| author | Wenda Li <wl302@cam.ac.uk> | 
| Fri, 23 Feb 2018 14:56:32 +0000 | |
| changeset 67707 | 68ca05a7f159 | 
| parent 67399 | eab6ce8368fa | 
| child 68006 | a1a023f08c8f | 
| child 68072 | 493b818e8e10 | 
| permissions | -rw-r--r-- | 
| 63627 | 1 | (* Title: HOL/Analysis/Homeomorphism.thy | 
| 63130 | 2 | Author: LC Paulson (ported from HOL Light) | 
| 3 | *) | |
| 4 | ||
| 5 | section \<open>Homeomorphism Theorems\<close> | |
| 6 | ||
| 7 | theory Homeomorphism | |
| 8 | imports Path_Connected | |
| 9 | begin | |
| 10 | ||
| 64789 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 11 | lemma homeomorphic_spheres': | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 12 | fixes a ::"'a::euclidean_space" and b ::"'b::euclidean_space" | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 13 |   assumes "0 < \<delta>" and dimeq: "DIM('a) = DIM('b)"
 | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 14 | shows "(sphere a \<delta>) homeomorphic (sphere b \<delta>)" | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 15 | proof - | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 16 | obtain f :: "'a\<Rightarrow>'b" and g where "linear f" "linear g" | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 17 | and fg: "\<And>x. norm(f x) = norm x" "\<And>y. norm(g y) = norm y" "\<And>x. g(f x) = x" "\<And>y. f(g y) = y" | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 18 | by (blast intro: isomorphisms_UNIV_UNIV [OF dimeq]) | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 19 | then have "continuous_on UNIV f" "continuous_on UNIV g" | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 20 | using linear_continuous_on linear_linear by blast+ | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 21 | then show ?thesis | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 22 | unfolding homeomorphic_minimal | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 23 | apply(rule_tac x="\<lambda>x. b + f(x - a)" in exI) | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 24 | apply(rule_tac x="\<lambda>x. a + g(x - b)" in exI) | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 25 | using assms | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 26 | apply (force intro: continuous_intros | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 27 | continuous_on_compose2 [of _ f] continuous_on_compose2 [of _ g] simp: dist_commute dist_norm fg) | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 28 | done | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 29 | qed | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 30 | |
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 31 | lemma homeomorphic_spheres_gen: | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 32 | fixes a :: "'a::euclidean_space" and b :: "'b::euclidean_space" | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 33 |   assumes "0 < r" "0 < s" "DIM('a::euclidean_space) = DIM('b::euclidean_space)"
 | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 34 | shows "(sphere a r homeomorphic sphere b s)" | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 35 | apply (rule homeomorphic_trans [OF homeomorphic_spheres homeomorphic_spheres']) | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 36 | using assms apply auto | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 37 | done | 
| 
6440577e34ee
connectedness, circles not simply connected , punctured universe
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 38 | |
| 63130 | 39 | subsection \<open>Homeomorphism of all convex compact sets with nonempty interior\<close> | 
| 40 | ||
| 41 | proposition ray_to_rel_frontier: | |
| 42 | fixes a :: "'a::real_inner" | |
| 43 | assumes "bounded S" | |
| 44 | and a: "a \<in> rel_interior S" | |
| 45 | and aff: "(a + l) \<in> affine hull S" | |
| 46 | and "l \<noteq> 0" | |
| 47 | obtains d where "0 < d" "(a + d *\<^sub>R l) \<in> rel_frontier S" | |
| 48 | "\<And>e. \<lbrakk>0 \<le> e; e < d\<rbrakk> \<Longrightarrow> (a + e *\<^sub>R l) \<in> rel_interior S" | |
| 49 | proof - | |
| 50 | have aaff: "a \<in> affine hull S" | |
| 51 | by (meson a hull_subset rel_interior_subset rev_subsetD) | |
| 52 |   let ?D = "{d. 0 < d \<and> a + d *\<^sub>R l \<notin> rel_interior S}"
 | |
| 53 | obtain B where "B > 0" and B: "S \<subseteq> ball a B" | |
| 54 | using bounded_subset_ballD [OF \<open>bounded S\<close>] by blast | |
| 55 | have "a + (B / norm l) *\<^sub>R l \<notin> ball a B" | |
| 56 | by (simp add: dist_norm \<open>l \<noteq> 0\<close>) | |
| 57 | with B have "a + (B / norm l) *\<^sub>R l \<notin> rel_interior S" | |
| 58 | using rel_interior_subset subsetCE by blast | |
| 59 |   with \<open>B > 0\<close> \<open>l \<noteq> 0\<close> have nonMT: "?D \<noteq> {}"
 | |
| 60 | using divide_pos_pos zero_less_norm_iff by fastforce | |
| 61 | have bdd: "bdd_below ?D" | |
| 62 | by (metis (no_types, lifting) bdd_belowI le_less mem_Collect_eq) | |
| 63 | have relin_Ex: "\<And>x. x \<in> rel_interior S \<Longrightarrow> | |
| 64 | \<exists>e>0. \<forall>x'\<in>affine hull S. dist x' x < e \<longrightarrow> x' \<in> rel_interior S" | |
| 65 | using openin_rel_interior [of S] by (simp add: openin_euclidean_subtopology_iff) | |
| 66 | define d where "d = Inf ?D" | |
| 67 | obtain \<epsilon> where "0 < \<epsilon>" and \<epsilon>: "\<And>\<eta>. \<lbrakk>0 \<le> \<eta>; \<eta> < \<epsilon>\<rbrakk> \<Longrightarrow> (a + \<eta> *\<^sub>R l) \<in> rel_interior S" | |
| 68 | proof - | |
| 69 | obtain e where "e>0" | |
| 70 | and e: "\<And>x'. x' \<in> affine hull S \<Longrightarrow> dist x' a < e \<Longrightarrow> x' \<in> rel_interior S" | |
| 71 | using relin_Ex a by blast | |
| 72 | show thesis | |
| 73 | proof (rule_tac \<epsilon> = "e / norm l" in that) | |
| 74 | show "0 < e / norm l" by (simp add: \<open>0 < e\<close> \<open>l \<noteq> 0\<close>) | |
| 75 | next | |
| 76 | show "a + \<eta> *\<^sub>R l \<in> rel_interior S" if "0 \<le> \<eta>" "\<eta> < e / norm l" for \<eta> | |
| 77 | proof (rule e) | |
| 78 | show "a + \<eta> *\<^sub>R l \<in> affine hull S" | |
| 79 | by (metis (no_types) add_diff_cancel_left' aff affine_affine_hull mem_affine_3_minus aaff) | |
| 80 | show "dist (a + \<eta> *\<^sub>R l) a < e" | |
| 81 | using that by (simp add: \<open>l \<noteq> 0\<close> dist_norm pos_less_divide_eq) | |
| 82 | qed | |
| 83 | qed | |
| 84 | qed | |
| 85 | have inint: "\<And>e. \<lbrakk>0 \<le> e; e < d\<rbrakk> \<Longrightarrow> a + e *\<^sub>R l \<in> rel_interior S" | |
| 86 | unfolding d_def using cInf_lower [OF _ bdd] | |
| 87 | by (metis (no_types, lifting) a add.right_neutral le_less mem_Collect_eq not_less real_vector.scale_zero_left) | |
| 88 | have "\<epsilon> \<le> d" | |
| 89 | unfolding d_def | |
| 90 | apply (rule cInf_greatest [OF nonMT]) | |
| 91 | using \<epsilon> dual_order.strict_implies_order le_less_linear by blast | |
| 92 | with \<open>0 < \<epsilon>\<close> have "0 < d" by simp | |
| 93 | have "a + d *\<^sub>R l \<notin> rel_interior S" | |
| 94 | proof | |
| 95 | assume adl: "a + d *\<^sub>R l \<in> rel_interior S" | |
| 96 | obtain e where "e > 0" | |
| 97 | and e: "\<And>x'. x' \<in> affine hull S \<Longrightarrow> dist x' (a + d *\<^sub>R l) < e \<Longrightarrow> x' \<in> rel_interior S" | |
| 98 | using relin_Ex adl by blast | |
| 99 |     have "d + e / norm l \<le> Inf {d. 0 < d \<and> a + d *\<^sub>R l \<notin> rel_interior S}"
 | |
| 100 | proof (rule cInf_greatest [OF nonMT], clarsimp) | |
| 101 | fix x::real | |
| 102 | assume "0 < x" and nonrel: "a + x *\<^sub>R l \<notin> rel_interior S" | |
| 103 | show "d + e / norm l \<le> x" | |
| 104 | proof (cases "x < d") | |
| 105 | case True with inint nonrel \<open>0 < x\<close> | |
| 106 | show ?thesis by auto | |
| 107 | next | |
| 108 | case False | |
| 109 | then have dle: "x < d + e / norm l \<Longrightarrow> dist (a + x *\<^sub>R l) (a + d *\<^sub>R l) < e" | |
| 110 | by (simp add: field_simps \<open>l \<noteq> 0\<close>) | |
| 111 | have ain: "a + x *\<^sub>R l \<in> affine hull S" | |
| 112 | by (metis add_diff_cancel_left' aff affine_affine_hull mem_affine_3_minus aaff) | |
