (* Generic quantifier elimination *) | |
| 36853 | 860 | function (sequential) qelim :: "fm \<Rightarrow> (fm \<Rightarrow> fm) \<Rightarrow> fm" where | 
| 29789 | 861 | "qelim (E p) = (\<lambda> qe. DJ qe (qelim p qe))" | 
| 36853 | 862 | | "qelim (A p) = (\<lambda> qe. not (qe ((qelim (NOT p) qe))))" | 
| 863 | | "qelim (NOT p) = (\<lambda> qe. not (qelim p qe))" | |
| 864 | | "qelim (And p q) = (\<lambda> qe. conj (qelim p qe) (qelim q qe))" | |
| 865 | | "qelim (Or p q) = (\<lambda> qe. disj (qelim p qe) (qelim q qe))" | |
| 866 | | "qelim (Imp p q) = (\<lambda> qe. imp (qelim p qe) (qelim q qe))" | |
| 867 | | "qelim (Iff p q) = (\<lambda> qe. iff (qelim p qe) (qelim q qe))" | |
| 868 | | "qelim p = (\<lambda> y. simpfm p)" | |
| 869 | by pat_completeness auto | |
| 870 | termination qelim by (relation "measure fmsize") simp_all | |
| 29789 | 871 | |
| 872 | lemma qelim_ci: | |
| 873 | assumes qe_inv: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))" | |
| 874 | shows "\<And> bs. qfree (qelim p qe) \<and> (Ifm bs (qelim p qe) = Ifm bs p)" | |
| 875 | using qe_inv DJ_qe[OF qe_inv] | |
| 876 | by(induct p rule: qelim.induct) | |
| 877 | (auto simp add: not disj conj iff imp not_qf disj_qf conj_qf imp_qf iff_qf | |
| 878 | simpfm simpfm_qf simp del: simpfm.simps) | |
| 879 | ||
| 36853 | 880 | fun minusinf:: "fm \<Rightarrow> fm" (* Virtual substitution of -\<infinity>*) where | 
| 29789 | 881 | "minusinf (And p q) = conj (minusinf p) (minusinf q)" | 
| 36853 | 882 | | "minusinf (Or p q) = disj (minusinf p) (minusinf q)" | 
| 883 | | "minusinf (Eq (CN 0 c e)) = F" | |
| 884 | | "minusinf (NEq (CN 0 c e)) = T" | |
| 885 | | "minusinf (Lt (CN 0 c e)) = T" | |
| 886 | | "minusinf (Le (CN 0 c e)) = T" | |
| 887 | | "minusinf (Gt (CN 0 c e)) = F" | |
| 888 | | "minusinf (Ge (CN 0 c e)) = F" | |
| 889 | | "minusinf p = p" | |
| 29789 | 890 | |
| 36853 | 891 | fun plusinf:: "fm \<Rightarrow> fm" (* Virtual substitution of +\<infinity>*) where | 
| 29789 | 892 | "plusinf (And p q) = conj (plusinf p) (plusinf q)" | 
| 36853 | 893 | | "plusinf (Or p q) = disj (plusinf p) (plusinf q)" | 
| 894 | | "plusinf (Eq (CN 0 c e)) = F" | |
| 895 | | "plusinf (NEq (CN 0 c e)) = T" | |
| 896 | | "plusinf (Lt (CN 0 c e)) = F" | |
| 897 | | "plusinf (Le (CN 0 c e)) = F" | |
| 898 | | "plusinf (Gt (CN 0 c e)) = T" | |
| 899 | | "plusinf (Ge (CN 0 c e)) = T" | |
| 900 | | "plusinf p = p" | |
| 29789 | 901 | |
| 36853 | 902 | fun isrlfm :: "fm \<Rightarrow> bool" (* Linearity test for fm *) where | 
| 29789 | 903 | "isrlfm (And p q) = (isrlfm p \<and> isrlfm q)" | 
| 36853 | 904 | | "isrlfm (Or p q) = (isrlfm p \<and> isrlfm q)" | 
| 905 | | "isrlfm (Eq (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 906 | | "isrlfm (NEq (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 907 | | "isrlfm (Lt (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 908 | | "isrlfm (Le (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 909 | | "isrlfm (Gt (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 910 | | "isrlfm (Ge (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 911 | | "isrlfm p = (isatom p \<and> (bound0 p))" | |
| 29789 | 912 | |
| 913 | (* splits the bounded from the unbounded part*) | |
| 36853 | 914 | function (sequential) rsplit0 :: "num \<Rightarrow> int \<times> num" where | 
| 29789 | 915 | "rsplit0 (Bound 0) = (1,C 0)" | 
| 36853 | 916 | | "rsplit0 (Add a b) = (let (ca,ta) = rsplit0 a ; (cb,tb) = rsplit0 b | 
| 29789 | 917 | in (ca+cb, Add ta tb))" | 
| 36853 | 918 | | "rsplit0 (Sub a b) = rsplit0 (Add a (Neg b))" | 
| 919 | | "rsplit0 (Neg a) = (let (c,t) = rsplit0 a in (-c,Neg t))" | |
| 920 | | "rsplit0 (Mul c a) = (let (ca,ta) = rsplit0 a in (c*ca,Mul c ta))" | |
| 921 | | "rsplit0 (CN 0 c a) = (let (ca,ta) = rsplit0 a in (c+ca,ta))" | |
| 922 | | "rsplit0 (CN n c a) = (let (ca,ta) = rsplit0 a in (ca,CN n c ta))" | |
| 923 | | "rsplit0 t = (0,t)" | |
| 924 | by pat_completeness auto | |
| 925 | termination rsplit0 by (relation "measure num_size") simp_all | |
| 926 | ||
| 29789 | 927 | lemma rsplit0: | 
| 928 | shows "Inum bs ((split (CN 0)) (rsplit0 t)) = Inum bs t \<and> numbound0 (snd (rsplit0 t))" | |
| 929 | proof (induct t rule: rsplit0.induct) | |
| 930 | case (2 a b) | |
| 931 | let ?sa = "rsplit0 a" let ?sb = "rsplit0 b" | |
| 932 | let ?ca = "fst ?sa" let ?cb = "fst ?sb" | |
| 933 | let ?ta = "snd ?sa" let ?tb = "snd ?sb" | |
| 41807 | 934 | from 2 have nb: "numbound0 (snd(rsplit0 (Add a b)))" | 
| 36853 | 935 | by (cases "rsplit0 a") (auto simp add: Let_def split_def) | 
| 29789 | 936 | have "Inum bs ((split (CN 0)) (rsplit0 (Add a b))) = | 
| 937 | Inum bs ((split (CN 0)) ?sa)+Inum bs ((split (CN 0)) ?sb)" | |
| 938 | by (simp add: Let_def split_def algebra_simps) | |
| 41807 | 939 | also have "\<dots> = Inum bs a + Inum bs b" using 2 by (cases "rsplit0 a") auto | 
| 29789 | 940 | finally show ?case using nb by simp | 
| 41807 | 941 | qed (auto simp add: Let_def split_def algebra_simps, simp add: right_distrib[symmetric]) | 
| 29789 | 942 | |
| 943 | (* Linearize a formula*) | |
| 944 | definition | |
| 945 | lt :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 946 | where | |
| 947 | "lt c t = (if c = 0 then (Lt t) else if c > 0 then (Lt (CN 0 c t)) | |
| 948 | else (Gt (CN 0 (-c) (Neg t))))" | |
| 949 | ||
| 950 | definition | |
| 951 | le :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 952 | where | |
| 953 | "le c t = (if c = 0 then (Le t) else if c > 0 then (Le (CN 0 c t)) | |
| 954 | else (Ge (CN 0 (-c) (Neg t))))" | |
| 955 | ||
| 956 | definition | |
| 957 | gt :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 958 | where | |
| 959 | "gt c t = (if c = 0 then (Gt t) else if c > 0 then (Gt (CN 0 c t)) | |
| 960 | else (Lt (CN 0 (-c) (Neg t))))" | |
| 961 | ||
| 962 | definition | |
| 963 | ge :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 964 | where | |
| 965 | "ge c t = (if c = 0 then (Ge t) else if c > 0 then (Ge (CN 0 c t)) | |
| 966 | else (Le (CN 0 (-c) (Neg t))))" | |
| 967 | ||
| 968 | definition | |
| 969 | eq :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 970 | where | |
| 971 | "eq c t = (if c = 0 then (Eq t) else if c > 0 then (Eq (CN 0 c t)) | |
| 972 | else (Eq (CN 0 (-c) (Neg t))))" | |
| 973 | ||
| 974 | definition | |
| 975 | neq :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 976 | where | |
| 977 | "neq c t = (if c = 0 then (NEq t) else if c > 0 then (NEq (CN 0 c t)) | |
| 978 | else (NEq (CN 0 (-c) (Neg t))))" | |
| 979 | ||
| 980 | lemma lt: "numnoabs t \<Longrightarrow> Ifm bs (split lt (rsplit0 t)) = Ifm bs (Lt t) \<and> isrlfm (split lt (rsplit0 t))" | |
| 981 | using rsplit0[where bs = "bs" and t="t"] | |
| 982 | by (auto simp add: lt_def split_def,cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 983 | ||
| 984 | lemma le: "numnoabs t \<Longrightarrow> Ifm bs (split le (rsplit0 t)) = Ifm bs (Le t) \<and> isrlfm (split le (rsplit0 t))" | |
| 985 | using rsplit0[where bs = "bs" and t="t"] | |
| 986 | by (auto simp add: le_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 987 | ||
| 988 | lemma gt: "numnoabs t \<Longrightarrow> Ifm bs (split gt (rsplit0 t)) = Ifm bs (Gt t) \<and> isrlfm (split gt (rsplit0 t))" | |
| 989 | using rsplit0[where bs = "bs" and t="t"] | |
| 990 | by (auto simp add: gt_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 991 | ||
| 992 | lemma ge: "numnoabs t \<Longrightarrow> Ifm bs (split ge (rsplit0 t)) = Ifm bs (Ge t) \<and> isrlfm (split ge (rsplit0 t))" | |
| 993 | using rsplit0[where bs = "bs" and t="t"] | |
| 994 | by (auto simp add: ge_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 995 | ||
| 996 | lemma eq: "numnoabs t \<Longrightarrow> Ifm bs (split eq (rsplit0 t)) = Ifm bs (Eq t) \<and> isrlfm (split eq (rsplit0 t))" | |
| 997 | using rsplit0[where bs = "bs" and t="t"] | |
| 998 | by (auto simp add: eq_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 999 | ||
| 1000 | lemma neq: "numnoabs t \<Longrightarrow> Ifm bs (split neq (rsplit0 t)) = Ifm bs (NEq t) \<and> isrlfm (split neq (rsplit0 t))" | |
| 1001 | using rsplit0[where bs = "bs" and t="t"] | |
| 1002 | by (auto simp add: neq_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 1003 | ||
| 1004 | lemma conj_lin: "isrlfm p \<Longrightarrow> isrlfm q \<Longrightarrow> isrlfm (conj p q)" | |
| 1005 | by (auto simp add: conj_def) | |
| 1006 | lemma disj_lin: "isrlfm p \<Longrightarrow> isrlfm q \<Longrightarrow> isrlfm (disj p q)" | |
| 1007 | by (auto simp add: disj_def) | |
| 1008 | ||
| 1009 | consts rlfm :: "fm \<Rightarrow> fm" | |
| 1010 | recdef rlfm "measure fmsize" | |
