| author | blanchet | 
| Mon, 02 Dec 2013 20:31:54 +0100 | |
| changeset 54614 | 689398f0953f | 
| parent 46821 | ff6b0c1087f2 | 
| child 58871 | c399ae4b836f | 
| permissions | -rw-r--r-- | 
| 41777 | 1  | 
(* Title: ZF/Bool.thy  | 
| 1478 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 3  | 
Copyright 1992 University of Cambridge  | 
| 13328 | 4  | 
*)  | 
| 837 | 5  | 
|
| 13328 | 6  | 
header{*Booleans in Zermelo-Fraenkel Set Theory*}
 | 
| 0 | 7  | 
|
| 16417 | 8  | 
theory Bool imports pair begin  | 
| 0 | 9  | 
|
| 24892 | 10  | 
abbreviation  | 
11  | 
  one  ("1") where
 | 
|
12  | 
"1 == succ(0)"  | 
|
| 2539 | 13  | 
|
| 24892 | 14  | 
abbreviation  | 
15  | 
  two  ("2") where
 | 
|
16  | 
"2 == succ(1)"  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
17  | 
|
| 13328 | 18  | 
text{*2 is equal to bool, but is used as a number rather than a type.*}
 | 
19  | 
||
| 24893 | 20  | 
definition "bool == {0,1}"
 | 
21  | 
||
22  | 
definition "cond(b,c,d) == if(b=1,c,d)"  | 
|
| 13239 | 23  | 
|
| 24893 | 24  | 
definition "not(b) == cond(b,0,1)"  | 
| 13239 | 25  | 
|
| 24893 | 26  | 
definition  | 
27  | 
"and" :: "[i,i]=>i" (infixl "and" 70) where  | 
|
| 13239 | 28  | 
"a and b == cond(a,b,0)"  | 
29  | 
||
| 24893 | 30  | 
definition  | 
31  | 
or :: "[i,i]=>i" (infixl "or" 65) where  | 
|
| 13239 | 32  | 
"a or b == cond(a,1,b)"  | 
33  | 
||
| 24893 | 34  | 
definition  | 
35  | 
xor :: "[i,i]=>i" (infixl "xor" 65) where  | 
|
| 13239 | 36  | 
"a xor b == cond(a,not(b),b)"  | 
37  | 
||
38  | 
||
39  | 
lemmas bool_defs = bool_def cond_def  | 
|
40  | 
||
41  | 
lemma singleton_0: "{0} = 1"
 | 
|
42  | 
by (simp add: succ_def)  | 
|
43  | 
||
44  | 
(* Introduction rules *)  | 
|
45  | 
||
| 46820 | 46  | 
lemma bool_1I [simp,TC]: "1 \<in> bool"  | 
| 13239 | 47  | 
by (simp add: bool_defs )  | 
48  | 
||
| 46820 | 49  | 
lemma bool_0I [simp,TC]: "0 \<in> bool"  | 
| 13239 | 50  | 
by (simp add: bool_defs)  | 
51  | 
||
| 46820 | 52  | 
lemma one_not_0: "1\<noteq>0"  | 
| 13239 | 53  | 
by (simp add: bool_defs )  | 
54  | 
||
55  | 
(** 1=0 ==> R **)  | 
|
| 45602 | 56  | 
lemmas one_neq_0 = one_not_0 [THEN notE]  | 
| 13239 | 57  | 
|
58  | 
lemma boolE:  | 
|
59  | 
"[| c: bool; c=1 ==> P; c=0 ==> P |] ==> P"  | 
|
| 24892 | 60  | 
by (simp add: bool_defs, blast)  | 
| 13239 | 61  | 
|
62  | 
(** cond **)  | 
|
63  | 
||
64  | 
(*1 means true*)  | 
|
65  | 
lemma cond_1 [simp]: "cond(1,c,d) = c"  | 
|
66  | 
by (simp add: bool_defs )  | 
|
67  | 
||
68  | 
(*0 means false*)  | 
|
69  | 
lemma cond_0 [simp]: "cond(0,c,d) = d"  | 
|
70  | 
by (simp add: bool_defs )  | 
|
71  | 
||
72  | 
lemma cond_type [TC]: "[| b: bool; c: A(1); d: A(0) |] ==> cond(b,c,d): A(b)"  | 
|
| 13269 | 73  | 
by (simp add: bool_defs, blast)  | 
| 13239 | 74  | 
|
75  | 
(*For Simp_tac and Blast_tac*)  | 
|
76  | 
lemma cond_simple_type: "[| b: bool; c: A; d: A |] ==> cond(b,c,d): A"  | 
|
77  | 
by (simp add: bool_defs )  | 
|
78  | 
||
79  | 
lemma def_cond_1: "[| !!b. j(b)==cond(b,c,d) |] ==> j(1) = c"  | 
|
80  | 
by simp  | 
|
81  | 
||
82  | 
lemma def_cond_0: "[| !!b. j(b)==cond(b,c,d) |] ==> j(0) = d"  | 
|
83  | 
by simp  | 
|
84  | 
||
| 45602 | 85  | 
lemmas not_1 = not_def [THEN def_cond_1, simp]  | 
86  | 
lemmas not_0 = not_def [THEN def_cond_0, simp]  | 
|
| 13239 | 87  | 
|
| 45602 | 88  | 
lemmas and_1 = and_def [THEN def_cond_1, simp]  | 
89  | 
lemmas and_0 = and_def [THEN def_cond_0, simp]  | 
|
| 13239 | 90  | 
|
| 45602 | 91  | 
lemmas or_1 = or_def [THEN def_cond_1, simp]  | 