| 113 | show ?thesis | |
| 114 | using e [OF ain] nonrel dle by force | |
| 115 | qed | |
| 116 | qed | |
| 117 | then show False | |
| 118 | using \<open>0 < e\<close> \<open>l \<noteq> 0\<close> by (simp add: d_def [symmetric] divide_simps) | |
| 119 | qed | |
| 120 | moreover have "a + d *\<^sub>R l \<in> closure S" | |
| 121 | proof (clarsimp simp: closure_approachable) | |
| 122 | fix \<eta>::real assume "0 < \<eta>" | |
| 123 | have 1: "a + (d - min d (\<eta> / 2 / norm l)) *\<^sub>R l \<in> S" | |
| 124 | apply (rule subsetD [OF rel_interior_subset inint]) | |
| 125 | using \<open>l \<noteq> 0\<close> \<open>0 < d\<close> \<open>0 < \<eta>\<close> by auto | |
| 126 | have "norm l * min d (\<eta> / (norm l * 2)) \<le> norm l * (\<eta> / (norm l * 2))" | |
| 127 | by (metis min_def mult_left_mono norm_ge_zero order_refl) | |
| 128 | also have "... < \<eta>" | |
| 129 | using \<open>l \<noteq> 0\<close> \<open>0 < \<eta>\<close> by (simp add: divide_simps) | |
| 130 | finally have 2: "norm l * min d (\<eta> / (norm l * 2)) < \<eta>" . | |
| 131 | show "\<exists>y\<in>S. dist y (a + d *\<^sub>R l) < \<eta>" | |
| 132 | apply (rule_tac x="a + (d - min d (\<eta> / 2 / norm l)) *\<^sub>R l" in bexI) | |
| 133 | using 1 2 \<open>0 < d\<close> \<open>0 < \<eta>\<close> apply (auto simp: algebra_simps) | |
| 134 | done | |
| 135 | qed | |
| 136 | ultimately have infront: "a + d *\<^sub>R l \<in> rel_frontier S" | |
| 137 | by (simp add: rel_frontier_def) | |
| 138 | show ?thesis | |
| 139 | by (rule that [OF \<open>0 < d\<close> infront inint]) | |
| 140 | qed | |
| 141 | ||
| 142 | corollary ray_to_frontier: | |
| 143 | fixes a :: "'a::euclidean_space" | |
| 144 | assumes "bounded S" | |
| 145 | and a: "a \<in> interior S" | |
| 146 | and "l \<noteq> 0" | |
| 147 | obtains d where "0 < d" "(a + d *\<^sub>R l) \<in> frontier S" | |
| 148 | "\<And>e. \<lbrakk>0 \<le> e; e < d\<rbrakk> \<Longrightarrow> (a + e *\<^sub>R l) \<in> interior S" | |
| 149 | proof - | |
| 150 | have "interior S = rel_interior S" | |
| 151 | using a rel_interior_nonempty_interior by auto | |
| 152 | then have "a \<in> rel_interior S" | |
| 153 | using a by simp | |
| 154 | then show ?thesis | |
| 155 | apply (rule ray_to_rel_frontier [OF \<open>bounded S\<close> _ _ \<open>l \<noteq> 0\<close>]) | |
| 156 | using a affine_hull_nonempty_interior apply blast | |
| 157 | by (simp add: \<open>interior S = rel_interior S\<close> frontier_def rel_frontier_def that) | |
| 158 | qed | |
| 159 | ||
| 66287 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 160 | |
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 161 | lemma segment_to_rel_frontier_aux: | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 162 | fixes x :: "'a::euclidean_space" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 163 | assumes "convex S" "bounded S" and x: "x \<in> rel_interior S" and y: "y \<in> S" and xy: "x \<noteq> y" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 164 | obtains z where "z \<in> rel_frontier S" "y \<in> closed_segment x z" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 165 | "open_segment x z \<subseteq> rel_interior S" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 166 | proof - | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 167 | have "x + (y - x) \<in> affine hull S" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 168 | using hull_inc [OF y] by auto | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 169 | then obtain d where "0 < d" and df: "(x + d *\<^sub>R (y-x)) \<in> rel_frontier S" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 170 | and di: "\<And>e. \<lbrakk>0 \<le> e; e < d\<rbrakk> \<Longrightarrow> (x + e *\<^sub>R (y-x)) \<in> rel_interior S" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 171 | by (rule ray_to_rel_frontier [OF \<open>bounded S\<close> x]) (use xy in auto) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 172 | show ?thesis | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 173 | proof | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 174 | show "x + d *\<^sub>R (y - x) \<in> rel_frontier S" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 175 | by (simp add: df) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 176 | next | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 177 | have "open_segment x y \<subseteq> rel_interior S" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 178 | using rel_interior_closure_convex_segment [OF \<open>convex S\<close> x] closure_subset y by blast | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 179 | moreover have "x + d *\<^sub>R (y - x) \<in> open_segment x y" if "d < 1" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 180 | using xy | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 181 | apply (auto simp: in_segment) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 182 | apply (rule_tac x="d" in exI) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 183 | using \<open>0 < d\<close> that apply (auto simp: divide_simps algebra_simps) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 184 | done | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 185 | ultimately have "1 \<le> d" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 186 | using df rel_frontier_def by fastforce | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 187 | moreover have "x = (1 / d) *\<^sub>R x + ((d - 1) / d) *\<^sub>R x" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 188 | by (metis \<open>0 < d\<close> add.commute add_divide_distrib diff_add_cancel divide_self_if less_irrefl scaleR_add_left scaleR_one) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 189 | ultimately show "y \<in> closed_segment x (x + d *\<^sub>R (y - x))" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 190 | apply (auto simp: in_segment) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 191 | apply (rule_tac x="1/d" in exI) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 192 | apply (auto simp: divide_simps algebra_simps) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 193 | done | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 194 | next | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 195 | show "open_segment x (x + d *\<^sub>R (y - x)) \<subseteq> rel_interior S" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 196 | apply (rule rel_interior_closure_convex_segment [OF \<open>convex S\<close> x]) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 197 | using df rel_frontier_def by auto | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 198 | qed | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 199 | qed | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 200 | |
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 201 | lemma segment_to_rel_frontier: | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 202 | fixes x :: "'a::euclidean_space" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 203 | assumes S: "convex S" "bounded S" and x: "x \<in> rel_interior S" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 204 |       and y: "y \<in> S" and xy: "~(x = y \<and> S = {x})"
 | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 205 | obtains z where "z \<in> rel_frontier S" "y \<in> closed_segment x z" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 206 | "open_segment x z \<subseteq> rel_interior S" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 207 | proof (cases "x=y") | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 208 | case True | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 209 |   with xy have "S \<noteq> {x}"
 | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 210 | by blast | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 211 | with True show ?thesis | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 212 | by (metis Set.set_insert all_not_in_conv ends_in_segment(1) insert_iff segment_to_rel_frontier_aux[OF S x] that y) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 213 | next | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 214 | case False | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 215 | then show ?thesis | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 216 | using segment_to_rel_frontier_aux [OF S x y] that by blast | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 217 | qed | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 218 | |