| 1011 | "rlfm (And p q) = conj (rlfm p) (rlfm q)" | |
| 1012 | "rlfm (Or p q) = disj (rlfm p) (rlfm q)" | |
| 1013 | "rlfm (Imp p q) = disj (rlfm (NOT p)) (rlfm q)" | |
| 1014 | "rlfm (Iff p q) = disj (conj (rlfm p) (rlfm q)) (conj (rlfm (NOT p)) (rlfm (NOT q)))" | |
| 1015 | "rlfm (Lt a) = split lt (rsplit0 a)" | |
| 1016 | "rlfm (Le a) = split le (rsplit0 a)" | |
| 1017 | "rlfm (Gt a) = split gt (rsplit0 a)" | |
| 1018 | "rlfm (Ge a) = split ge (rsplit0 a)" | |
| 1019 | "rlfm (Eq a) = split eq (rsplit0 a)" | |
| 1020 | "rlfm (NEq a) = split neq (rsplit0 a)" | |
| 1021 | "rlfm (NOT (And p q)) = disj (rlfm (NOT p)) (rlfm (NOT q))" | |
| 1022 | "rlfm (NOT (Or p q)) = conj (rlfm (NOT p)) (rlfm (NOT q))" | |
| 1023 | "rlfm (NOT (Imp p q)) = conj (rlfm p) (rlfm (NOT q))" | |
| 1024 | "rlfm (NOT (Iff p q)) = disj (conj(rlfm p) (rlfm(NOT q))) (conj(rlfm(NOT p)) (rlfm q))" | |
| 1025 | "rlfm (NOT (NOT p)) = rlfm p" | |
| 1026 | "rlfm (NOT T) = F" | |
| 1027 | "rlfm (NOT F) = T" | |
| 1028 | "rlfm (NOT (Lt a)) = rlfm (Ge a)" | |
| 1029 | "rlfm (NOT (Le a)) = rlfm (Gt a)" | |
| 1030 | "rlfm (NOT (Gt a)) = rlfm (Le a)" | |
| 1031 | "rlfm (NOT (Ge a)) = rlfm (Lt a)" | |
| 1032 | "rlfm (NOT (Eq a)) = rlfm (NEq a)" | |
| 1033 | "rlfm (NOT (NEq a)) = rlfm (Eq a)" | |
| 1034 | "rlfm p = p" (hints simp add: fmsize_pos) | |
| 1035 | ||
| 1036 | lemma rlfm_I: | |
| 1037 | assumes qfp: "qfree p" | |
| 1038 | shows "(Ifm bs (rlfm p) = Ifm bs p) \<and> isrlfm (rlfm p)" | |
| 1039 | using qfp | |
| 1040 | by (induct p rule: rlfm.induct, auto simp add: lt le gt ge eq neq conj disj conj_lin disj_lin) | |
| 1041 | ||
| 1042 | (* Operations needed for Ferrante and Rackoff *) | |
| 1043 | lemma rminusinf_inf: | |
| 1044 | assumes lp: "isrlfm p" | |
| 1045 | shows "\<exists> z. \<forall> x < z. Ifm (x#bs) (minusinf p) = Ifm (x#bs) p" (is "\<exists> z. \<forall> x. ?P z x p") | |
| 1046 | using lp | |
| 1047 | proof (induct p rule: minusinf.induct) | |
| 1048 | case (1 p q) thus ?case by (auto,rule_tac x= "min z za" in exI) auto | |
| 1049 | next | |
| 1050 | case (2 p q) thus ?case by (auto,rule_tac x= "min z za" in exI) auto | |
| 1051 | next | |
| 1052 | case (3 c e) | |
| 41807 | 1053 | from 3 have nb: "numbound0 e" by simp | 
| 1054 | from 3 have cp: "real c > 0" by simp | |
| 29789 | 1055 | fix a | 
| 1056 | let ?e="Inum (a#bs) e" | |
| 1057 | let ?z = "(- ?e) / real c" | |
| 1058 |   {fix x
 | |
| 1059 | assume xz: "x < ?z" | |
| 1060 | hence "(real c * x < - ?e)" | |
| 1061 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1062 | hence "real c * x + ?e < 0" by arith | |
| 1063 | hence "real c * x + ?e \<noteq> 0" by simp | |
| 1064 | with xz have "?P ?z x (Eq (CN 0 c e))" | |
| 1065 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1066 | hence "\<forall> x < ?z. ?P ?z x (Eq (CN 0 c e))" by simp | |
| 1067 | thus ?case by blast | |
| 1068 | next | |
| 1069 | case (4 c e) | |
| 41807 | 1070 | from 4 have nb: "numbound0 e" by simp | 
| 1071 | from 4 have cp: "real c > 0" by simp | |
| 29789 | 1072 | fix a | 
| 1073 | let ?e="Inum (a#bs) e" | |
| 1074 | let ?z = "(- ?e) / real c" | |
| 1075 |   {fix x
 | |
| 1076 | assume xz: "x < ?z" | |
| 1077 | hence "(real c * x < - ?e)" | |
| 1078 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1079 | hence "real c * x + ?e < 0" by arith | |
| 1080 | hence "real c * x + ?e \<noteq> 0" by simp | |
| 1081 | with xz have "?P ?z x (NEq (CN 0 c e))" | |
| 1082 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1083 | hence "\<forall> x < ?z. ?P ?z x (NEq (CN 0 c e))" by simp | |
| 1084 | thus ?case by blast | |
| 1085 | next | |
| 1086 | case (5 c e) | |
| 41807 | 1087 | from 5 have nb: "numbound0 e" by simp | 
| 1088 | from 5 have cp: "real c > 0" by simp | |
| 29789 | 1089 | fix a | 
| 1090 | let ?e="Inum (a#bs) e" | |
| 1091 | let ?z = "(- ?e) / real c" | |
| 1092 |   {fix x
 | |
| 1093 | assume xz: "x < ?z" | |
| 1094 | hence "(real c * x < - ?e)" | |
| 1095 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1096 | hence "real c * x + ?e < 0" by arith | |
| 1097 | with xz have "?P ?z x (Lt (CN 0 c e))" | |
| 1098 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1099 | hence "\<forall> x < ?z. ?P ?z x (Lt (CN 0 c e))" by simp | |
| 1100 | thus ?case by blast | |
| 1101 | next | |
| 1102 | case (6 c e) | |
| 41807 | 1103 | from 6 have nb: "numbound0 e" by simp | 
| 1104 | from lp 6 have cp: "real c > 0" by simp | |
| 29789 | 1105 | fix a | 
| 1106 | let ?e="Inum (a#bs) e" | |
| 1107 | let ?z = "(- ?e) / real c" | |
| 1108 |   {fix x
 | |
| 1109 | assume xz: "x < ?z" | |
| 1110 | hence "(real c * x < - ?e)" | |
| 1111 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1112 | hence "real c * x + ?e < 0" by arith | |
| 1113 | with xz have "?P ?z x (Le (CN 0 c e))" | |
| 1114 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1115 | hence "\<forall> x < ?z. ?P ?z x (Le (CN 0 c e))" by simp | |
| 1116 | thus ?case by blast | |
| 1117 | next | |
| 1118 | case (7 c e) | |
| 41807 | 1119 | from 7 have nb: "numbound0 e" by simp | 
| 1120 | from 7 have cp: "real c > 0" by simp | |
| 29789 | 1121 | fix a | 
| 1122 | let ?e="Inum (a#bs) e" | |
| 1123 | let ?z = "(- ?e) / real c" | |
| 1124 |   {fix x
 | |
| 1125 | assume xz: "x < ?z" | |
| 1126 | hence "(real c * x < - ?e)" | |
| 1127 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1128 | hence "real c * x + ?e < 0" by arith | |
| 1129 | with xz have "?P ?z x (Gt (CN 0 c e))" | |
| 1130 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1131 | hence "\<forall> x < ?z. ?P ?z x (Gt (CN 0 c e))" by simp | |
| 1132 | thus ?case by blast | |
| 1133 | next | |
| 1134 | case (8 c e) | |
| 41807 | 1135 | from 8 have nb: "numbound0 e" by simp | 
| 1136 | from 8 have cp: "real c > 0" by simp | |
| 29789 | 1137 | fix a | 
| 1138 | let ?e="Inum (a#bs) e" | |
| 1139 | let ?z = "(- ?e) / real c" | |
| 1140 |   {fix x
 | |
| 1141 | assume xz: "x < ?z" | |
| 1142 | hence "(real c * x < - ?e)" | |
| 1143 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1144 | hence "real c * x + ?e < 0" by arith | |
| 1145 | with xz have "?P ?z x (Ge (CN 0 c e))" | |
| 1146 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1147 | hence "\<forall> x < ?z. ?P ?z x (Ge (CN 0 c e))" by simp | |
| 1148 | thus ?case by blast | |
| 1149 | qed simp_all | |
| 1150 | ||
| 1151 | lemma rplusinf_inf: | |
| 1152 | assumes lp: "isrlfm p" | |
| 1153 | shows "\<exists> z. \<forall> x > z. Ifm (x#bs) (plusinf p) = Ifm (x#bs) p" (is "\<exists> z. \<forall> x. ?P z x p") | |
| 1154 | using lp | |
| 1155 | proof (induct p rule: isrlfm.induct) | |
| 1156 | case (1 p q) thus ?case by (auto,rule_tac x= "max z za" in exI) auto | |
| 1157 | next | |
| 1158 | case (2 p q) thus ?case by (auto,rule_tac x= "max z za" in exI) auto | |
| 1159 | next | |
| 1160 | case (3 c e) | |
| 41807 | 1161 | from 3 have nb: "numbound0 e" by simp | 
| 1162 | from 3 have cp: "real c > 0" by simp | |
| 29789 | 1163 | fix a | 
| 1164 | let ?e="Inum (a#bs) e" | |
| 1165 | let ?z = "(- ?e) / real c" | |
| 1166 |   {fix x
 | |
| 1167 | assume xz: "x > ?z" | |
| 1168 | with mult_strict_right_mono [OF xz cp] cp | |
| 1169 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1170 | hence "real c * x + ?e > 0" by arith | |
| 1171 | hence "real c * x + ?e \<noteq> 0" by simp | |
| 1172 | with xz have "?P ?z x (Eq (CN 0 c e))" | |
| 1173 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1174 | hence "\<forall> x > ?z. ?P ?z x (Eq (CN 0 c e))" by simp | |
| 1175 | thus ?case by blast | |
| 1176 | next | |
| 1177 | case (4 c e) | |
| 41807 | 1178 | from 4 have nb: "numbound0 e" by simp | 
| 1179 | from 4 have cp: "real c > 0" by simp | |
| 29789 | 1180 | fix a | 
| 1181 | let ?e="Inum (a#bs) e" | |
| 1182 | let ?z = "(- ?e) / real c" | |
| 1183 |   {fix x
 | |
| 1184 | assume xz: "x > ?z" | |
| 1185 | with mult_strict_right_mono [OF xz cp] cp | |
| 1186 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1187 | hence "real c * x + ?e > 0" by arith | |
| 1188 | hence "real c * x + ?e \<noteq> 0" by simp | |
| 1189 | with xz have "?P ?z x (NEq (CN 0 c e))" | |
| 1190 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1191 | hence "\<forall> x > ?z. ?P ?z x (NEq (CN 0 c e))" by simp | |
| 1192 | thus ?case by blast | |
| 1193 | next | |
| 1194 | case (5 c e) | |
| 41807 | 1195 | from 5 have nb: "numbound0 e" by simp | 
| 1196 | from 5 have cp: "real c > 0" by simp | |
| 29789 | 1197 | fix a | 
| 1198 | let ?e="Inum (a#bs) e" | |
| 1199 | let ?z = "(- ?e) / real c" | |
| 1200 |   {fix x
 | |
| 1201 | assume xz: "x > ?z" | |
| 1202 | with mult_strict_right_mono [OF xz cp] cp | |