92  | 
lemmas or_0 = or_def [THEN def_cond_0, simp]  | 
|
| 13239 | 93  | 
|
| 45602 | 94  | 
lemmas xor_1 = xor_def [THEN def_cond_1, simp]  | 
95  | 
lemmas xor_0 = xor_def [THEN def_cond_0, simp]  | 
|
| 13239 | 96  | 
|
| 46820 | 97  | 
lemma not_type [TC]: "a:bool ==> not(a) \<in> bool"  | 
| 13239 | 98  | 
by (simp add: not_def)  | 
99  | 
||
| 46820 | 100  | 
lemma and_type [TC]: "[| a:bool; b:bool |] ==> a and b \<in> bool"  | 
| 13239 | 101  | 
by (simp add: and_def)  | 
102  | 
||
| 46820 | 103  | 
lemma or_type [TC]: "[| a:bool; b:bool |] ==> a or b \<in> bool"  | 
| 13239 | 104  | 
by (simp add: or_def)  | 
105  | 
||
| 46820 | 106  | 
lemma xor_type [TC]: "[| a:bool; b:bool |] ==> a xor b \<in> bool"  | 
| 13239 | 107  | 
by (simp add: xor_def)  | 
108  | 
||
109  | 
lemmas bool_typechecks = bool_1I bool_0I cond_type not_type and_type  | 
|
110  | 
or_type xor_type  | 
|
111  | 
||
| 13356 | 112  | 
subsection{*Laws About 'not' *}
 | 
| 13239 | 113  | 
|
114  | 
lemma not_not [simp]: "a:bool ==> not(not(a)) = a"  | 
|
115  | 
by (elim boolE, auto)  | 
|
116  | 
||
117  | 
lemma not_and [simp]: "a:bool ==> not(a and b) = not(a) or not(b)"  | 
|
118  | 
by (elim boolE, auto)  | 
|
119  | 
||
120  | 
lemma not_or [simp]: "a:bool ==> not(a or b) = not(a) and not(b)"  | 
|
121  | 
by (elim boolE, auto)  | 
|
122  | 
||
| 13356 | 123  | 
subsection{*Laws About 'and' *}
 | 
| 13239 | 124  | 
|
125  | 
lemma and_absorb [simp]: "a: bool ==> a and a = a"  | 
|
126  | 
by (elim boolE, auto)  | 
|
127  | 
||
128  | 
lemma and_commute: "[| a: bool; b:bool |] ==> a and b = b and a"  | 
|
129  | 
by (elim boolE, auto)  | 
|
130  | 
||
131  | 
lemma and_assoc: "a: bool ==> (a and b) and c = a and (b and c)"  | 
|
132  | 
by (elim boolE, auto)  | 
|
133  | 
||
| 24892 | 134  | 
lemma and_or_distrib: "[| a: bool; b:bool; c:bool |] ==>  | 
| 13239 | 135  | 
(a or b) and c = (a and c) or (b and c)"  | 
136  | 
by (elim boolE, auto)  | 
|
137  | 
||
| 13356 | 138  | 
subsection{*Laws About 'or' *}
 | 
| 13239 | 139  | 
|
140  | 
lemma or_absorb [simp]: "a: bool ==> a or a = a"  | 
|
141  | 
by (elim boolE, auto)  | 
|
142  | 
||
143  | 
lemma or_commute: "[| a: bool; b:bool |] ==> a or b = b or a"  | 
|
144  | 
by (elim boolE, auto)  | 
|
145  | 
||
146  | 
lemma or_assoc: "a: bool ==> (a or b) or c = a or (b or c)"  | 
|
147  | 
by (elim boolE, auto)  | 
|
148  | 
||
| 24892 | 149  | 
lemma or_and_distrib: "[| a: bool; b: bool; c: bool |] ==>  | 
| 13239 | 150  | 
(a and b) or c = (a or c) and (b or c)"  | 
151  | 
by (elim boolE, auto)  | 
|
152  | 
||
| 13269 | 153  | 
|
| 24893 | 154  | 
definition  | 
155  | 
bool_of_o :: "o=>i" where  | 
|
| 13269 | 156  | 
"bool_of_o(P) == (if P then 1 else 0)"  | 
157  | 
||
158  | 
lemma [simp]: "bool_of_o(True) = 1"  | 
|
| 24892 | 159  | 
by (simp add: bool_of_o_def)  | 
| 13269 | 160  | 
|
161  | 
lemma [simp]: "bool_of_o(False) = 0"  | 
|
| 24892 | 162  | 
by (simp add: bool_of_o_def)  | 
| 13269 | 163  | 
|
164  | 
lemma [simp,TC]: "bool_of_o(P) \<in> bool"  | 
|
| 24892 | 165  | 
by (simp add: bool_of_o_def)  | 
| 13269 | 166  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
167  | 
lemma [simp]: "(bool_of_o(P) = 1) \<longleftrightarrow> P"  | 
| 24892 | 168  | 
by (simp add: bool_of_o_def)  | 
| 13269 | 169  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
170  | 
lemma [simp]: "(bool_of_o(P) = 0) \<longleftrightarrow> ~P"  | 
| 24892 | 171  | 
by (simp add: bool_of_o_def)  | 
| 13269 | 172  | 
|
| 0 | 173  | 
end  |