| 64394 | 219 | proposition rel_frontier_not_sing: | 
| 220 | fixes a :: "'a::euclidean_space" | |
| 221 | assumes "bounded S" | |
| 222 |     shows "rel_frontier S \<noteq> {a}"
 | |
| 223 | proof (cases "S = {}")
 | |
| 224 | case True then show ?thesis by simp | |
| 225 | next | |
| 226 | case False | |
| 227 | then obtain z where "z \<in> S" | |
| 228 | by blast | |
| 229 | then show ?thesis | |
| 230 |   proof (cases "S = {z}")
 | |
| 231 | case True then show ?thesis by simp | |
| 232 | next | |
| 233 | case False | |
| 234 | then obtain w where "w \<in> S" "w \<noteq> z" | |
| 235 | using \<open>z \<in> S\<close> by blast | |
| 236 | show ?thesis | |
| 237 | proof | |
| 238 |       assume "rel_frontier S = {a}"
 | |
| 239 | then consider "w \<notin> rel_frontier S" | "z \<notin> rel_frontier S" | |
| 240 | using \<open>w \<noteq> z\<close> by auto | |
| 241 | then show False | |
| 242 | proof cases | |
| 243 | case 1 | |
| 244 | then have w: "w \<in> rel_interior S" | |
| 245 | using \<open>w \<in> S\<close> closure_subset rel_frontier_def by fastforce | |
| 246 | have "w + (w - z) \<in> affine hull S" | |
| 247 | by (metis \<open>w \<in> S\<close> \<open>z \<in> S\<close> affine_affine_hull hull_inc mem_affine_3_minus scaleR_one) | |
| 248 | then obtain e where "0 < e" "(w + e *\<^sub>R (w - z)) \<in> rel_frontier S" | |
| 249 | using \<open>w \<noteq> z\<close> \<open>z \<in> S\<close> by (metis assms ray_to_rel_frontier right_minus_eq w) | |
| 250 | moreover obtain d where "0 < d" "(w + d *\<^sub>R (z - w)) \<in> rel_frontier S" | |
| 251 | using ray_to_rel_frontier [OF \<open>bounded S\<close> w, of "1 *\<^sub>R (z - w)"] \<open>w \<noteq> z\<close> \<open>z \<in> S\<close> | |
| 252 | by (metis add.commute add.right_neutral diff_add_cancel hull_inc scaleR_one) | |
| 253 | ultimately have "d *\<^sub>R (z - w) = e *\<^sub>R (w - z)" | |
| 254 |           using \<open>rel_frontier S = {a}\<close> by force
 | |
| 255 | moreover have "e \<noteq> -d " | |
| 256 | using \<open>0 < e\<close> \<open>0 < d\<close> by force | |
| 257 | ultimately show False | |
| 258 | by (metis (no_types, lifting) \<open>w \<noteq> z\<close> eq_iff_diff_eq_0 minus_diff_eq real_vector.scale_cancel_right real_vector.scale_minus_right scaleR_left.minus) | |
| 259 | next | |
| 260 | case 2 | |
| 261 | then have z: "z \<in> rel_interior S" | |
| 262 | using \<open>z \<in> S\<close> closure_subset rel_frontier_def by fastforce | |
| 263 | have "z + (z - w) \<in> affine hull S" | |
| 264 | by (metis \<open>z \<in> S\<close> \<open>w \<in> S\<close> affine_affine_hull hull_inc mem_affine_3_minus scaleR_one) | |
| 265 | then obtain e where "0 < e" "(z + e *\<^sub>R (z - w)) \<in> rel_frontier S" | |
| 266 | using \<open>w \<noteq> z\<close> \<open>w \<in> S\<close> by (metis assms ray_to_rel_frontier right_minus_eq z) | |
| 267 | moreover obtain d where "0 < d" "(z + d *\<^sub>R (w - z)) \<in> rel_frontier S" | |
| 268 | using ray_to_rel_frontier [OF \<open>bounded S\<close> z, of "1 *\<^sub>R (w - z)"] \<open>w \<noteq> z\<close> \<open>w \<in> S\<close> | |
| 269 | by (metis add.commute add.right_neutral diff_add_cancel hull_inc scaleR_one) | |
| 270 | ultimately have "d *\<^sub>R (w - z) = e *\<^sub>R (z - w)" | |
| 271 |           using \<open>rel_frontier S = {a}\<close> by force
 | |
| 272 | moreover have "e \<noteq> -d " | |
| 273 | using \<open>0 < e\<close> \<open>0 < d\<close> by force | |
| 274 | ultimately show False | |
| 275 | by (metis (no_types, lifting) \<open>w \<noteq> z\<close> eq_iff_diff_eq_0 minus_diff_eq real_vector.scale_cancel_right real_vector.scale_minus_right scaleR_left.minus) | |
| 276 | qed | |
| 277 | qed | |
| 278 | qed | |
| 279 | qed | |
| 280 | ||
| 63130 | 281 | proposition | 
| 282 | fixes S :: "'a::euclidean_space set" | |
| 283 | assumes "compact S" and 0: "0 \<in> rel_interior S" | |
| 284 | and star: "\<And>x. x \<in> S \<Longrightarrow> open_segment 0 x \<subseteq> rel_interior S" | |
| 285 | shows starlike_compact_projective1_0: | |
| 286 | "S - rel_interior S homeomorphic sphere 0 1 \<inter> affine hull S" | |
| 287 | (is "?SMINUS homeomorphic ?SPHER") | |
| 288 | and starlike_compact_projective2_0: | |
| 289 | "S homeomorphic cball 0 1 \<inter> affine hull S" | |
| 290 | (is "S homeomorphic ?CBALL") | |
| 291 | proof - | |
| 292 | have starI: "(u *\<^sub>R x) \<in> rel_interior S" if "x \<in> S" "0 \<le> u" "u < 1" for x u | |
| 293 | proof (cases "x=0 \<or> u=0") | |
| 294 | case True with 0 show ?thesis by force | |
| 295 | next | |
| 296 | case False with that show ?thesis | |
| 297 | by (auto simp: in_segment intro: star [THEN subsetD]) | |
| 298 | qed | |
| 299 | have "0 \<in> S" using assms rel_interior_subset by auto | |
| 300 | define proj where "proj \<equiv> \<lambda>x::'a. x /\<^sub>R norm x" | |
| 301 | have eqI: "x = y" if "proj x = proj y" "norm x = norm y" for x y | |
| 302 | using that by (force simp: proj_def) | |
| 303 | then have iff_eq: "\<And>x y. (proj x = proj y \<and> norm x = norm y) \<longleftrightarrow> x = y" | |
| 304 | by blast | |
| 305 | have projI: "x \<in> affine hull S \<Longrightarrow> proj x \<in> affine hull S" for x | |
| 306 | by (metis \<open>0 \<in> S\<close> affine_hull_span_0 hull_inc span_mul proj_def) | |
| 307 | have nproj1 [simp]: "x \<noteq> 0 \<Longrightarrow> norm(proj x) = 1" for x | |
| 308 | by (simp add: proj_def) | |
| 309 | have proj0_iff [simp]: "proj x = 0 \<longleftrightarrow> x = 0" for x | |
| 310 | by (simp add: proj_def) | |
| 311 |   have cont_proj: "continuous_on (UNIV - {0}) proj"
 | |
| 312 | unfolding proj_def by (rule continuous_intros | force)+ | |
| 313 | have proj_spherI: "\<And>x. \<lbrakk>x \<in> affine hull S; x \<noteq> 0\<rbrakk> \<Longrightarrow> proj x \<in> ?SPHER" | |
| 314 | by (simp add: projI) | |
| 315 | have "bounded S" "closed S" | |
| 316 | using \<open>compact S\<close> compact_eq_bounded_closed by blast+ | |
| 317 | have inj_on_proj: "inj_on proj (S - rel_interior S)" | |
| 318 | proof | |
| 319 | fix x y | |
| 320 | assume x: "x \<in> S - rel_interior S" | |
| 321 | and y: "y \<in> S - rel_interior S" and eq: "proj x = proj y" | |
| 322 | then have xynot: "x \<noteq> 0" "y \<noteq> 0" "x \<in> S" "y \<in> S" "x \<notin> rel_interior S" "y \<notin> rel_interior S" | |
| 323 | using 0 by auto | |
| 324 | consider "norm x = norm y" | "norm x < norm y" | "norm x > norm y" by linarith | |
| 325 | then show "x = y" | |
| 326 | proof cases | |
| 327 | assume "norm x = norm y" | |
| 328 | with iff_eq eq show "x = y" by blast | |
| 329 | next | |
| 330 | assume *: "norm x < norm y" | |
| 331 | have "x /\<^sub>R norm x = norm x *\<^sub>R (x /\<^sub>R norm x) /\<^sub>R norm (norm x *\<^sub>R (x /\<^sub>R norm x))" | |
| 332 | by force | |
| 333 | then have "proj ((norm x / norm y) *\<^sub>R y) = proj x" | |
| 334 | by (metis (no_types) divide_inverse local.proj_def eq scaleR_scaleR) | |
| 335 | then have [simp]: "(norm x / norm y) *\<^sub>R y = x" | |
| 336 | by (rule eqI) (simp add: \<open>y \<noteq> 0\<close>) | |
| 337 | have no: "0 \<le> norm x / norm y" "norm x / norm y < 1" | |
| 338 | using * by (auto simp: divide_simps) | |
| 339 | then show "x = y" | |
| 340 | using starI [OF \<open>y \<in> S\<close> no] xynot by auto | |
| 341 | next | |
| 342 | assume *: "norm x > norm y" | |
| 343 | have "y /\<^sub>R norm y = norm y *\<^sub>R (y /\<^sub>R norm y) /\<^sub>R norm (norm y *\<^sub>R (y /\<^sub>R norm y))" | |
| 344 | by force | |
| 345 | then have "proj ((norm y / norm x) *\<^sub>R x) = proj y" | |
| 346 | by (metis (no_types) divide_inverse local.proj_def eq scaleR_scaleR) | |
| 347 | then have [simp]: "(norm y / norm x) *\<^sub>R x = y" | |
| 348 | by (rule eqI) (simp add: \<open>x \<noteq> 0\<close>) | |
| 349 | have no: "0 \<le> norm y / norm x" "norm y / norm x < 1" | |