| 1203 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1204 | hence "real c * x + ?e > 0" by arith | |
| 1205 | with xz have "?P ?z x (Lt (CN 0 c e))" | |
| 1206 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1207 | hence "\<forall> x > ?z. ?P ?z x (Lt (CN 0 c e))" by simp | |
| 1208 | thus ?case by blast | |
| 1209 | next | |
| 1210 | case (6 c e) | |
| 41807 | 1211 | from 6 have nb: "numbound0 e" by simp | 
| 1212 | from 6 have cp: "real c > 0" by simp | |
| 29789 | 1213 | fix a | 
| 1214 | let ?e="Inum (a#bs) e" | |
| 1215 | let ?z = "(- ?e) / real c" | |
| 1216 |   {fix x
 | |
| 1217 | assume xz: "x > ?z" | |
| 1218 | with mult_strict_right_mono [OF xz cp] cp | |
| 1219 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1220 | hence "real c * x + ?e > 0" by arith | |
| 1221 | with xz have "?P ?z x (Le (CN 0 c e))" | |
| 1222 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1223 | hence "\<forall> x > ?z. ?P ?z x (Le (CN 0 c e))" by simp | |
| 1224 | thus ?case by blast | |
| 1225 | next | |
| 1226 | case (7 c e) | |
| 41807 | 1227 | from 7 have nb: "numbound0 e" by simp | 
| 1228 | from 7 have cp: "real c > 0" by simp | |
| 29789 | 1229 | fix a | 
| 1230 | let ?e="Inum (a#bs) e" | |
| 1231 | let ?z = "(- ?e) / real c" | |
| 1232 |   {fix x
 | |
| 1233 | assume xz: "x > ?z" | |
| 1234 | with mult_strict_right_mono [OF xz cp] cp | |
| 1235 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1236 | hence "real c * x + ?e > 0" by arith | |
| 1237 | with xz have "?P ?z x (Gt (CN 0 c e))" | |
| 1238 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1239 | hence "\<forall> x > ?z. ?P ?z x (Gt (CN 0 c e))" by simp | |
| 1240 | thus ?case by blast | |
| 1241 | next | |
| 1242 | case (8 c e) | |
| 41807 | 1243 | from 8 have nb: "numbound0 e" by simp | 
| 1244 | from 8 have cp: "real c > 0" by simp | |
| 29789 | 1245 | fix a | 
| 1246 | let ?e="Inum (a#bs) e" | |
| 1247 | let ?z = "(- ?e) / real c" | |
| 1248 |   {fix x
 | |
| 1249 | assume xz: "x > ?z" | |
| 1250 | with mult_strict_right_mono [OF xz cp] cp | |
| 1251 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1252 | hence "real c * x + ?e > 0" by arith | |
| 1253 | with xz have "?P ?z x (Ge (CN 0 c e))" | |
| 1254 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1255 | hence "\<forall> x > ?z. ?P ?z x (Ge (CN 0 c e))" by simp | |
| 1256 | thus ?case by blast | |
| 1257 | qed simp_all | |
| 1258 | ||
| 1259 | lemma rminusinf_bound0: | |
| 1260 | assumes lp: "isrlfm p" | |
| 1261 | shows "bound0 (minusinf p)" | |
| 1262 | using lp | |
| 1263 | by (induct p rule: minusinf.induct) simp_all | |
| 1264 | ||
| 1265 | lemma rplusinf_bound0: | |
| 1266 | assumes lp: "isrlfm p" | |
| 1267 | shows "bound0 (plusinf p)" | |
| 1268 | using lp | |
| 1269 | by (induct p rule: plusinf.induct) simp_all | |
| 1270 | ||
| 1271 | lemma rminusinf_ex: | |
| 1272 | assumes lp: "isrlfm p" | |
| 1273 | and ex: "Ifm (a#bs) (minusinf p)" | |
| 1274 | shows "\<exists> x. Ifm (x#bs) p" | |
| 1275 | proof- | |
| 1276 | from bound0_I [OF rminusinf_bound0[OF lp], where b="a" and bs ="bs"] ex | |
| 1277 | have th: "\<forall> x. Ifm (x#bs) (minusinf p)" by auto | |
| 1278 | from rminusinf_inf[OF lp, where bs="bs"] | |
| 1279 | obtain z where z_def: "\<forall>x<z. Ifm (x # bs) (minusinf p) = Ifm (x # bs) p" by blast | |
| 1280 | from th have "Ifm ((z - 1)#bs) (minusinf p)" by simp | |
| 1281 | moreover have "z - 1 < z" by simp | |
| 1282 | ultimately show ?thesis using z_def by auto | |
| 1283 | qed | |
| 1284 | ||
| 1285 | lemma rplusinf_ex: | |
| 1286 | assumes lp: "isrlfm p" | |
| 1287 | and ex: "Ifm (a#bs) (plusinf p)" | |
| 1288 | shows "\<exists> x. Ifm (x#bs) p" | |
| 1289 | proof- | |
| 1290 | from bound0_I [OF rplusinf_bound0[OF lp], where b="a" and bs ="bs"] ex | |
| 1291 | have th: "\<forall> x. Ifm (x#bs) (plusinf p)" by auto | |
| 1292 | from rplusinf_inf[OF lp, where bs="bs"] | |
| 1293 | obtain z where z_def: "\<forall>x>z. Ifm (x # bs) (plusinf p) = Ifm (x # bs) p" by blast | |
| 1294 | from th have "Ifm ((z + 1)#bs) (plusinf p)" by simp | |
| 1295 | moreover have "z + 1 > z" by simp | |
| 1296 | ultimately show ?thesis using z_def by auto | |
| 1297 | qed | |
| 1298 | ||
| 1299 | consts | |
| 1300 | uset:: "fm \<Rightarrow> (num \<times> int) list" | |
| 1301 | usubst :: "fm \<Rightarrow> (num \<times> int) \<Rightarrow> fm " | |
| 1302 | recdef uset "measure size" | |
| 1303 | "uset (And p q) = (uset p @ uset q)" | |
| 1304 | "uset (Or p q) = (uset p @ uset q)" | |
| 1305 | "uset (Eq (CN 0 c e)) = [(Neg e,c)]" | |
| 1306 | "uset (NEq (CN 0 c e)) = [(Neg e,c)]" | |
| 1307 | "uset (Lt (CN 0 c e)) = [(Neg e,c)]" | |
| 1308 | "uset (Le (CN 0 c e)) = [(Neg e,c)]" | |
| 1309 | "uset (Gt (CN 0 c e)) = [(Neg e,c)]" | |
| 1310 | "uset (Ge (CN 0 c e)) = [(Neg e,c)]" | |
| 1311 | "uset p = []" | |
| 1312 | recdef usubst "measure size" | |
| 1313 | "usubst (And p q) = (\<lambda> (t,n). And (usubst p (t,n)) (usubst q (t,n)))" | |
| 1314 | "usubst (Or p q) = (\<lambda> (t,n). Or (usubst p (t,n)) (usubst q (t,n)))" | |
| 1315 | "usubst (Eq (CN 0 c e)) = (\<lambda> (t,n). Eq (Add (Mul c t) (Mul n e)))" | |
| 1316 | "usubst (NEq (CN 0 c e)) = (\<lambda> (t,n). NEq (Add (Mul c t) (Mul n e)))" | |
| 1317 | "usubst (Lt (CN 0 c e)) = (\<lambda> (t,n). Lt (Add (Mul c t) (Mul n e)))" | |
| 1318 | "usubst (Le (CN 0 c e)) = (\<lambda> (t,n). Le (Add (Mul c t) (Mul n e)))" | |
| 1319 | "usubst (Gt (CN 0 c e)) = (\<lambda> (t,n). Gt (Add (Mul c t) (Mul n e)))" | |
| 1320 | "usubst (Ge (CN 0 c e)) = (\<lambda> (t,n). Ge (Add (Mul c t) (Mul n e)))" | |
| 1321 | "usubst p = (\<lambda> (t,n). p)" | |
| 1322 | ||
| 1323 | lemma usubst_I: assumes lp: "isrlfm p" | |
| 1324 | and np: "real n > 0" and nbt: "numbound0 t" | |
| 1325 | shows "(Ifm (x#bs) (usubst p (t,n)) = Ifm (((Inum (x#bs) t)/(real n))#bs) p) \<and> bound0 (usubst p (t,n))" (is "(?I x (usubst p (t,n)) = ?I ?u p) \<and> ?B p" is "(_ = ?I (?t/?n) p) \<and> _" is "(_ = ?I (?N x t /_) p) \<and> _") | |
| 1326 | using lp | |
| 1327 | proof(induct p rule: usubst.induct) | |
| 41807 | 1328 | case (5 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all | 
| 29789 | 1329 | have "?I ?u (Lt (CN 0 c e)) = (real c *(?t/?n) + (?N x e) < 0)" | 
| 1330 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1331 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) < 0)" | |
| 1332 | by (simp only: pos_less_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1333 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1334 | also have "\<dots> = (real c *?t + ?n* (?N x e) < 0)" | |
| 1335 | using np by simp | |
| 1336 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1337 | next | |
| 41807 | 1338 | case (6 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all | 
| 29789 | 1339 | have "?I ?u (Le (CN 0 c e)) = (real c *(?t/?n) + (?N x e) \<le> 0)" | 
| 1340 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1341 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) \<le> 0)" | |
| 1342 | by (simp only: pos_le_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1343 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1344 | also have "\<dots> = (real c *?t + ?n* (?N x e) \<le> 0)" | |
| 1345 | using np by simp | |
| 1346 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1347 | next | |
| 41807 | 1348 | case (7 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all | 
| 29789 | 1349 | have "?I ?u (Gt (CN 0 c e)) = (real c *(?t/?n) + (?N x e) > 0)" | 
| 1350 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1351 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) > 0)" | |
| 1352 | by (simp only: pos_divide_less_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1353 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1354 | also have "\<dots> = (real c *?t + ?n* (?N x e) > 0)" | |
| 1355 | using np by simp | |
| 1356 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1357 | next | |
| 41807 | 1358 | case (8 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all | 
| 29789 | 1359 | have "?I ?u (Ge (CN 0 c e)) = (real c *(?t/?n) + (?N x e) \<ge> 0)" | 
| 1360 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1361 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) \<ge> 0)" | |
| 1362 | by (simp only: pos_divide_le_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1363 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1364 | also have "\<dots> = (real c *?t + ?n* (?N x e) \<ge> 0)" | |
| 1365 | using np by simp | |
| 1366 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1367 | next | |
| 41807 | 1368 | case (3 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all | 