| 350 | using * by (auto simp: divide_simps) | |
| 351 | then show "x = y" | |
| 352 | using starI [OF \<open>x \<in> S\<close> no] xynot by auto | |
| 353 | qed | |
| 354 | qed | |
| 355 | have "\<exists>surf. homeomorphism (S - rel_interior S) ?SPHER proj surf" | |
| 356 | proof (rule homeomorphism_compact) | |
| 357 | show "compact (S - rel_interior S)" | |
| 358 | using \<open>compact S\<close> compact_rel_boundary by blast | |
| 359 | show "continuous_on (S - rel_interior S) proj" | |
| 360 | using 0 by (blast intro: continuous_on_subset [OF cont_proj]) | |
| 361 | show "proj ` (S - rel_interior S) = ?SPHER" | |
| 362 | proof | |
| 363 | show "proj ` (S - rel_interior S) \<subseteq> ?SPHER" | |
| 364 | using 0 by (force simp: hull_inc projI intro: nproj1) | |
| 365 | show "?SPHER \<subseteq> proj ` (S - rel_interior S)" | |
| 366 | proof (clarsimp simp: proj_def) | |
| 367 | fix x | |
| 368 | assume "x \<in> affine hull S" and nox: "norm x = 1" | |
| 369 | then have "x \<noteq> 0" by auto | |
| 370 | obtain d where "0 < d" and dx: "(d *\<^sub>R x) \<in> rel_frontier S" | |
| 371 | and ri: "\<And>e. \<lbrakk>0 \<le> e; e < d\<rbrakk> \<Longrightarrow> (e *\<^sub>R x) \<in> rel_interior S" | |
| 372 | using ray_to_rel_frontier [OF \<open>bounded S\<close> 0] \<open>x \<in> affine hull S\<close> \<open>x \<noteq> 0\<close> by auto | |
| 373 | show "x \<in> (\<lambda>x. x /\<^sub>R norm x) ` (S - rel_interior S)" | |
| 374 | apply (rule_tac x="d *\<^sub>R x" in image_eqI) | |
| 375 | using \<open>0 < d\<close> | |
| 376 | using dx \<open>closed S\<close> apply (auto simp: rel_frontier_def divide_simps nox) | |
| 377 | done | |
| 378 | qed | |
| 379 | qed | |
| 380 | qed (rule inj_on_proj) | |
| 381 | then obtain surf where surf: "homeomorphism (S - rel_interior S) ?SPHER proj surf" | |
| 382 | by blast | |
| 383 | then have cont_surf: "continuous_on (proj ` (S - rel_interior S)) surf" | |
| 384 | by (auto simp: homeomorphism_def) | |
| 385 | have surf_nz: "\<And>x. x \<in> ?SPHER \<Longrightarrow> surf x \<noteq> 0" | |
| 386 | by (metis "0" DiffE homeomorphism_def imageI surf) | |
| 387 | have cont_nosp: "continuous_on (?SPHER) (\<lambda>x. norm x *\<^sub>R ((surf o proj) x))" | |
| 388 | apply (rule continuous_intros)+ | |
| 389 | apply (rule continuous_on_subset [OF cont_proj], force) | |
| 390 | apply (rule continuous_on_subset [OF cont_surf]) | |
| 391 | apply (force simp: homeomorphism_image1 [OF surf] dest: proj_spherI) | |
| 392 | done | |
| 393 | have surfpS: "\<And>x. \<lbrakk>norm x = 1; x \<in> affine hull S\<rbrakk> \<Longrightarrow> surf (proj x) \<in> S" | |
| 394 | by (metis (full_types) DiffE \<open>0 \<in> S\<close> homeomorphism_def image_eqI norm_zero proj_spherI real_vector.scale_zero_left scaleR_one surf) | |
| 395 | have *: "\<exists>y. norm y = 1 \<and> y \<in> affine hull S \<and> x = surf (proj y)" | |
| 396 | if "x \<in> S" "x \<notin> rel_interior S" for x | |
| 397 | proof - | |
| 398 | have "proj x \<in> ?SPHER" | |
| 399 | by (metis (full_types) "0" hull_inc proj_spherI that) | |
| 400 | moreover have "surf (proj x) = x" | |
| 401 | by (metis Diff_iff homeomorphism_def surf that) | |
| 402 | ultimately show ?thesis | |
| 403 | by (metis \<open>\<And>x. x \<in> ?SPHER \<Longrightarrow> surf x \<noteq> 0\<close> hull_inc inverse_1 local.proj_def norm_sgn projI scaleR_one sgn_div_norm that(1)) | |
| 404 | qed | |
| 405 | have surfp_notin: "\<And>x. \<lbrakk>norm x = 1; x \<in> affine hull S\<rbrakk> \<Longrightarrow> surf (proj x) \<notin> rel_interior S" | |
| 406 | by (metis (full_types) DiffE one_neq_zero homeomorphism_def image_eqI norm_zero proj_spherI surf) | |
| 407 | have no_sp_im: "(\<lambda>x. norm x *\<^sub>R surf (proj x)) ` (?SPHER) = S - rel_interior S" | |
| 408 | by (auto simp: surfpS image_def Bex_def surfp_notin *) | |
| 409 | have inj_spher: "inj_on (\<lambda>x. norm x *\<^sub>R surf (proj x)) ?SPHER" | |
| 410 | proof | |
| 411 | fix x y | |
| 412 | assume xy: "x \<in> ?SPHER" "y \<in> ?SPHER" | |
| 413 | and eq: " norm x *\<^sub>R surf (proj x) = norm y *\<^sub>R surf (proj y)" | |
| 414 | then have "norm x = 1" "norm y = 1" "x \<in> affine hull S" "y \<in> affine hull S" | |
| 415 | using 0 by auto | |
| 416 | with eq show "x = y" | |
| 417 | by (simp add: proj_def) (metis surf xy homeomorphism_def) | |
| 418 | qed | |
| 419 | have co01: "compact ?SPHER" | |
| 420 | by (simp add: closed_affine_hull compact_Int_closed) | |
| 421 | show "?SMINUS homeomorphic ?SPHER" | |
| 422 | apply (subst homeomorphic_sym) | |
| 423 | apply (rule homeomorphic_compact [OF co01 cont_nosp [unfolded o_def] no_sp_im inj_spher]) | |
| 424 | done | |
| 425 | have proj_scaleR: "\<And>a x. 0 < a \<Longrightarrow> proj (a *\<^sub>R x) = proj x" | |
| 426 | by (simp add: proj_def) | |
| 427 |   have cont_sp0: "continuous_on (affine hull S - {0}) (surf o proj)"
 | |
| 428 | apply (rule continuous_on_compose [OF continuous_on_subset [OF cont_proj]], force) | |
| 429 | apply (rule continuous_on_subset [OF cont_surf]) | |
| 430 | using homeomorphism_image1 proj_spherI surf by fastforce | |
| 431 | obtain B where "B>0" and B: "\<And>x. x \<in> S \<Longrightarrow> norm x \<le> B" | |
| 432 | by (metis compact_imp_bounded \<open>compact S\<close> bounded_pos_less less_eq_real_def) | |
| 433 | have cont_nosp: "continuous (at x within ?CBALL) (\<lambda>x. norm x *\<^sub>R surf (proj x))" | |
| 434 | if "norm x \<le> 1" "x \<in> affine hull S" for x | |
| 435 | proof (cases "x=0") | |
| 436 | case True | |
| 437 | show ?thesis using True | |
| 438 | apply (simp add: continuous_within) | |
| 439 | apply (rule lim_null_scaleR_bounded [where B=B]) | |
| 440 | apply (simp_all add: tendsto_norm_zero eventually_at) | |
| 441 | apply (rule_tac x=B in exI) | |
| 442 | using B surfpS proj_def projI apply (auto simp: \<open>B > 0\<close>) | |
| 443 | done | |
| 444 | next | |
| 445 | case False | |
| 446 |     then have "\<forall>\<^sub>F x in at x. (x \<in> affine hull S - {0}) = (x \<in> affine hull S)"
 | |
| 447 | apply (simp add: eventually_at) | |
| 448 | apply (rule_tac x="norm x" in exI) | |
| 449 | apply (auto simp: False) | |
| 450 | done | |
| 451 | with cont_sp0 have *: "continuous (at x within affine hull S) (\<lambda>x. surf (proj x))" | |
| 452 | apply (simp add: continuous_on_eq_continuous_within) | |
| 453 | apply (drule_tac x=x in bspec, force simp: False that) | |
| 454 | apply (simp add: continuous_within Lim_transform_within_set) | |
| 455 | done | |
| 456 | show ?thesis | |
| 457 | apply (rule continuous_within_subset [where s = "affine hull S", OF _ Int_lower2]) | |
| 458 | apply (rule continuous_intros *)+ | |
| 459 | done | |
| 460 | qed | |
| 461 | have cont_nosp2: "continuous_on ?CBALL (\<lambda>x. norm x *\<^sub>R ((surf o proj) x))" | |
| 462 | by (simp add: continuous_on_eq_continuous_within cont_nosp) | |
| 463 | have "norm y *\<^sub>R surf (proj y) \<in> S" if "y \<in> cball 0 1" and yaff: "y \<in> affine hull S" for y | |
| 464 | proof (cases "y=0") | |
| 465 | case True then show ?thesis | |
| 466 | by (simp add: \<open>0 \<in> S\<close>) | |
| 467 | next | |
| 468 | case False | |
| 469 | then have "norm y *\<^sub>R surf (proj y) = norm y *\<^sub>R surf (proj (y /\<^sub>R norm y))" | |
| 470 | by (simp add: proj_def) | |
| 471 | have "norm y \<le> 1" using that by simp | |
| 472 | have "surf (proj (y /\<^sub>R norm y)) \<in> S" | |
| 473 | apply (rule surfpS) | |
| 474 | using proj_def projI yaff | |
| 475 | by (auto simp: False) | |
| 476 | then have "surf (proj y) \<in> S" | |
| 477 | by (simp add: False proj_def) | |
| 478 | then show "norm y *\<^sub>R surf (proj y) \<in> S" | |
| 479 | by (metis dual_order.antisym le_less_linear norm_ge_zero rel_interior_subset scaleR_one | |
| 480 | starI subset_eq \<open>norm y \<le> 1\<close>) | |
| 481 | qed | |
| 482 | moreover have "x \<in> (\<lambda>x. norm x *\<^sub>R surf (proj x)) ` (?CBALL)" if "x \<in> S" for x | |
| 483 | proof (cases "x=0") | |
| 484 | case True with that hull_inc show ?thesis by fastforce | |
| 485 | next | |
| 486 | case False | |
| 487 | then have psp: "proj (surf (proj x)) = proj x" | |