| 29789 | 1369 | from np have np: "real n \<noteq> 0" by simp | 
| 1370 | have "?I ?u (Eq (CN 0 c e)) = (real c *(?t/?n) + (?N x e) = 0)" | |
| 1371 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1372 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) = 0)" | |
| 1373 | by (simp only: nonzero_eq_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1374 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1375 | also have "\<dots> = (real c *?t + ?n* (?N x e) = 0)" | |
| 1376 | using np by simp | |
| 1377 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1378 | next | |
| 41807 | 1379 | case (4 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all | 
| 29789 | 1380 | from np have np: "real n \<noteq> 0" by simp | 
| 1381 | have "?I ?u (NEq (CN 0 c e)) = (real c *(?t/?n) + (?N x e) \<noteq> 0)" | |
| 1382 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1383 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) \<noteq> 0)" | |
| 1384 | by (simp only: nonzero_eq_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1385 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1386 | also have "\<dots> = (real c *?t + ?n* (?N x e) \<noteq> 0)" | |
| 1387 | using np by simp | |
| 1388 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 41842 | 1389 | qed(simp_all add: nbt numbound0_I[where bs ="bs" and b="(Inum (x#bs) t)/ real n" and b'="x"]) | 
| 29789 | 1390 | |
| 1391 | lemma uset_l: | |
| 1392 | assumes lp: "isrlfm p" | |
| 1393 | shows "\<forall> (t,k) \<in> set (uset p). numbound0 t \<and> k >0" | |
| 1394 | using lp | |
| 1395 | by(induct p rule: uset.induct,auto) | |
| 1396 | ||
| 1397 | lemma rminusinf_uset: | |
| 1398 | assumes lp: "isrlfm p" | |
| 1399 | and nmi: "\<not> (Ifm (a#bs) (minusinf p))" (is "\<not> (Ifm (a#bs) (?M p))") | |
| 1400 | and ex: "Ifm (x#bs) p" (is "?I x p") | |
| 1401 | shows "\<exists> (s,m) \<in> set (uset p). x \<ge> Inum (a#bs) s / real m" (is "\<exists> (s,m) \<in> ?U p. x \<ge> ?N a s / real m") | |
| 1402 | proof- | |
| 1403 | have "\<exists> (s,m) \<in> set (uset p). real m * x \<ge> Inum (a#bs) s " (is "\<exists> (s,m) \<in> ?U p. real m *x \<ge> ?N a s") | |
| 1404 | using lp nmi ex | |
| 41842 | 1405 | by (induct p rule: minusinf.induct, auto simp add:numbound0_I[where bs="bs" and b="a" and b'="x"]) | 
| 29789 | 1406 | then obtain s m where smU: "(s,m) \<in> set (uset p)" and mx: "real m * x \<ge> ?N a s" by blast | 
| 1407 | from uset_l[OF lp] smU have mp: "real m > 0" by auto | |
| 1408 | from pos_divide_le_eq[OF mp, where a="x" and b="?N a s", symmetric] mx have "x \<ge> ?N a s / real m" | |
| 1409 | by (auto simp add: mult_commute) | |
| 1410 | thus ?thesis using smU by auto | |
| 1411 | qed | |
| 1412 | ||
| 1413 | lemma rplusinf_uset: | |
| 1414 | assumes lp: "isrlfm p" | |
| 1415 | and nmi: "\<not> (Ifm (a#bs) (plusinf p))" (is "\<not> (Ifm (a#bs) (?M p))") | |
| 1416 | and ex: "Ifm (x#bs) p" (is "?I x p") | |
| 1417 | shows "\<exists> (s,m) \<in> set (uset p). x \<le> Inum (a#bs) s / real m" (is "\<exists> (s,m) \<in> ?U p. x \<le> ?N a s / real m") | |
| 1418 | proof- | |
| 1419 | have "\<exists> (s,m) \<in> set (uset p). real m * x \<le> Inum (a#bs) s " (is "\<exists> (s,m) \<in> ?U p. real m *x \<le> ?N a s") | |
| 1420 | using lp nmi ex | |
| 41842 | 1421 | by (induct p rule: minusinf.induct, auto simp add:numbound0_I[where bs="bs" and b="a" and b'="x"]) | 
| 29789 | 1422 | then obtain s m where smU: "(s,m) \<in> set (uset p)" and mx: "real m * x \<le> ?N a s" by blast | 
| 1423 | from uset_l[OF lp] smU have mp: "real m > 0" by auto | |
| 1424 | from pos_le_divide_eq[OF mp, where a="x" and b="?N a s", symmetric] mx have "x \<le> ?N a s / real m" | |
| 1425 | by (auto simp add: mult_commute) | |
| 1426 | thus ?thesis using smU by auto | |
| 1427 | qed | |
| 1428 | ||
| 1429 | lemma lin_dense: | |
| 1430 | assumes lp: "isrlfm p" | |
| 1431 | and noS: "\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> (\<lambda> (t,n). Inum (x#bs) t / real n) ` set (uset p)" | |
| 1432 | (is "\<forall> t. _ \<and> _ \<longrightarrow> t \<notin> (\<lambda> (t,n). ?N x t / real n ) ` (?U p)") | |
| 1433 | and lx: "l < x" and xu:"x < u" and px:" Ifm (x#bs) p" | |
| 1434 | and ly: "l < y" and yu: "y < u" | |
| 1435 | shows "Ifm (y#bs) p" | |
| 1436 | using lp px noS | |
| 1437 | proof (induct p rule: isrlfm.induct) | |
| 1438 | case (5 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 41807 | 1439 | from 5 have "x * real c + ?N x e < 0" by (simp add: algebra_simps) | 
| 1440 | hence pxc: "x < (- ?N x e) / real c" | |
| 1441 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="-?N x e"]) | |
| 1442 | from 5 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1443 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1444 | hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto | |
| 1445 |   moreover {assume y: "y < (-?N x e)/ real c"
 | |
| 1446 | hence "y * real c < - ?N x e" | |
| 1447 | by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric]) | |
| 1448 | hence "real c * y + ?N x e < 0" by (simp add: algebra_simps) | |
| 1449 | hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp} | |
| 1450 |   moreover {assume y: "y > (- ?N x e) / real c" 
 | |
| 1451 | with yu have eu: "u > (- ?N x e) / real c" by auto | |
| 1452 | with noSc ly yu have "(- ?N x e) / real c \<le> l" by (cases "(- ?N x e) / real c > l", auto) | |
| 1453 | with lx pxc have "False" by auto | |
| 1454 | hence ?case by simp } | |
| 1455 | ultimately show ?case by blast | |
| 29789 | 1456 | next | 
| 1457 | case (6 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp + | |
| 41807 | 1458 | from 6 have "x * real c + ?N x e \<le> 0" by (simp add: algebra_simps) | 
| 1459 | hence pxc: "x \<le> (- ?N x e) / real c" | |
| 1460 | by (simp only: pos_le_divide_eq[OF cp, where a="x" and b="-?N x e"]) | |
| 1461 | from 6 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1462 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1463 | hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto | |
| 1464 |   moreover {assume y: "y < (-?N x e)/ real c"
 | |
| 1465 | hence "y * real c < - ?N x e" | |
| 1466 | by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric]) | |
| 1467 | hence "real c * y + ?N x e < 0" by (simp add: algebra_simps) | |
| 1468 | hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp} | |
| 1469 |   moreover {assume y: "y > (- ?N x e) / real c" 
 | |
| 1470 | with yu have eu: "u > (- ?N x e) / real c" by auto | |
| 1471 | with noSc ly yu have "(- ?N x e) / real c \<le> l" by (cases "(- ?N x e) / real c > l", auto) | |
| 1472 | with lx pxc have "False" by auto | |
| 1473 | hence ?case by simp } | |
| 1474 | ultimately show ?case by blast | |
| 29789 | 1475 | next | 
| 1476 | case (7 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 41807 | 1477 | from 7 have "x * real c + ?N x e > 0" by (simp add: algebra_simps) | 
| 1478 | hence pxc: "x > (- ?N x e) / real c" | |
| 1479 | by (simp only: pos_divide_less_eq[OF cp, where a="x" and b="-?N x e"]) | |
| 1480 | from 7 have noSc: "\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1481 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1482 | hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto | |
| 1483 |   moreover {assume y: "y > (-?N x e)/ real c"
 | |
| 1484 | hence "y * real c > - ?N x e" | |
| 1485 | by (simp add: pos_divide_less_eq[OF cp, where a="y" and b="-?N x e", symmetric]) | |
| 1486 | hence "real c * y + ?N x e > 0" by (simp add: algebra_simps) | |
| 1487 | hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp} | |
| 1488 |   moreover {assume y: "y < (- ?N x e) / real c" 
 | |
| 1489 | with ly have eu: "l < (- ?N x e) / real c" by auto | |
| 1490 | with noSc ly yu have "(- ?N x e) / real c \<ge> u" by (cases "(- ?N x e) / real c > l", auto) | |
| 1491 | with xu pxc have "False" by auto | |
| 1492 | hence ?case by simp } | |
| 1493 | ultimately show ?case by blast | |
| 29789 | 1494 | next | 
| 1495 | case (8 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 41807 | 1496 | from 8 have "x * real c + ?N x e \<ge> 0" by (simp add: algebra_simps) | 
| 1497 | hence pxc: "x \<ge> (- ?N x e) / real c" | |
| 1498 | by (simp only: pos_divide_le_eq[OF cp, where a="x" and b="-?N x e"]) | |
| 1499 | from 8 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1500 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1501 | hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto | |
| 1502 |   moreover {assume y: "y > (-?N x e)/ real c"
 | |
| 1503 | hence "y * real c > - ?N x e" | |
| 1504 | by (simp add: pos_divide_less_eq[OF cp, where a="y" and b="-?N x e", symmetric]) | |
| 1505 | hence "real c * y + ?N x e > 0" by (simp add: algebra_simps) | |
| 1506 | hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp} | |
| 1507 |   moreover {assume y: "y < (- ?N x e) / real c" 
 | |
| 1508 | with ly have eu: "l < (- ?N x e) / real c" by auto | |
| 1509 | with noSc ly yu have "(- ?N x e) / real c \<ge> u" by (cases "(- ?N x e) / real c > l", auto) | |
| 1510 | with xu pxc have "False" by auto | |
| 1511 | hence ?case by simp } | |
| 1512 | ultimately show ?case by blast | |
| 29789 | 1513 | next | 
| 1514 | case (3 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 41807 | 1515 | from cp have cnz: "real c \<noteq> 0" by simp | 
| 1516 | from 3 have "x * real c + ?N x e = 0" by (simp add: algebra_simps) | |
| 1517 | hence pxc: "x = (- ?N x e) / real c" | |
| 1518 | by (simp only: nonzero_eq_divide_eq[OF cnz, where a="x" and b="-?N x e"]) | |
| 1519 | from 3 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1520 | with lx xu have yne: "x \<noteq> - ?N x e / real c" by auto | |
| 1521 | with pxc show ?case by simp | |
| 29789 | 1522 | next | 
| 1523 | case (4 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 41807 | 1524 | from cp have cnz: "real c \<noteq> 0" by simp | 
| 1525 | from 4 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1526 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1527 | hence "y* real c \<noteq> -?N x e" | |
| 1528 | by (simp only: nonzero_eq_divide_eq[OF cnz, where a="y" and b="-?N x e"]) simp | |
| 1529 | hence "y* real c + ?N x e \<noteq> 0" by (simp add: algebra_simps) | |
| 1530 | thus ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] | |
| 1531 | by (simp add: algebra_simps) | |
| 41842 | 1532 | qed (auto simp add: numbound0_I[where bs="bs" and b="y" and b'="x"]) | 
| 29789 | 1533 | |
| 1534 | lemma finite_set_intervals: | |
| 1535 | assumes px: "P (x::real)" | |
| 1536 | and lx: "l \<le> x" and xu: "x \<le> u" | |
| 1537 | and linS: "l\<in> S" and uinS: "u \<in> S" | |
| 1538 | and fS:"finite S" and lS: "\<forall> x\<in> S. l \<le> x" and Su: "\<forall> x\<in> S. x \<le> u" | |
| 1539 | shows "\<exists> a \<in> S. \<exists> b \<in> S. (\<forall> y. a < y \<and> y < b \<longrightarrow> y \<notin> S) \<and> a \<le> x \<and> x \<le> b \<and> P x" | |
| 1540 | proof- | |
| 1541 |   let ?Mx = "{y. y\<in> S \<and> y \<le> x}"
 | |
| 1542 |   let ?xM = "{y. y\<in> S \<and> x \<le> y}"
 | |
| 1543 | let ?a = "Max ?Mx" | |
| 1544 | let ?b = "Min ?xM" | |
| 1545 | have MxS: "?Mx \<subseteq> S" by blast | |
| 1546 | hence fMx: "finite ?Mx" using fS finite_subset by auto | |
| 1547 | from lx linS have linMx: "l \<in> ?Mx" by blast | |
| 1548 |   hence Mxne: "?Mx \<noteq> {}" by blast
 | |
| 1549 | have xMS: "?xM \<subseteq> S" by blast | |
| 1550 | hence fxM: "finite ?xM" using fS finite_subset by auto | |
| 1551 | from xu uinS have linxM: "u \<in> ?xM" by blast | |
| 1552 |   hence xMne: "?xM \<noteq> {}" by blast
 | |
| 1553 | have ax:"?a \<le> x" using Mxne fMx by auto | |
| 1554 | have xb:"x \<le> ?b" using xMne fxM by auto | |
| 1555 | have "?a \<in> ?Mx" using Max_in[OF fMx Mxne] by simp hence ainS: "?a \<in> S" using MxS by blast | |
| 1556 | have "?b \<in> ?xM" using Min_in[OF fxM xMne] by simp hence binS: "?b \<in> S" using xMS by blast | |
| 1557 | have noy:"\<forall> y. ?a < y \<and> y < ?b \<longrightarrow> y \<notin> S" | |
| 1558 | proof(clarsimp) | |
| 1559 | fix y | |
| 1560 | assume ay: "?a < y" and yb: "y < ?b" and yS: "y \<in> S" | |
| 1561 | from yS have "y\<in> ?Mx \<or> y\<in> ?xM" by auto | |
| 1562 |     moreover {assume "y \<in> ?Mx" hence "y \<le> ?a" using Mxne fMx by auto with ay have "False" by simp}
 | |
| 1563 |     moreover {assume "y \<in> ?xM" hence "y \<ge> ?b" using xMne fxM by auto with yb have "False" by simp}
 | |
| 1564 | ultimately show "False" by blast | |
| 1565 | qed | |
| 1566 | from ainS binS noy ax xb px show ?thesis by blast | |
| 1567 | qed | |
| 1568 | ||
| 1569 | lemma rinf_uset: | |
| 1570 | assumes lp: "isrlfm p" | |
| 1571 | and nmi: "\<not> (Ifm (x#bs) (minusinf p))" (is "\<not> (Ifm (x#bs) (?M p))") | |
| 1572 | and npi: "\<not> (Ifm (x#bs) (plusinf p))" (is "\<not> (Ifm (x#bs) (?P p))") | |
| 1573 | and ex: "\<exists> x. Ifm (x#bs) p" (is "\<exists> x. ?I x p") | |
| 1574 | shows "\<exists> (l,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). ?I ((Inum (x#bs) l / real n + Inum (x#bs) s / real m) / 2) p" | |
| 1575 | proof- | |
| 1576 | let ?N = "\<lambda> x t. Inum (x#bs) t" | |
| 1577 | let ?U = "set (uset p)" | |
| 1578 | from ex obtain a where pa: "?I a p" by blast | |
| 1579 | from bound0_I[OF rminusinf_bound0[OF lp], where bs="bs" and b="x" and b'="a"] nmi | |
| 1580 | have nmi': "\<not> (?I a (?M p))" by simp | |
| 1581 | from bound0_I[OF rplusinf_bound0[OF lp], where bs="bs" and b="x" and b'="a"] npi | |
| 1582 | have npi': "\<not> (?I a (?P p))" by simp | |
| 1583 | have "\<exists> (l,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). ?I ((?N a l/real n + ?N a s /real m) / 2) p" | |
| 1584 | proof- | |
| 1585 | let ?M = "(\<lambda> (t,c). ?N a t / real c) ` ?U" | |
| 1586 | have fM: "finite ?M" by auto | |
| 1587 | from rminusinf_uset[OF lp nmi pa] rplusinf_uset[OF lp npi pa] | |
| 1588 | have "\<exists> (l,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). a \<le> ?N x l / real n \<and> a \<ge> ?N x s / real m" by blast | |
| 1589 | then obtain "t" "n" "s" "m" where | |
| 1590 | tnU: "(t,n) \<in> ?U" and smU: "(s,m) \<in> ?U" | |
| 1591 | and xs1: "a \<le> ?N x s / real m" and tx1: "a \<ge> ?N x t / real n" by blast | |
| 1592 | from uset_l[OF lp] tnU smU numbound0_I[where bs="bs" and b="x" and b'="a"] xs1 tx1 have xs: "a \<le> ?N a s / real m" and tx: "a \<ge> ?N a t / real n" by auto | |
| 1593 |     from tnU have Mne: "?M \<noteq> {}" by auto
 | |
| 1594 |     hence Une: "?U \<noteq> {}" by simp
 | |
| 1595 | let ?l = "Min ?M" | |
| 1596 | let ?u = "Max ?M" | |
| 1597 | have linM: "?l \<in> ?M" using fM Mne by simp | |
| 1598 | have uinM: "?u \<in> ?M" using fM Mne by simp | |
| 1599 | have tnM: "?N a t / real n \<in> ?M" using tnU by auto | |
| 1600 | have smM: "?N a s / real m \<in> ?M" using smU by auto | |
| 1601 | have lM: "\<forall> t\<in> ?M. ?l \<le> t" using Mne fM by auto | |
| 1602 | have Mu: "\<forall> t\<in> ?M. t \<le> ?u" using Mne fM by auto | |
| 1603 | have "?l \<le> ?N a t / real n" using tnM Mne by simp hence lx: "?l \<le> a" using tx by simp | |
| 1604 | have "?N a s / real m \<le> ?u" using smM Mne by simp hence xu: "a \<le> ?u" using xs by simp | |
| 1605 | from finite_set_intervals2[where P="\<lambda> x. ?I x p",OF pa lx xu linM uinM fM lM Mu] | |
| 1606 | have "(\<exists> s\<in> ?M. ?I s p) \<or> | |
| 1607 | (\<exists> t1\<in> ?M. \<exists> t2 \<in> ?M. (\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M) \<and> t1 < a \<and> a < t2 \<and> ?I a p)" . | |
| 1608 |     moreover { fix u assume um: "u\<in> ?M" and pu: "?I u p"
 | |
| 1609 | hence "\<exists> (tu,nu) \<in> ?U. u = ?N a tu / real nu" by auto | |
| 1610 | then obtain "tu" "nu" where tuU: "(tu,nu) \<in> ?U" and tuu:"u= ?N a tu / real nu" by blast | |
| 1611 | have "(u + u) / 2 = u" by auto with pu tuu | |
| 1612 | have "?I (((?N a tu / real nu) + (?N a tu / real nu)) / 2) p" by simp | |
| 1613 | with tuU have ?thesis by blast} | |
| 1614 |     moreover{
 | |
| 1615 | assume "\<exists> t1\<in> ?M. \<exists> t2 \<in> ?M. (\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M) \<and> t1 < a \<and> a < t2 \<and> ?I a p" | |
| 1616 | then obtain t1 and t2 where t1M: "t1 \<in> ?M" and t2M: "t2\<in> ?M" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 1617 | and noM: "\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M" and t1x: "t1 < a" and xt2: "a < t2" and px: "?I a p" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 1618 | by blast | 
| 29789 | 1619 | from t1M have "\<exists> (t1u,t1n) \<in> ?U. t1 = ?N a t1u / real t1n" by auto | 
| 1620 | then obtain "t1u" "t1n" where t1uU: "(t1u,t1n) \<in> ?U" and t1u: "t1 = ?N a t1u / real t1n" by blast | |
| 1621 | from t2M have "\<exists> (t2u,t2n) \<in> ?U. t2 = ?N a t2u / real t2n" by auto | |
| 1622 | then obtain "t2u" "t2n" where t2uU: "(t2u,t2n) \<in> ?U" and t2u: "t2 = ?N a t2u / real t2n" by blast | |
| 1623 | from t1x xt2 have t1t2: "t1 < t2" by simp | |
| 1624 | let ?u = "(t1 + t2) / 2" | |
| 1625 | from less_half_sum[OF t1t2] gt_half_sum[OF t1t2] have t1lu: "t1 < ?u" and ut2: "?u < t2" by auto | |
| 1626 | from lin_dense[OF lp noM t1x xt2 px t1lu ut2] have "?I ?u p" . | |
| 1627 | with t1uU t2uU t1u t2u have ?thesis by blast} | |