| 488 | by (metis homeomorphism_def hull_inc proj_spherI surf that) | |
| 489 | have nxx: "norm x *\<^sub>R proj x = x" | |
| 490 | by (simp add: False local.proj_def) | |
| 491 | have affineI: "(1 / norm (surf (proj x))) *\<^sub>R x \<in> affine hull S" | |
| 492 | by (metis \<open>0 \<in> S\<close> affine_hull_span_0 hull_inc span_clauses(4) that) | |
| 493 | have sproj_nz: "surf (proj x) \<noteq> 0" | |
| 494 | by (metis False proj0_iff psp) | |
| 495 | then have "proj x = proj (proj x)" | |
| 496 | by (metis False nxx proj_scaleR zero_less_norm_iff) | |
| 497 | moreover have scaleproj: "\<And>a r. r *\<^sub>R proj a = (r / norm a) *\<^sub>R a" | |
| 498 | by (simp add: divide_inverse local.proj_def) | |
| 499 | ultimately have "(norm (surf (proj x)) / norm x) *\<^sub>R x \<notin> rel_interior S" | |
| 500 | by (metis (no_types) sproj_nz divide_self_if hull_inc norm_eq_zero nproj1 projI psp scaleR_one surfp_notin that) | |
| 501 | then have "(norm (surf (proj x)) / norm x) \<ge> 1" | |
| 502 | using starI [OF that] by (meson starI [OF that] le_less_linear norm_ge_zero zero_le_divide_iff) | |
| 503 | then have nole: "norm x \<le> norm (surf (proj x))" | |
| 504 | by (simp add: le_divide_eq_1) | |
| 505 | show ?thesis | |
| 506 | apply (rule_tac x="inverse(norm(surf (proj x))) *\<^sub>R x" in image_eqI) | |
| 507 | apply (metis (no_types, hide_lams) mult.commute scaleproj abs_inverse abs_norm_cancel divide_inverse norm_scaleR nxx positive_imp_inverse_positive proj_scaleR psp sproj_nz zero_less_norm_iff) | |
| 508 | apply (auto simp: divide_simps nole affineI) | |
| 509 | done | |
| 510 | qed | |
| 511 | ultimately have im_cball: "(\<lambda>x. norm x *\<^sub>R surf (proj x)) ` ?CBALL = S" | |
| 512 | by blast | |
| 513 | have inj_cball: "inj_on (\<lambda>x. norm x *\<^sub>R surf (proj x)) ?CBALL" | |
| 514 | proof | |
| 515 | fix x y | |
| 516 | assume "x \<in> ?CBALL" "y \<in> ?CBALL" | |
| 517 | and eq: "norm x *\<^sub>R surf (proj x) = norm y *\<^sub>R surf (proj y)" | |
| 518 | then have x: "x \<in> affine hull S" and y: "y \<in> affine hull S" | |
| 519 | using 0 by auto | |
| 520 | show "x = y" | |
| 521 | proof (cases "x=0 \<or> y=0") | |
| 522 | case True then show "x = y" using eq proj_spherI surf_nz x y by force | |
| 523 | next | |
| 524 | case False | |
| 525 | with x y have speq: "surf (proj x) = surf (proj y)" | |
| 526 | by (metis eq homeomorphism_apply2 proj_scaleR proj_spherI surf zero_less_norm_iff) | |
| 527 | then have "norm x = norm y" | |
| 528 | by (metis \<open>x \<in> affine hull S\<close> \<open>y \<in> affine hull S\<close> eq proj_spherI real_vector.scale_cancel_right surf_nz) | |
| 529 | moreover have "proj x = proj y" | |
| 530 | by (metis (no_types) False speq homeomorphism_apply2 proj_spherI surf x y) | |
| 531 | ultimately show "x = y" | |
| 532 | using eq eqI by blast | |
| 533 | qed | |
| 534 | qed | |
| 535 | have co01: "compact ?CBALL" | |
| 536 | by (simp add: closed_affine_hull compact_Int_closed) | |
| 537 | show "S homeomorphic ?CBALL" | |
| 538 | apply (subst homeomorphic_sym) | |
| 539 | apply (rule homeomorphic_compact [OF co01 cont_nosp2 [unfolded o_def] im_cball inj_cball]) | |
| 540 | done | |
| 541 | qed | |
| 542 | ||
| 543 | corollary | |
| 544 | fixes S :: "'a::euclidean_space set" | |
| 545 | assumes "compact S" and a: "a \<in> rel_interior S" | |
| 546 | and star: "\<And>x. x \<in> S \<Longrightarrow> open_segment a x \<subseteq> rel_interior S" | |
| 547 | shows starlike_compact_projective1: | |
| 548 | "S - rel_interior S homeomorphic sphere a 1 \<inter> affine hull S" | |
| 549 | and starlike_compact_projective2: | |
| 550 | "S homeomorphic cball a 1 \<inter> affine hull S" | |
| 551 | proof - | |
| 67399 | 552 | have 1: "compact ((+) (-a) ` S)" by (meson assms compact_translation) | 
| 553 | have 2: "0 \<in> rel_interior ((+) (-a) ` S)" | |
| 63130 | 554 | by (simp add: a rel_interior_translation) | 
| 67399 | 555 | have 3: "open_segment 0 x \<subseteq> rel_interior ((+) (-a) ` S)" if "x \<in> ((+) (-a) ` S)" for x | 
| 63130 | 556 | proof - | 
| 557 | have "x+a \<in> S" using that by auto | |
| 558 | then have "open_segment a (x+a) \<subseteq> rel_interior S" by (metis star) | |
| 559 | then show ?thesis using open_segment_translation | |
| 560 | using rel_interior_translation by fastforce | |
| 561 | qed | |
| 67399 | 562 | have "S - rel_interior S homeomorphic ((+) (-a) ` S) - rel_interior ((+) (-a) ` S)" | 
| 63130 | 563 | by (metis rel_interior_translation translation_diff homeomorphic_translation) | 
| 67399 | 564 | also have "... homeomorphic sphere 0 1 \<inter> affine hull ((+) (-a) ` S)" | 
| 63130 | 565 | by (rule starlike_compact_projective1_0 [OF 1 2 3]) | 
| 67399 | 566 | also have "... = (+) (-a) ` (sphere a 1 \<inter> affine hull S)" | 
| 63130 | 567 | by (metis affine_hull_translation left_minus sphere_translation translation_Int) | 
| 568 | also have "... homeomorphic sphere a 1 \<inter> affine hull S" | |
| 569 | using homeomorphic_translation homeomorphic_sym by blast | |
| 570 | finally show "S - rel_interior S homeomorphic sphere a 1 \<inter> affine hull S" . | |
| 571 | ||
| 67399 | 572 | have "S homeomorphic ((+) (-a) ` S)" | 
| 63130 | 573 | by (metis homeomorphic_translation) | 
| 67399 | 574 | also have "... homeomorphic cball 0 1 \<inter> affine hull ((+) (-a) ` S)" | 
| 63130 | 575 | by (rule starlike_compact_projective2_0 [OF 1 2 3]) | 
| 67399 | 576 | also have "... = (+) (-a) ` (cball a 1 \<inter> affine hull S)" | 
| 63130 | 577 | by (metis affine_hull_translation left_minus cball_translation translation_Int) | 
| 578 | also have "... homeomorphic cball a 1 \<inter> affine hull S" | |
| 579 | using homeomorphic_translation homeomorphic_sym by blast | |
| 580 | finally show "S homeomorphic cball a 1 \<inter> affine hull S" . | |
| 581 | qed | |
| 582 | ||
| 583 | corollary starlike_compact_projective_special: | |
| 584 | assumes "compact S" | |
| 585 | and cb01: "cball (0::'a::euclidean_space) 1 \<subseteq> S" | |
| 586 | and scale: "\<And>x u. \<lbrakk>x \<in> S; 0 \<le> u; u < 1\<rbrakk> \<Longrightarrow> u *\<^sub>R x \<in> S - frontier S" | |
| 587 | shows "S homeomorphic (cball (0::'a::euclidean_space) 1)" | |
| 588 | proof - | |
| 589 | have "ball 0 1 \<subseteq> interior S" | |
| 590 | using cb01 interior_cball interior_mono by blast | |
| 591 | then have 0: "0 \<in> rel_interior S" | |
| 592 | by (meson centre_in_ball subsetD interior_subset_rel_interior le_numeral_extra(2) not_le) | |
| 593 | have [simp]: "affine hull S = UNIV" | |
| 594 | using \<open>ball 0 1 \<subseteq> interior S\<close> by (auto intro!: affine_hull_nonempty_interior) | |
| 595 | have star: "open_segment 0 x \<subseteq> rel_interior S" if "x \<in> S" for x | |
| 63627 | 596 | proof | 
| 63130 | 597 | fix p assume "p \<in> open_segment 0 x" | 
| 598 | then obtain u where "x \<noteq> 0" and u: "0 \<le> u" "u < 1" and p: "u *\<^sub>R x = p" | |
| 63627 | 599 | by (auto simp: in_segment) | 
| 63130 | 600 | then show "p \<in> rel_interior S" | 
| 601 | using scale [OF that u] closure_subset frontier_def interior_subset_rel_interior by fastforce | |
| 602 | qed | |
| 603 | show ?thesis | |
| 604 | using starlike_compact_projective2_0 [OF \<open>compact S\<close> 0 star] by simp | |
| 605 | qed | |
| 606 | ||
| 607 | lemma homeomorphic_convex_lemma: | |
| 608 | fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" | |
| 609 | assumes "convex S" "compact S" "convex T" "compact T" | |
| 610 | and affeq: "aff_dim S = aff_dim T" | |
| 611 | shows "(S - rel_interior S) homeomorphic (T - rel_interior T) \<and> | |
| 612 | S homeomorphic T" | |
| 613 | proof (cases "rel_interior S = {} \<or> rel_interior T = {}")
 | |
| 614 | case True | |
| 615 | then show ?thesis | |
| 616 | by (metis Diff_empty affeq \<open>convex S\<close> \<open>convex T\<close> aff_dim_empty homeomorphic_empty rel_interior_eq_empty aff_dim_empty) | |
| 617 | next | |
| 618 | case False | |
| 619 | then obtain a b where a: "a \<in> rel_interior S" and b: "b \<in> rel_interior T" by auto | |