| 1628 | ultimately show ?thesis by blast | |
| 1629 | qed | |
| 1630 | then obtain "l" "n" "s" "m" where lnU: "(l,n) \<in> ?U" and smU:"(s,m) \<in> ?U" | |
| 1631 | and pu: "?I ((?N a l / real n + ?N a s / real m) / 2) p" by blast | |
| 1632 | from lnU smU uset_l[OF lp] have nbl: "numbound0 l" and nbs: "numbound0 s" by auto | |
| 1633 | from numbound0_I[OF nbl, where bs="bs" and b="a" and b'="x"] | |
| 1634 | numbound0_I[OF nbs, where bs="bs" and b="a" and b'="x"] pu | |
| 1635 | have "?I ((?N x l / real n + ?N x s / real m) / 2) p" by simp | |
| 1636 | with lnU smU | |
| 1637 | show ?thesis by auto | |
| 1638 | qed | |
| 1639 | (* The Ferrante - Rackoff Theorem *) | |
| 1640 | ||
| 1641 | theorem fr_eq: | |
| 1642 | assumes lp: "isrlfm p" | |
| 1643 | shows "(\<exists> x. Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) \<or> (Ifm (x#bs) (plusinf p)) \<or> (\<exists> (t,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). Ifm ((((Inum (x#bs) t)/ real n + (Inum (x#bs) s) / real m) /2)#bs) p))" | |
| 1644 | (is "(\<exists> x. ?I x p) = (?M \<or> ?P \<or> ?F)" is "?E = ?D") | |
| 1645 | proof | |
| 1646 | assume px: "\<exists> x. ?I x p" | |
| 1647 | have "?M \<or> ?P \<or> (\<not> ?M \<and> \<not> ?P)" by blast | |
| 1648 |   moreover {assume "?M \<or> ?P" hence "?D" by blast}
 | |
| 1649 |   moreover {assume nmi: "\<not> ?M" and npi: "\<not> ?P"
 | |
| 1650 | from rinf_uset[OF lp nmi npi] have "?F" using px by blast hence "?D" by blast} | |
| 1651 | ultimately show "?D" by blast | |
| 1652 | next | |
| 1653 | assume "?D" | |
| 1654 |   moreover {assume m:"?M" from rminusinf_ex[OF lp m] have "?E" .}
 | |
| 1655 |   moreover {assume p: "?P" from rplusinf_ex[OF lp p] have "?E" . }
 | |
| 1656 |   moreover {assume f:"?F" hence "?E" by blast}
 | |
| 1657 | ultimately show "?E" by blast | |
| 1658 | qed | |
| 1659 | ||
| 1660 | ||
| 1661 | lemma fr_equsubst: | |
| 1662 | assumes lp: "isrlfm p" | |
| 1663 | shows "(\<exists> x. Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) \<or> (Ifm (x#bs) (plusinf p)) \<or> (\<exists> (t,k) \<in> set (uset p). \<exists> (s,l) \<in> set (uset p). Ifm (x#bs) (usubst p (Add(Mul l t) (Mul k s) , 2*k*l))))" | |
| 1664 | (is "(\<exists> x. ?I x p) = (?M \<or> ?P \<or> ?F)" is "?E = ?D") | |
| 1665 | proof | |
| 1666 | assume px: "\<exists> x. ?I x p" | |
| 1667 | have "?M \<or> ?P \<or> (\<not> ?M \<and> \<not> ?P)" by blast | |
| 1668 |   moreover {assume "?M \<or> ?P" hence "?D" by blast}
 | |
| 1669 |   moreover {assume nmi: "\<not> ?M" and npi: "\<not> ?P"
 | |
| 1670 | let ?f ="\<lambda> (t,n). Inum (x#bs) t / real n" | |
| 1671 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1672 |     {fix t n s m assume "(t,n)\<in> set (uset p)" and "(s,m) \<in> set (uset p)"
 | |
| 1673 | with uset_l[OF lp] have tnb: "numbound0 t" and np:"real n > 0" and snb: "numbound0 s" and mp:"real m > 0" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 1674 | by auto | 
| 29789 | 1675 | let ?st = "Add (Mul m t) (Mul n s)" | 
| 1676 | from mult_pos_pos[OF np mp] have mnp: "real (2*n*m) > 0" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 1677 | by (simp add: mult_commute) | 
| 29789 | 1678 | from tnb snb have st_nb: "numbound0 ?st" by simp | 
| 1679 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 1680 | using mnp mp np by (simp add: algebra_simps add_divide_distrib) | 
| 29789 | 1681 | from usubst_I[OF lp mnp st_nb, where x="x" and bs="bs"] | 
| 1682 | have "?I x (usubst p (?st,2*n*m)) = ?I ((?N t / real n + ?N s / real m) /2) p" by (simp only: st[symmetric])} | |
| 1683 | with rinf_uset[OF lp nmi npi px] have "?F" by blast hence "?D" by blast} | |
| 1684 | ultimately show "?D" by blast | |
| 1685 | next | |
| 1686 | assume "?D" | |
| 1687 |   moreover {assume m:"?M" from rminusinf_ex[OF lp m] have "?E" .}
 | |
| 1688 |   moreover {assume p: "?P" from rplusinf_ex[OF lp p] have "?E" . }
 | |
| 1689 |   moreover {fix t k s l assume "(t,k) \<in> set (uset p)" and "(s,l) \<in> set (uset p)" 
 | |
| 1690 | and px:"?I x (usubst p (Add (Mul l t) (Mul k s), 2*k*l))" | |
| 1691 | with uset_l[OF lp] have tnb: "numbound0 t" and np:"real k > 0" and snb: "numbound0 s" and mp:"real l > 0" by auto | |
| 1692 | let ?st = "Add (Mul l t) (Mul k s)" | |
| 1693 | from mult_pos_pos[OF np mp] have mnp: "real (2*k*l) > 0" | |
| 1694 | by (simp add: mult_commute) | |
| 1695 | from tnb snb have st_nb: "numbound0 ?st" by simp | |
| 1696 | from usubst_I[OF lp mnp st_nb, where bs="bs"] px have "?E" by auto} | |
| 1697 | ultimately show "?E" by blast | |
| 1698 | qed | |
| 1699 | ||
| 1700 | ||
| 1701 | (* Implement the right hand side of Ferrante and Rackoff's Theorem. *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 1702 | definition ferrack :: "fm \<Rightarrow> fm" where | 
| 36853 | 1703 | "ferrack p = (let p' = rlfm (simpfm p); mp = minusinf p'; pp = plusinf p' | 
| 29789 | 1704 | in if (mp = T \<or> pp = T) then T else | 
| 36853 | 1705 | (let U = remdups(map simp_num_pair | 
| 29789 | 1706 | (map (\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)) | 
| 1707 | (alluopairs (uset p')))) | |
| 1708 | in decr (disj mp (disj pp (evaldjf (simpfm o (usubst p')) U)))))" | |
| 1709 | ||
| 1710 | lemma uset_cong_aux: | |
| 1711 | assumes Ul: "\<forall> (t,n) \<in> set U. numbound0 t \<and> n >0" | |
| 1712 | shows "((\<lambda> (t,n). Inum (x#bs) t /real n) ` (set (map (\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)) (alluopairs U)))) = ((\<lambda> ((t,n),(s,m)). (Inum (x#bs) t /real n + Inum (x#bs) s /real m)/2) ` (set U \<times> set U))" | |
| 1713 | (is "?lhs = ?rhs") | |
| 1714 | proof(auto) | |
| 1715 | fix t n s m | |
| 1716 | assume "((t,n),(s,m)) \<in> set (alluopairs U)" | |
| 1717 | hence th: "((t,n),(s,m)) \<in> (set U \<times> set U)" | |
| 1718 | using alluopairs_set1[where xs="U"] by blast | |
| 1719 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1720 | let ?st= "Add (Mul m t) (Mul n s)" | |
| 1721 | from Ul th have mnz: "m \<noteq> 0" by auto | |
| 1722 | from Ul th have nnz: "n \<noteq> 0" by auto | |
| 1723 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1724 | using mnz nnz by (simp add: algebra_simps add_divide_distrib) | |
| 1725 | ||
| 1726 | thus "(real m * Inum (x # bs) t + real n * Inum (x # bs) s) / | |
| 1727 | (2 * real n * real m) | |
| 1728 | \<in> (\<lambda>((t, n), s, m). | |
| 1729 | (Inum (x # bs) t / real n + Inum (x # bs) s / real m) / 2) ` | |
| 1730 | (set U \<times> set U)"using mnz nnz th | |
| 1731 | apply (auto simp add: th add_divide_distrib algebra_simps split_def image_def) | |
| 1732 | by (rule_tac x="(s,m)" in bexI,simp_all) | |
| 1733 | (rule_tac x="(t,n)" in bexI,simp_all) | |
| 1734 | next | |
| 1735 | fix t n s m | |
| 1736 | assume tnU: "(t,n) \<in> set U" and smU:"(s,m) \<in> set U" | |
| 1737 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1738 | let ?st= "Add (Mul m t) (Mul n s)" | |
| 1739 | from Ul smU have mnz: "m \<noteq> 0" by auto | |
| 1740 | from Ul tnU have nnz: "n \<noteq> 0" by auto | |
| 1741 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1742 | using mnz nnz by (simp add: algebra_simps add_divide_distrib) | |
| 1743 | let ?P = "\<lambda> (t',n') (s',m'). (Inum (x # bs) t / real n + Inum (x # bs) s / real m)/2 = (Inum (x # bs) t' / real n' + Inum (x # bs) s' / real m')/2" | |
| 1744 | have Pc:"\<forall> a b. ?P a b = ?P b a" | |
| 1745 | by auto | |
| 1746 | from Ul alluopairs_set1 have Up:"\<forall> ((t,n),(s,m)) \<in> set (alluopairs U). n \<noteq> 0 \<and> m \<noteq> 0" by blast | |
| 1747 | from alluopairs_ex[OF Pc, where xs="U"] tnU smU | |
| 1748 | have th':"\<exists> ((t',n'),(s',m')) \<in> set (alluopairs U). ?P (t',n') (s',m')" | |
| 1749 | by blast | |
| 1750 | then obtain t' n' s' m' where ts'_U: "((t',n'),(s',m')) \<in> set (alluopairs U)" | |
| 1751 | and Pts': "?P (t',n') (s',m')" by blast | |
| 1752 | from ts'_U Up have mnz': "m' \<noteq> 0" and nnz': "n'\<noteq> 0" by auto | |
| 1753 | let ?st' = "Add (Mul m' t') (Mul n' s')" | |
| 1754 | have st': "(?N t' / real n' + ?N s' / real m')/2 = ?N ?st' / real (2*n'*m')" | |
| 1755 | using mnz' nnz' by (simp add: algebra_simps add_divide_distrib) | |
| 1756 | from Pts' have | |
| 1757 | "(Inum (x # bs) t / real n + Inum (x # bs) s / real m)/2 = (Inum (x # bs) t' / real n' + Inum (x # bs) s' / real m')/2" by simp | |
| 1758 | also have "\<dots> = ((\<lambda>(t, n). Inum (x # bs) t / real n) ((\<lambda>((t, n), s, m). (Add (Mul m t) (Mul n s), 2 * n * m)) ((t',n'),(s',m'))))" by (simp add: st') | |
| 1759 | finally show "(Inum (x # bs) t / real n + Inum (x # bs) s / real m) / 2 | |
| 1760 | \<in> (\<lambda>(t, n). Inum (x # bs) t / real n) ` | |
| 1761 | (\<lambda>((t, n), s, m). (Add (Mul m t) (Mul n s), 2 * n * m)) ` | |
| 1762 | set (alluopairs U)" | |
| 1763 | using ts'_U by blast | |
| 1764 | qed | |
| 1765 | ||
| 1766 | lemma uset_cong: | |
| 1767 | assumes lp: "isrlfm p" | |
| 1768 | and UU': "((\<lambda> (t,n). Inum (x#bs) t /real n) ` U') = ((\<lambda> ((t,n),(s,m)). (Inum (x#bs) t /real n + Inum (x#bs) s /real m)/2) ` (U \<times> U))" (is "?f ` U' = ?g ` (U\<times>U)") | |
| 1769 | and U: "\<forall> (t,n) \<in> U. numbound0 t \<and> n > 0" | |
| 1770 | and U': "\<forall> (t,n) \<in> U'. numbound0 t \<and> n > 0" | |
| 1771 | shows "(\<exists> (t,n) \<in> U. \<exists> (s,m) \<in> U. Ifm (x#bs) (usubst p (Add (Mul m t) (Mul n s),2*n*m))) = (\<exists> (t,n) \<in> U'. Ifm (x#bs) (usubst p (t,n)))" | |
| 1772 | (is "?lhs = ?rhs") | |
| 1773 | proof | |
| 1774 | assume ?lhs | |
| 1775 | then obtain t n s m where tnU: "(t,n) \<in> U" and smU:"(s,m) \<in> U" and | |
| 1776 | Pst: "Ifm (x#bs) (usubst p (Add (Mul m t) (Mul n s),2*n*m))" by blast | |
| 1777 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1778 | from tnU smU U have tnb: "numbound0 t" and np: "n > 0" | |
| 1779 | and snb: "numbound0 s" and mp:"m > 0" by auto | |
| 1780 | let ?st= "Add (Mul m t) (Mul n s)" | |
| 1781 | from mult_pos_pos[OF np mp] have mnp: "real (2*n*m) > 0" | |
| 1782 | by (simp add: mult_commute real_of_int_mult[symmetric] del: real_of_int_mult) | |
| 1783 | from tnb snb have stnb: "numbound0 ?st" by simp | |
| 1784 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1785 | using mp np by (simp add: algebra_simps add_divide_distrib) | |
| 1786 | from tnU smU UU' have "?g ((t,n),(s,m)) \<in> ?f ` U'" by blast | |
| 1787 | hence "\<exists> (t',n') \<in> U'. ?g ((t,n),(s,m)) = ?f (t',n')" | |
| 1788 | by auto (rule_tac x="(a,b)" in bexI, auto) | |
| 1789 | then obtain t' n' where tnU': "(t',n') \<in> U'" and th: "?g ((t,n),(s,m)) = ?f (t',n')" by blast | |
| 1790 | from U' tnU' have tnb': "numbound0 t'" and np': "real n' > 0" by auto | |
| 1791 | from usubst_I[OF lp mnp stnb, where bs="bs" and x="x"] Pst | |
| 1792 | have Pst2: "Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real (2 * n * m) # bs) p" by simp | |
| 1793 | from conjunct1[OF usubst_I[OF lp np' tnb', where bs="bs" and x="x"], symmetric] th[simplified split_def fst_conv snd_conv,symmetric] Pst2[simplified st[symmetric]] | |
| 1794 | have "Ifm (x # bs) (usubst p (t', n')) " by (simp only: st) | |
| 1795 | then show ?rhs using tnU' by auto | |
| 1796 | next | |
| 1797 | assume ?rhs | |
| 1798 | then obtain t' n' where tnU': "(t',n') \<in> U'" and Pt': "Ifm (x # bs) (usubst p (t', n'))" | |
| 1799 | by blast | |
| 1800 | from tnU' UU' have "?f (t',n') \<in> ?g ` (U\<times>U)" by blast | |
| 1801 | hence "\<exists> ((t,n),(s,m)) \<in> (U\<times>U). ?f (t',n') = ?g ((t,n),(s,m))" | |
| 1802 | by auto (rule_tac x="(a,b)" in bexI, auto) | |
| 1803 | then obtain t n s m where tnU: "(t,n) \<in> U" and smU:"(s,m) \<in> U" and | |
| 1804 | th: "?f (t',n') = ?g((t,n),(s,m)) "by blast | |
| 1805 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1806 | from tnU smU U have tnb: "numbound0 t" and np: "n > 0" | |
| 1807 | and snb: "numbound0 s" and mp:"m > 0" by auto | |
| 1808 | let ?st= "Add (Mul m t) (Mul n s)" | |
| 1809 | from mult_pos_pos[OF np mp] have mnp: "real (2*n*m) > 0" | |
| 1810 | by (simp add: mult_commute real_of_int_mult[symmetric] del: real_of_int_mult) | |
| 1811 | from tnb snb have stnb: "numbound0 ?st" by simp | |
| 1812 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1813 | using mp np by (simp add: algebra_simps add_divide_distrib) | |
| 1814 | from U' tnU' have tnb': "numbound0 t'" and np': "real n' > 0" by auto | |
| 1815 | from usubst_I[OF lp np' tnb', where bs="bs" and x="x",simplified th[simplified split_def fst_conv snd_conv] st] Pt' | |
| 1816 | have Pst2: "Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real (2 * n * m) # bs) p" by simp | |
| 1817 | with usubst_I[OF lp mnp stnb, where x="x" and bs="bs"] tnU smU show ?lhs by blast | |
| 1818 | qed | |
| 1819 | ||
| 1820 | lemma ferrack: | |
| 1821 | assumes qf: "qfree p" | |
| 1822 | shows "qfree (ferrack p) \<and> ((Ifm bs (ferrack p)) = (\<exists> x. Ifm (x#bs) p))" | |
| 1823 | (is "_ \<and> (?rhs = ?lhs)") | |
| 1824 | proof- | |
| 1825 | let ?I = "\<lambda> x p. Ifm (x#bs) p" | |
| 1826 | fix x | |
| 1827 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1828 | let ?q = "rlfm (simpfm p)" | |
| 1829 | let ?U = "uset ?q" | |
| 1830 | let ?Up = "alluopairs ?U" | |
| 1831 | let ?g = "\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)" | |
| 1832 | let ?S = "map ?g ?Up" | |
| 1833 | let ?SS = "map simp_num_pair ?S" | |
| 36853 | 1834 | let ?Y = "remdups ?SS" | 
| 29789 | 1835 | let ?f= "(\<lambda> (t,n). ?N t / real n)" | 
| 1836 | let ?h = "\<lambda> ((t,n),(s,m)). (?N t/real n + ?N s/ real m) /2" | |
| 1837 | let ?F = "\<lambda> p. \<exists> a \<in> set (uset p). \<exists> b \<in> set (uset p). ?I x (usubst p (?g(a,b)))" | |
| 1838 | let ?ep = "evaldjf (simpfm o (usubst ?q)) ?Y" | |
| 1839 | from rlfm_I[OF simpfm_qf[OF qf]] have lq: "isrlfm ?q" by blast | |
| 1840 | from alluopairs_set1[where xs="?U"] have UpU: "set ?Up \<le> (set ?U \<times> set ?U)" by simp | |
| 1841 | from uset_l[OF lq] have U_l: "\<forall> (t,n) \<in> set ?U. numbound0 t \<and> n > 0" . | |
| 1842 | from U_l UpU | |
| 1843 | have "\<forall> ((t,n),(s,m)) \<in> set ?Up. numbound0 t \<and> n> 0 \<and> numbound0 s \<and> m > 0" by auto | |
| 1844 | hence Snb: "\<forall> (t,n) \<in> set ?S. numbound0 t \<and> n > 0 " | |
| 1845 | by (auto simp add: mult_pos_pos) | |
| 1846 | have Y_l: "\<forall> (t,n) \<in> set ?Y. numbound0 t \<and> n > 0" | |
| 1847 | proof- | |
| 1848 |     { fix t n assume tnY: "(t,n) \<in> set ?Y" 
 | |
| 1849 | hence "(t,n) \<in> set ?SS" by simp | |
| 1850 | hence "\<exists> (t',n') \<in> set ?S. simp_num_pair (t',n') = (t,n)" | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33063diff
changeset | 1851 | by (auto simp add: split_def simp del: map_map) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33063diff
changeset | 1852 | (rule_tac x="((aa,ba),(ab,bb))" in bexI, simp_all) | 
| 29789 | 1853 | then obtain t' n' where tn'S: "(t',n') \<in> set ?S" and tns: "simp_num_pair (t',n') = (t,n)" by blast | 
| 1854 | from tn'S Snb have tnb: "numbound0 t'" and np: "n' > 0" by auto | |
| 1855 | from simp_num_pair_l[OF tnb np tns] | |
| 1856 | have "numbound0 t \<and> n > 0" . } | |
| 1857 | thus ?thesis by blast | |
| 1858 | qed | |
| 1859 | ||
| 1860 | have YU: "(?f ` set ?Y) = (?h ` (set ?U \<times> set ?U))" | |
| 1861 | proof- | |
| 1862 | from simp_num_pair_ci[where bs="x#bs"] have | |
| 1863 | "\<forall>x. (?f o simp_num_pair) x = ?f x" by auto | |
| 1864 | hence th: "?f o simp_num_pair = ?f" using ext by blast | |
| 1865 | have "(?f ` set ?Y) = ((?f o simp_num_pair) ` set ?S)" by (simp add: image_compose) | |
| 1866 | also have "\<dots> = (?f ` set ?S)" by (simp add: th) | |
| 1867 | also have "\<dots> = ((?f o ?g) ` set ?Up)" | |
| 1868 | by (simp only: set_map o_def image_compose[symmetric]) | |
| 1869 | also have "\<dots> = (?h ` (set ?U \<times> set ?U))" | |
| 1870 | using uset_cong_aux[OF U_l, where x="x" and bs="bs", simplified set_map image_compose[symmetric]] by blast | |
| 1871 | finally show ?thesis . | |
| 1872 | qed | |
| 1873 | have "\<forall> (t,n) \<in> set ?Y. bound0 (simpfm (usubst ?q (t,n)))" | |
| 1874 | proof- | |
| 1875 |     { fix t n assume tnY: "(t,n) \<in> set ?Y"
 | |
| 1876 | with Y_l have tnb: "numbound0 t" and np: "real n > 0" by auto | |
| 1877 | from usubst_I[OF lq np tnb] | |
| 1878 | have "bound0 (usubst ?q (t,n))" by simp hence "bound0 (simpfm (usubst ?q (t,n)))" | |
| 1879 | using simpfm_bound0 by simp} | |
| 1880 | thus ?thesis by blast | |
| 1881 | qed | |
| 1882 | hence ep_nb: "bound0 ?ep" using evaldjf_bound0[where xs="?Y" and f="simpfm o (usubst ?q)"] by auto | |
| 1883 | let ?mp = "minusinf ?q" | |
| 1884 | let ?pp = "plusinf ?q" | |
| 1885 | let ?M = "?I x ?mp" | |
| 1886 | let ?P = "?I x ?pp" | |
| 1887 | let ?res = "disj ?mp (disj ?pp ?ep)" | |
| 1888 | from rminusinf_bound0[OF lq] rplusinf_bound0[OF lq] ep_nb | |
| 1889 | have nbth: "bound0 ?res" by auto | |
| 1890 | ||
| 1891 | from conjunct1[OF rlfm_I[OF simpfm_qf[OF qf]]] simpfm | |
| 1892 | ||
| 1893 | have th: "?lhs = (\<exists> x. ?I x ?q)" by auto | |
| 1894 | from th fr_equsubst[OF lq, where bs="bs" and x="x"] have lhfr: "?lhs = (?M \<or> ?P \<or> ?F ?q)" | |
| 1895 | by (simp only: split_def fst_conv snd_conv) | |