| 620 | have starS: "\<And>x. x \<in> S \<Longrightarrow> open_segment a x \<subseteq> rel_interior S" | |
| 621 | using rel_interior_closure_convex_segment | |
| 622 | a \<open>convex S\<close> closure_subset subsetCE by blast | |
| 623 | have starT: "\<And>x. x \<in> T \<Longrightarrow> open_segment b x \<subseteq> rel_interior T" | |
| 624 | using rel_interior_closure_convex_segment | |
| 625 | b \<open>convex T\<close> closure_subset subsetCE by blast | |
| 67399 | 626 | let ?aS = "(+) (-a) ` S" and ?bT = "(+) (-b) ` T" | 
| 63130 | 627 | have 0: "0 \<in> affine hull ?aS" "0 \<in> affine hull ?bT" | 
| 628 | by (metis a b subsetD hull_inc image_eqI left_minus rel_interior_subset)+ | |
| 629 | have subs: "subspace (span ?aS)" "subspace (span ?bT)" | |
| 630 | by (rule subspace_span)+ | |
| 631 | moreover | |
| 67399 | 632 | have "dim (span ((+) (- a) ` S)) = dim (span ((+) (- b) ` T))" | 
| 63130 | 633 | by (metis 0 aff_dim_translation_eq aff_dim_zero affeq dim_span nat_int) | 
| 634 | ultimately obtain f g where "linear f" "linear g" | |
| 635 | and fim: "f ` span ?aS = span ?bT" | |
| 636 | and gim: "g ` span ?bT = span ?aS" | |
| 637 | and fno: "\<And>x. x \<in> span ?aS \<Longrightarrow> norm(f x) = norm x" | |
| 638 | and gno: "\<And>x. x \<in> span ?bT \<Longrightarrow> norm(g x) = norm x" | |
| 639 | and gf: "\<And>x. x \<in> span ?aS \<Longrightarrow> g(f x) = x" | |
| 640 | and fg: "\<And>x. x \<in> span ?bT \<Longrightarrow> f(g x) = x" | |
| 641 | by (rule isometries_subspaces) blast | |
| 642 | have [simp]: "continuous_on A f" for A | |
| 643 | using \<open>linear f\<close> linear_conv_bounded_linear linear_continuous_on by blast | |
| 644 | have [simp]: "continuous_on B g" for B | |
| 645 | using \<open>linear g\<close> linear_conv_bounded_linear linear_continuous_on by blast | |
| 646 | have eqspanS: "affine hull ?aS = span ?aS" | |
| 647 | by (metis a affine_hull_span_0 subsetD hull_inc image_eqI left_minus rel_interior_subset) | |
| 648 | have eqspanT: "affine hull ?bT = span ?bT" | |
| 649 | by (metis b affine_hull_span_0 subsetD hull_inc image_eqI left_minus rel_interior_subset) | |
| 650 | have "S homeomorphic cball a 1 \<inter> affine hull S" | |
| 651 | by (rule starlike_compact_projective2 [OF \<open>compact S\<close> a starS]) | |
| 67399 | 652 | also have "... homeomorphic (+) (-a) ` (cball a 1 \<inter> affine hull S)" | 
| 63130 | 653 | by (metis homeomorphic_translation) | 
| 67399 | 654 | also have "... = cball 0 1 \<inter> (+) (-a) ` (affine hull S)" | 
| 63130 | 655 | by (auto simp: dist_norm) | 
| 656 | also have "... = cball 0 1 \<inter> span ?aS" | |
| 657 | using eqspanS affine_hull_translation by blast | |
| 658 | also have "... homeomorphic cball 0 1 \<inter> span ?bT" | |
| 659 | proof (rule homeomorphicI [where f=f and g=g]) | |
| 660 | show fim1: "f ` (cball 0 1 \<inter> span ?aS) = cball 0 1 \<inter> span ?bT" | |
| 661 | apply (rule subset_antisym) | |
| 662 | using fim fno apply (force simp:, clarify) | |
| 663 | by (metis IntI fg gim gno image_eqI mem_cball_0) | |
| 664 | show "g ` (cball 0 1 \<inter> span ?bT) = cball 0 1 \<inter> span ?aS" | |
| 665 | apply (rule subset_antisym) | |
| 666 | using gim gno apply (force simp:, clarify) | |
| 667 | by (metis IntI fim1 gf image_eqI) | |
| 668 | qed (auto simp: fg gf) | |
| 67399 | 669 | also have "... = cball 0 1 \<inter> (+) (-b) ` (affine hull T)" | 
| 63130 | 670 | using eqspanT affine_hull_translation by blast | 
| 67399 | 671 | also have "... = (+) (-b) ` (cball b 1 \<inter> affine hull T)" | 
| 63130 | 672 | by (auto simp: dist_norm) | 
| 673 | also have "... homeomorphic (cball b 1 \<inter> affine hull T)" | |
| 674 | by (metis homeomorphic_translation homeomorphic_sym) | |
| 675 | also have "... homeomorphic T" | |
| 676 | by (metis starlike_compact_projective2 [OF \<open>compact T\<close> b starT] homeomorphic_sym) | |
| 677 | finally have 1: "S homeomorphic T" . | |
| 678 | ||
| 679 | have "S - rel_interior S homeomorphic sphere a 1 \<inter> affine hull S" | |
| 680 | by (rule starlike_compact_projective1 [OF \<open>compact S\<close> a starS]) | |
| 67399 | 681 | also have "... homeomorphic (+) (-a) ` (sphere a 1 \<inter> affine hull S)" | 
| 63130 | 682 | by (metis homeomorphic_translation) | 
| 67399 | 683 | also have "... = sphere 0 1 \<inter> (+) (-a) ` (affine hull S)" | 
| 63130 | 684 | by (auto simp: dist_norm) | 
| 685 | also have "... = sphere 0 1 \<inter> span ?aS" | |
| 686 | using eqspanS affine_hull_translation by blast | |
| 687 | also have "... homeomorphic sphere 0 1 \<inter> span ?bT" | |
| 688 | proof (rule homeomorphicI [where f=f and g=g]) | |
| 689 | show fim1: "f ` (sphere 0 1 \<inter> span ?aS) = sphere 0 1 \<inter> span ?bT" | |
| 690 | apply (rule subset_antisym) | |
| 691 | using fim fno apply (force simp:, clarify) | |
| 692 | by (metis IntI fg gim gno image_eqI mem_sphere_0) | |
| 693 | show "g ` (sphere 0 1 \<inter> span ?bT) = sphere 0 1 \<inter> span ?aS" | |
| 694 | apply (rule subset_antisym) | |
| 695 | using gim gno apply (force simp:, clarify) | |
| 696 | by (metis IntI fim1 gf image_eqI) | |
| 697 | qed (auto simp: fg gf) | |
| 67399 | 698 | also have "... = sphere 0 1 \<inter> (+) (-b) ` (affine hull T)" | 
| 63130 | 699 | using eqspanT affine_hull_translation by blast | 
| 67399 | 700 | also have "... = (+) (-b) ` (sphere b 1 \<inter> affine hull T)" | 
| 63130 | 701 | by (auto simp: dist_norm) | 
| 702 | also have "... homeomorphic (sphere b 1 \<inter> affine hull T)" | |
| 703 | by (metis homeomorphic_translation homeomorphic_sym) | |
| 704 | also have "... homeomorphic T - rel_interior T" | |
| 705 | by (metis starlike_compact_projective1 [OF \<open>compact T\<close> b starT] homeomorphic_sym) | |
| 706 | finally have 2: "S - rel_interior S homeomorphic T - rel_interior T" . | |
| 707 | show ?thesis | |
| 708 | using 1 2 by blast | |
| 709 | qed | |
| 710 | ||
| 711 | lemma homeomorphic_convex_compact_sets: | |
| 712 | fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" | |
| 713 | assumes "convex S" "compact S" "convex T" "compact T" | |
| 714 | and affeq: "aff_dim S = aff_dim T" | |
| 715 | shows "S homeomorphic T" | |
| 716 | using homeomorphic_convex_lemma [OF assms] assms | |
| 717 | by (auto simp: rel_frontier_def) | |
| 718 | ||
| 719 | lemma homeomorphic_rel_frontiers_convex_bounded_sets: | |
| 720 | fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set" | |
| 721 | assumes "convex S" "bounded S" "convex T" "bounded T" | |
| 722 | and affeq: "aff_dim S = aff_dim T" | |
| 723 | shows "rel_frontier S homeomorphic rel_frontier T" | |
| 724 | using assms homeomorphic_convex_lemma [of "closure S" "closure T"] | |
| 725 | by (simp add: rel_frontier_def convex_rel_interior_closure) | |
| 726 | ||
| 727 | ||
| 728 | subsection\<open>Homeomorphisms between punctured spheres and affine sets\<close> | |
| 729 | text\<open>Including the famous stereoscopic projection of the 3-D sphere to the complex plane\<close> | |
| 730 | ||
| 731 | text\<open>The special case with centre 0 and radius 1\<close> | |
| 732 | lemma homeomorphic_punctured_affine_sphere_affine_01: | |
| 733 | assumes "b \<in> sphere 0 1" "affine T" "0 \<in> T" "b \<in> T" "affine p" | |
| 734 | and affT: "aff_dim T = aff_dim p + 1" | |
| 735 |     shows "(sphere 0 1 \<inter> T) - {b} homeomorphic p"
 | |
| 736 | proof - | |
| 737 | have [simp]: "norm b = 1" "b\<bullet>b = 1" | |
| 738 | using assms by (auto simp: norm_eq_1) | |
| 739 |   have [simp]: "T \<inter> {v. b\<bullet>v = 0} \<noteq> {}"
 | |
| 740 | using \<open>0 \<in> T\<close> by auto | |
| 741 |   have [simp]: "\<not> T \<subseteq> {v. b\<bullet>v = 0}"
 | |
| 742 | using \<open>norm b = 1\<close> \<open>b \<in> T\<close> by auto | |
| 743 | define f where "f \<equiv> \<lambda>x. 2 *\<^sub>R b + (2 / (1 - b\<bullet>x)) *\<^sub>R (x - b)" | |
| 744 | define g where "g \<equiv> \<lambda>y. b + (4 / (norm y ^ 2 + 4)) *\<^sub>R (y - 2 *\<^sub>R b)" | |
| 745 | have [simp]: "\<And>x. \<lbrakk>x \<in> T; b\<bullet>x = 0\<rbrakk> \<Longrightarrow> f (g x) = x" | |
| 746 | unfolding f_def g_def by (simp add: algebra_simps divide_simps add_nonneg_eq_0_iff) | |