| 1896 | also have "\<dots> = (?M \<or> ?P \<or> (\<exists> (t,n) \<in> set ?Y. ?I x (simpfm (usubst ?q (t,n)))))" | |
| 1897 | using uset_cong[OF lq YU U_l Y_l] by (simp only: split_def fst_conv snd_conv simpfm) | |
| 1898 | also have "\<dots> = (Ifm (x#bs) ?res)" | |
| 1899 | using evaldjf_ex[where ps="?Y" and bs = "x#bs" and f="simpfm o (usubst ?q)",symmetric] | |
| 1900 | by (simp add: split_def pair_collapse) | |
| 1901 | finally have lheq: "?lhs = (Ifm bs (decr ?res))" using decr[OF nbth] by blast | |
| 1902 | hence lr: "?lhs = ?rhs" apply (unfold ferrack_def Let_def) | |
| 1903 | by (cases "?mp = T \<or> ?pp = T", auto) (simp add: disj_def)+ | |
| 1904 | from decr_qf[OF nbth] have "qfree (ferrack p)" by (auto simp add: Let_def ferrack_def) | |
| 1905 | with lr show ?thesis by blast | |
| 1906 | qed | |
| 1907 | ||
| 1908 | definition linrqe:: "fm \<Rightarrow> fm" where | |
| 1909 | "linrqe p = qelim (prep p) ferrack" | |
| 1910 | ||
| 1911 | theorem linrqe: "Ifm bs (linrqe p) = Ifm bs p \<and> qfree (linrqe p)" | |
| 1912 | using ferrack qelim_ci prep | |
| 1913 | unfolding linrqe_def by auto | |
| 1914 | ||
| 1915 | definition ferrack_test :: "unit \<Rightarrow> fm" where | |
| 1916 | "ferrack_test u = linrqe (A (A (Imp (Lt (Sub (Bound 1) (Bound 0))) | |
| 1917 | (E (Eq (Sub (Add (Bound 0) (Bound 2)) (Bound 1)))))))" | |
| 1918 | ||
| 1919 | ML {* @{code ferrack_test} () *}
 | |
| 1920 | ||
| 1921 | oracle linr_oracle = {*
 | |
| 1922 | let | |
| 1923 | ||
| 36853 | 1924 | fun num_of_term vs (Free vT) = @{code Bound} (find_index (fn vT' => vT = vT') vs)
 | 
| 29789 | 1925 |   | num_of_term vs @{term "real (0::int)"} = @{code C} 0
 | 
| 1926 |   | num_of_term vs @{term "real (1::int)"} = @{code C} 1
 | |
| 1927 |   | num_of_term vs @{term "0::real"} = @{code C} 0
 | |
| 1928 |   | num_of_term vs @{term "1::real"} = @{code C} 1
 | |
| 1929 |   | num_of_term vs (Bound i) = @{code Bound} i
 | |
| 1930 |   | num_of_term vs (@{term "uminus :: real \<Rightarrow> real"} $ t') = @{code Neg} (num_of_term vs t')
 | |
| 36853 | 1931 |   | num_of_term vs (@{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) =
 | 
| 1932 |      @{code Add} (num_of_term vs t1, num_of_term vs t2)
 | |
| 1933 |   | num_of_term vs (@{term "op - :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) =
 | |
| 1934 |      @{code Sub} (num_of_term vs t1, num_of_term vs t2)
 | |
| 1935 |   | num_of_term vs (@{term "op * :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) = (case num_of_term vs t1
 | |
| 29789 | 1936 |      of @{code C} i => @{code Mul} (i, num_of_term vs t2)
 | 
| 36853 | 1937 | | _ => error "num_of_term: unsupported multiplication") | 
| 1938 |   | num_of_term vs (@{term "real :: int \<Rightarrow> real"} $ (@{term "number_of :: int \<Rightarrow> int"} $ t')) =
 | |
| 1939 |      @{code C} (HOLogic.dest_numeral t')
 | |
| 1940 |   | num_of_term vs (@{term "number_of :: int \<Rightarrow> real"} $ t') =
 | |
| 1941 |      @{code C} (HOLogic.dest_numeral t')
 | |
| 1942 |   | num_of_term vs t = error ("num_of_term: unknown term");
 | |
| 29789 | 1943 | |
| 1944 | fun fm_of_term vs @{term True} = @{code T}
 | |
| 1945 |   | fm_of_term vs @{term False} = @{code F}
 | |
| 36853 | 1946 |   | fm_of_term vs (@{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) =
 | 
| 1947 |       @{code Lt} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
 | |
| 1948 |   | fm_of_term vs (@{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) =
 | |
| 1949 |       @{code Le} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
 | |
| 1950 |   | fm_of_term vs (@{term "op = :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) =
 | |
| 1951 |       @{code Eq} (@{code Sub} (num_of_term vs t1, num_of_term vs t2)) 
 | |
| 1952 |   | fm_of_term vs (@{term "op \<longleftrightarrow> :: bool \<Rightarrow> bool \<Rightarrow> bool"} $ t1 $ t2) =
 | |
| 1953 |       @{code Iff} (fm_of_term vs t1, fm_of_term vs t2)
 | |
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 1954 |   | fm_of_term vs (@{term HOL.conj} $ t1 $ t2) = @{code And} (fm_of_term vs t1, fm_of_term vs t2)
 | 
| 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 1955 |   | fm_of_term vs (@{term HOL.disj} $ t1 $ t2) = @{code Or} (fm_of_term vs t1, fm_of_term vs t2)
 | 
| 38786 
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
 haftmann parents: 
38558diff
changeset | 1956 |   | fm_of_term vs (@{term HOL.implies} $ t1 $ t2) = @{code Imp} (fm_of_term vs t1, fm_of_term vs t2)
 | 
| 29789 | 1957 |   | fm_of_term vs (@{term "Not"} $ t') = @{code NOT} (fm_of_term vs t')
 | 
| 38558 | 1958 |   | fm_of_term vs (Const (@{const_name Ex}, _) $ Abs (xn, xT, p)) =
 | 
| 36853 | 1959 |       @{code E} (fm_of_term (("", dummyT) :: vs) p)
 | 
| 38558 | 1960 |   | fm_of_term vs (Const (@{const_name All}, _) $ Abs (xn, xT, p)) =
 | 
| 36853 | 1961 |       @{code A} (fm_of_term (("", dummyT) ::  vs) p)
 | 
| 29789 | 1962 |   | fm_of_term vs t = error ("fm_of_term : unknown term " ^ Syntax.string_of_term @{context} t);
 | 
| 1963 | ||
| 1964 | fun term_of_num vs (@{code C} i) = @{term "real :: int \<Rightarrow> real"} $ HOLogic.mk_number HOLogic.intT i
 | |
| 36853 | 1965 |   | term_of_num vs (@{code Bound} n) = Free (nth vs n)
 | 
| 29789 | 1966 |   | term_of_num vs (@{code Neg} t') = @{term "uminus :: real \<Rightarrow> real"} $ term_of_num vs t'
 | 
| 1967 |   | term_of_num vs (@{code Add} (t1, t2)) = @{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $
 | |
| 1968 | term_of_num vs t1 $ term_of_num vs t2 | |
| 1969 |   | term_of_num vs (@{code Sub} (t1, t2)) = @{term "op - :: real \<Rightarrow> real \<Rightarrow> real"} $
 | |
| 1970 | term_of_num vs t1 $ term_of_num vs t2 | |
| 1971 |   | term_of_num vs (@{code Mul} (i, t2)) = @{term "op * :: real \<Rightarrow> real \<Rightarrow> real"} $
 | |
| 1972 |       term_of_num vs (@{code C} i) $ term_of_num vs t2
 | |
| 1973 |   | term_of_num vs (@{code CN} (n, i, t)) = term_of_num vs (@{code Add} (@{code Mul} (i, @{code Bound} n), t));
 | |
| 1974 | ||
| 1975 | fun term_of_fm vs @{code T} = HOLogic.true_const 
 | |
| 1976 |   | term_of_fm vs @{code F} = HOLogic.false_const
 | |
| 1977 |   | term_of_fm vs (@{code Lt} t) = @{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 1978 |       term_of_num vs t $ @{term "0::real"}
 | |
| 1979 |   | term_of_fm vs (@{code Le} t) = @{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 1980 |       term_of_num vs t $ @{term "0::real"}
 | |
| 1981 |   | term_of_fm vs (@{code Gt} t) = @{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 1982 |       @{term "0::real"} $ term_of_num vs t
 | |
| 1983 |   | term_of_fm vs (@{code Ge} t) = @{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 1984 |       @{term "0::real"} $ term_of_num vs t
 | |
| 1985 |   | term_of_fm vs (@{code Eq} t) = @{term "op = :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 1986 |       term_of_num vs t $ @{term "0::real"}
 | |
| 1987 |   | term_of_fm vs (@{code NEq} t) = term_of_fm vs (@{code NOT} (@{code Eq} t))
 | |
| 1988 |   | term_of_fm vs (@{code NOT} t') = HOLogic.Not $ term_of_fm vs t'
 | |
| 1989 |   | term_of_fm vs (@{code And} (t1, t2)) = HOLogic.conj $ term_of_fm vs t1 $ term_of_fm vs t2
 | |
| 1990 |   | term_of_fm vs (@{code Or} (t1, t2)) = HOLogic.disj $ term_of_fm vs t1 $ term_of_fm vs t2
 | |
| 1991 |   | term_of_fm vs (@{code Imp}  (t1, t2)) = HOLogic.imp $ term_of_fm vs t1 $ term_of_fm vs t2
 | |
| 1992 |   | term_of_fm vs (@{code Iff} (t1, t2)) = @{term "op \<longleftrightarrow> :: bool \<Rightarrow> bool \<Rightarrow> bool"} $
 | |
| 36853 | 1993 | term_of_fm vs t1 $ term_of_fm vs t2; | 
| 29789 | 1994 | |
| 36853 | 1995 | in fn (ctxt, t) => | 
| 29789 | 1996 | let | 
| 36853 | 1997 | val vs = Term.add_frees t []; | 
| 1998 |     val t' = (term_of_fm vs o @{code linrqe} o fm_of_term vs) t;
 | |
| 1999 | in (Thm.cterm_of (ProofContext.theory_of ctxt) o HOLogic.mk_Trueprop o HOLogic.mk_eq) (t, t') end | |
| 29789 | 2000 | end; | 
| 2001 | *} | |
| 2002 | ||
| 2003 | use "ferrack_tac.ML" | |
| 2004 | setup Ferrack_Tac.setup | |
| 2005 | ||
| 2006 | lemma | |
| 2007 | fixes x :: real | |
| 2008 | shows "2 * x \<le> 2 * x \<and> 2 * x \<le> 2 * x + 1" | |
| 2009 | apply rferrack | |
| 2010 | done | |
| 2011 | ||
| 2012 | lemma | |
| 2013 | fixes x :: real | |
| 2014 | shows "\<exists>y \<le> x. x = y + 1" | |
| 2015 | apply rferrack | |
| 2016 | done | |
| 2017 | ||
| 2018 | lemma | |
| 2019 | fixes x :: real | |
| 2020 | shows "\<not> (\<exists>z. x + z = x + z + 1)" | |
| 2021 | apply rferrack | |
| 2022 | done | |
| 2023 | ||
| 2024 | end |