| 747 | have no: "\<And>x. \<lbrakk>norm x = 1; b\<bullet>x \<noteq> 1\<rbrakk> \<Longrightarrow> (norm (f x))\<^sup>2 = 4 * (1 + b\<bullet>x) / (1 - b\<bullet>x)" | |
| 748 | apply (simp add: dot_square_norm [symmetric]) | |
| 749 | apply (simp add: f_def vector_add_divide_simps divide_simps norm_eq_1) | |
| 750 | apply (simp add: algebra_simps inner_commute) | |
| 751 | done | |
| 752 | have [simp]: "\<And>u::real. 8 + u * (u * 8) = u * 16 \<longleftrightarrow> u=1" | |
| 753 | by algebra | |
| 754 | have [simp]: "\<And>x. \<lbrakk>norm x = 1; b \<bullet> x \<noteq> 1\<rbrakk> \<Longrightarrow> g (f x) = x" | |
| 755 | unfolding g_def no by (auto simp: f_def divide_simps) | |
| 756 | have [simp]: "\<And>x. \<lbrakk>x \<in> T; b \<bullet> x = 0\<rbrakk> \<Longrightarrow> norm (g x) = 1" | |
| 757 | unfolding g_def | |
| 758 | apply (rule power2_eq_imp_eq) | |
| 759 | apply (simp_all add: dot_square_norm [symmetric] divide_simps vector_add_divide_simps) | |
| 760 | apply (simp add: algebra_simps inner_commute) | |
| 761 | done | |
| 762 | have [simp]: "\<And>x. \<lbrakk>x \<in> T; b \<bullet> x = 0\<rbrakk> \<Longrightarrow> b \<bullet> g x \<noteq> 1" | |
| 763 | unfolding g_def | |
| 764 | apply (simp_all add: dot_square_norm [symmetric] divide_simps vector_add_divide_simps add_nonneg_eq_0_iff) | |
| 765 | apply (auto simp: algebra_simps) | |
| 766 | done | |
| 767 | have "subspace T" | |
| 768 | by (simp add: assms subspace_affine) | |
| 769 | have [simp]: "\<And>x. \<lbrakk>x \<in> T; b \<bullet> x = 0\<rbrakk> \<Longrightarrow> g x \<in> T" | |
| 770 | unfolding g_def | |
| 771 | by (blast intro: \<open>subspace T\<close> \<open>b \<in> T\<close> subspace_add subspace_mul subspace_diff) | |
| 772 |   have "f ` {x. norm x = 1 \<and> b\<bullet>x \<noteq> 1} \<subseteq> {x. b\<bullet>x = 0}"
 | |
| 773 | unfolding f_def using \<open>norm b = 1\<close> norm_eq_1 | |
| 774 | by (force simp: field_simps inner_add_right inner_diff_right) | |
| 775 | moreover have "f ` T \<subseteq> T" | |
| 776 | unfolding f_def using assms | |
| 777 | apply (auto simp: field_simps inner_add_right inner_diff_right) | |
| 778 | by (metis add_0 diff_zero mem_affine_3_minus) | |
| 779 |   moreover have "{x. b\<bullet>x = 0} \<inter> T \<subseteq> f ` ({x. norm x = 1 \<and> b\<bullet>x \<noteq> 1} \<inter> T)"
 | |
| 780 | apply clarify | |
| 781 | apply (rule_tac x = "g x" in image_eqI, auto) | |
| 782 | done | |
| 783 |   ultimately have imf: "f ` ({x. norm x = 1 \<and> b\<bullet>x \<noteq> 1} \<inter> T) = {x. b\<bullet>x = 0} \<inter> T"
 | |
| 784 | by blast | |
| 785 | have no4: "\<And>y. b\<bullet>y = 0 \<Longrightarrow> norm ((y\<bullet>y + 4) *\<^sub>R b + 4 *\<^sub>R (y - 2 *\<^sub>R b)) = y\<bullet>y + 4" | |
| 786 | apply (rule power2_eq_imp_eq) | |
| 787 | apply (simp_all add: dot_square_norm [symmetric]) | |
| 788 | apply (auto simp: power2_eq_square algebra_simps inner_commute) | |
| 789 | done | |
| 790 | have [simp]: "\<And>x. \<lbrakk>norm x = 1; b \<bullet> x \<noteq> 1\<rbrakk> \<Longrightarrow> b \<bullet> f x = 0" | |
| 791 | by (simp add: f_def algebra_simps divide_simps) | |
| 792 | have [simp]: "\<And>x. \<lbrakk>x \<in> T; norm x = 1; b \<bullet> x \<noteq> 1\<rbrakk> \<Longrightarrow> f x \<in> T" | |
| 793 | unfolding f_def | |
| 794 | by (blast intro: \<open>subspace T\<close> \<open>b \<in> T\<close> subspace_add subspace_mul subspace_diff) | |
| 795 |   have "g ` {x. b\<bullet>x = 0} \<subseteq> {x. norm x = 1 \<and> b\<bullet>x \<noteq> 1}"
 | |
| 796 | unfolding g_def | |
| 797 | apply (clarsimp simp: no4 vector_add_divide_simps divide_simps add_nonneg_eq_0_iff dot_square_norm [symmetric]) | |
| 798 | apply (auto simp: algebra_simps) | |
| 799 | done | |
| 800 | moreover have "g ` T \<subseteq> T" | |
| 801 | unfolding g_def | |
| 802 | by (blast intro: \<open>subspace T\<close> \<open>b \<in> T\<close> subspace_add subspace_mul subspace_diff) | |
| 803 |   moreover have "{x. norm x = 1 \<and> b\<bullet>x \<noteq> 1} \<inter> T \<subseteq> g ` ({x. b\<bullet>x = 0} \<inter> T)"
 | |
| 804 | apply clarify | |
| 805 | apply (rule_tac x = "f x" in image_eqI, auto) | |
| 806 | done | |
| 807 |   ultimately have img: "g ` ({x. b\<bullet>x = 0} \<inter> T) = {x. norm x = 1 \<and> b\<bullet>x \<noteq> 1} \<inter> T"
 | |
| 808 | by blast | |
| 809 |   have aff: "affine ({x. b\<bullet>x = 0} \<inter> T)"
 | |
| 810 | by (blast intro: affine_hyperplane assms) | |
| 811 |   have contf: "continuous_on ({x. norm x = 1 \<and> b\<bullet>x \<noteq> 1} \<inter> T) f"
 | |
| 812 | unfolding f_def by (rule continuous_intros | force)+ | |
| 813 |   have contg: "continuous_on ({x. b\<bullet>x = 0} \<inter> T) g"
 | |
| 814 | unfolding g_def by (rule continuous_intros | force simp: add_nonneg_eq_0_iff)+ | |
| 815 |   have "(sphere 0 1 \<inter> T) - {b} = {x. norm x = 1 \<and> (b\<bullet>x \<noteq> 1)} \<inter> T"
 | |
| 816 | using \<open>norm b = 1\<close> by (auto simp: norm_eq_1) (metis vector_eq \<open>b\<bullet>b = 1\<close>) | |
| 817 |   also have "... homeomorphic {x. b\<bullet>x = 0} \<inter> T"
 | |
| 818 | by (rule homeomorphicI [OF imf img contf contg]) auto | |
| 819 | also have "... homeomorphic p" | |
| 820 | apply (rule homeomorphic_affine_sets [OF aff \<open>affine p\<close>]) | |
| 821 | apply (simp add: Int_commute aff_dim_affine_Int_hyperplane [OF \<open>affine T\<close>] affT) | |
| 822 | done | |
| 823 | finally show ?thesis . | |
| 824 | qed | |
| 825 | ||
| 826 | theorem homeomorphic_punctured_affine_sphere_affine: | |
| 827 | fixes a :: "'a :: euclidean_space" | |
| 828 | assumes "0 < r" "b \<in> sphere a r" "affine T" "a \<in> T" "b \<in> T" "affine p" | |
| 829 | and aff: "aff_dim T = aff_dim p + 1" | |
| 66710 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 830 |     shows "(sphere a r \<inter> T) - {b} homeomorphic p"
 | 
| 63130 | 831 | proof - | 
| 832 | have "a \<noteq> b" using assms by auto | |
| 833 | then have inj: "inj (\<lambda>x::'a. x /\<^sub>R norm (a - b))" | |
| 834 | by (simp add: inj_on_def) | |
| 835 |   have "((sphere a r \<inter> T) - {b}) homeomorphic
 | |
| 67399 | 836 |         (+) (-a) ` ((sphere a r \<inter> T) - {b})"
 | 
| 63130 | 837 | by (rule homeomorphic_translation) | 
| 67399 | 838 |   also have "... homeomorphic ( *\<^sub>R) (inverse r) ` (+) (- a) ` (sphere a r \<inter> T - {b})"
 | 
| 63130 | 839 | by (metis \<open>0 < r\<close> homeomorphic_scaling inverse_inverse_eq inverse_zero less_irrefl) | 
| 67399 | 840 |   also have "... = sphere 0 1 \<inter> (( *\<^sub>R) (inverse r) ` (+) (- a) ` T) - {(b - a) /\<^sub>R r}"
 | 
| 63130 | 841 | using assms by (auto simp: dist_norm norm_minus_commute divide_simps) | 
| 842 | also have "... homeomorphic p" | |
| 843 | apply (rule homeomorphic_punctured_affine_sphere_affine_01) | |
| 844 | using assms | |
| 845 | apply (auto simp: dist_norm norm_minus_commute affine_scaling affine_translation [symmetric] aff_dim_translation_eq inj) | |
| 846 | done | |
| 847 | finally show ?thesis . | |
| 848 | qed | |
| 849 | ||
| 66710 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 850 | corollary homeomorphic_punctured_sphere_affine: | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 851 | fixes a :: "'a :: euclidean_space" | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 852 | assumes "0 < r" and b: "b \<in> sphere a r" | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 853 |       and "affine T" and affS: "aff_dim T + 1 = DIM('a)"
 | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 854 |     shows "(sphere a r - {b}) homeomorphic T"
 | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 855 | using homeomorphic_punctured_affine_sphere_affine [of r b a UNIV T] assms by auto | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 856 | |
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 857 | corollary homeomorphic_punctured_sphere_hyperplane: | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 858 | fixes a :: "'a :: euclidean_space" | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 859 | assumes "0 < r" and b: "b \<in> sphere a r" | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 860 | and "c \<noteq> 0" | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 861 |     shows "(sphere a r - {b}) homeomorphic {x::'a. c \<bullet> x = d}"
 | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 862 | apply (rule homeomorphic_punctured_sphere_affine) | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 863 | using assms | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 864 | apply (auto simp: affine_hyperplane of_nat_diff) | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 865 | done | 
| 
676258a1cf01
eliminated a needless dependence on the theorem homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66690diff
changeset | 866 | |
| 63130 | 867 | proposition homeomorphic_punctured_sphere_affine_gen: | 
| 868 | fixes a :: "'a :: euclidean_space" | |
| 869 | assumes "convex S" "bounded S" and a: "a \<in> rel_frontier S" | |
| 870 | and "affine T" and affS: "aff_dim S = aff_dim T + 1" | |
| 871 |     shows "rel_frontier S - {a} homeomorphic T"
 | |
| 872 | proof - | |
| 66690 
6953b1a29e19
Tiny presentational improvements to homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 873 | obtain U :: "'a set" where "affine U" "convex U" and affdS: "aff_dim U = aff_dim S" | 
| 63130 | 874 | using choose_affine_subset [OF affine_UNIV aff_dim_geq] | 
| 66690 
6953b1a29e19
Tiny presentational improvements to homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 875 | by (meson aff_dim_affine_hull affine_affine_hull affine_imp_convex) | 
| 
6953b1a29e19
Tiny presentational improvements to homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 876 |   have "S \<noteq> {}" using assms by auto
 | 
| 63130 | 877 | then obtain z where "z \<in> U" | 
| 66690 
6953b1a29e19
Tiny presentational improvements to homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 878 | by (metis aff_dim_negative_iff equals0I affdS) | 
| 63130 | 879 |   then have bne: "ball z 1 \<inter> U \<noteq> {}" by force
 | 
| 66690 
6953b1a29e19
Tiny presentational improvements to homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 880 | then have [simp]: "aff_dim(ball z 1 \<inter> U) = aff_dim U" | 
| 
6953b1a29e19
Tiny presentational improvements to homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 881 | using aff_dim_convex_Int_open [OF \<open>convex U\<close> open_ball] | 
| 63130 | 882 | by (fastforce simp add: Int_commute) | 
| 883 | have "rel_frontier S homeomorphic rel_frontier (ball z 1 \<inter> U)" | |
| 884 | apply (rule homeomorphic_rel_frontiers_convex_bounded_sets) | |
| 885 | apply (auto simp: \<open>affine U\<close> affine_imp_convex convex_Int affdS assms) | |
| 886 | done | |
| 887 | also have "... = sphere z 1 \<inter> U" | |
| 888 | using convex_affine_rel_frontier_Int [of "ball z 1" U] | |
| 889 | by (simp add: \<open>affine U\<close> bne) | |
| 66690 
6953b1a29e19
Tiny presentational improvements to homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 890 | finally have "rel_frontier S homeomorphic sphere z 1 \<inter> U" . | 
| 
6953b1a29e19
Tiny presentational improvements to homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 891 | then obtain h k where him: "h ` rel_frontier S = sphere z 1 \<inter> U" | 
| 63130 | 892 | and kim: "k ` (sphere z 1 \<inter> U) = rel_frontier S" | 
| 893 | and hcon: "continuous_on (rel_frontier S) h" | |
| 894 | and kcon: "continuous_on (sphere z 1 \<inter> U) k" | |
| 895 | and kh: "\<And>x. x \<in> rel_frontier S \<Longrightarrow> k(h(x)) = x" | |
| 896 | and hk: "\<And>y. y \<in> sphere z 1 \<inter> U \<Longrightarrow> h(k(y)) = y" | |
| 897 | unfolding homeomorphic_def homeomorphism_def by auto | |
| 898 |   have "rel_frontier S - {a} homeomorphic (sphere z 1 \<inter> U) - {h a}"
 | |
| 66690 
6953b1a29e19
Tiny presentational improvements to homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 899 | proof (rule homeomorphicI) | 
| 63130 | 900 |     show h: "h ` (rel_frontier S - {a}) = sphere z 1 \<inter> U - {h a}"
 | 
| 901 | using him a kh by auto metis | |
| 902 |     show "k ` (sphere z 1 \<inter> U - {h a}) = rel_frontier S - {a}"
 | |
| 903 | by (force simp: h [symmetric] image_comp o_def kh) | |
| 904 | qed (auto intro: continuous_on_subset hcon kcon simp: kh hk) | |
| 905 | also have "... homeomorphic T" | |
| 906 | apply (rule homeomorphic_punctured_affine_sphere_affine) | |
| 907 | using a him | |
| 66690 
6953b1a29e19
Tiny presentational improvements to homeomorphic_punctured_sphere_affine_gen
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 908 | by (auto simp: affS affdS \<open>affine T\<close> \<open>affine U\<close> \<open>z \<in> U\<close>) | 
| 63130 | 909 | finally show ?thesis . | 
| 910 | qed | |
| 911 | ||
| 912 | ||
| 913 | text\<open> When dealing with AR, ANR and ANR later, it's useful to know that every set | |
| 914 | is homeomorphic to a closed subset of a convex set, and | |
| 915 | if the set is locally compact we can take the convex set to be the universe.\<close> | |
| 916 | ||
| 917 | proposition homeomorphic_closedin_convex: | |
| 918 | fixes S :: "'m::euclidean_space set" | |
| 919 |   assumes "aff_dim S < DIM('n)"
 | |
| 920 | obtains U and T :: "'n::euclidean_space set" | |
| 921 |      where "convex U" "U \<noteq> {}" "closedin (subtopology euclidean U) T"
 | |
| 922 | "S homeomorphic T" | |
| 923 | proof (cases "S = {}")
 | |
| 924 | case True then show ?thesis | |
| 925 |     by (rule_tac U=UNIV and T="{}" in that) auto
 | |
| 926 | next | |
| 927 | case False | |
| 928 | then obtain a where "a \<in> S" by auto | |
| 929 | obtain i::'n where i: "i \<in> Basis" "i \<noteq> 0" | |
| 930 | using SOME_Basis Basis_zero by force | |
| 67399 | 931 | have "0 \<in> affine hull ((+) (- a) ` S)" | 
| 63130 | 932 | by (simp add: \<open>a \<in> S\<close> hull_inc) | 
| 67399 | 933 | then have "dim ((+) (- a) ` S) = aff_dim ((+) (- a) ` S)" | 
| 63130 | 934 | by (simp add: aff_dim_zero) | 
| 935 |   also have "... < DIM('n)"
 | |
| 936 | by (simp add: aff_dim_translation_eq assms) | |
| 67399 | 937 |   finally have dd: "dim ((+) (- a) ` S) < DIM('n)"
 | 
| 63130 | 938 | by linarith | 
| 939 |   obtain T where "subspace T" and Tsub: "T \<subseteq> {x. i \<bullet> x = 0}"
 | |
| 67399 | 940 | and dimT: "dim T = dim ((+) (- a) ` S)" | 
| 941 |     apply (rule choose_subspace_of_subspace [of "dim ((+) (- a) ` S)" "{x::'n. i \<bullet> x = 0}"])
 | |
| 63130 | 942 | apply (simp add: dim_hyperplane [OF \<open>i \<noteq> 0\<close>]) | 
| 943 | apply (metis DIM_positive Suc_pred dd not_le not_less_eq_eq) | |
| 944 | apply (metis span_eq subspace_hyperplane) | |
| 945 | done | |
| 67399 | 946 | have "subspace (span ((+) (- a) ` S))" | 
| 63130 | 947 | using subspace_span by blast | 
| 948 | then obtain h k where "linear h" "linear k" | |
| 67399 | 949 | and heq: "h ` span ((+) (- a) ` S) = T" | 
| 950 | and keq:"k ` T = span ((+) (- a) ` S)" | |
| 951 | and hinv [simp]: "\<And>x. x \<in> span ((+) (- a) ` S) \<Longrightarrow> k(h x) = x" | |
| 63130 | 952 | and kinv [simp]: "\<And>x. x \<in> T \<Longrightarrow> h(k x) = x" | 
| 953 | apply (rule isometries_subspaces [OF _ \<open>subspace T\<close>]) | |
| 954 | apply (auto simp: dimT) | |
| 955 | done | |
| 956 | have hcont: "continuous_on A h" and kcont: "continuous_on B k" for A B | |
| 957 | using \<open>linear h\<close> \<open>linear k\<close> linear_continuous_on linear_conv_bounded_linear by blast+ | |
| 958 | have ihhhh[simp]: "\<And>x. x \<in> S \<Longrightarrow> i \<bullet> h (x - a) = 0" | |
| 959 | using Tsub [THEN subsetD] heq span_inc by fastforce | |
| 960 |   have "sphere 0 1 - {i} homeomorphic {x. i \<bullet> x = 0}"
 | |
| 961 | apply (rule homeomorphic_punctured_sphere_affine) | |
| 962 | using i | |
| 963 | apply (auto simp: affine_hyperplane) | |
| 964 | by (metis DIM_positive Suc_eq_plus1 add.left_neutral diff_add_cancel not_le not_less_eq_eq of_nat_1 of_nat_diff) | |
| 965 |   then obtain f g where fg: "homeomorphism (sphere 0 1 - {i}) {x. i \<bullet> x = 0} f g"
 | |
| 966 | by (force simp: homeomorphic_def) | |
| 67399 | 967 | have "h ` (+) (- a) ` S \<subseteq> T" | 
| 63130 | 968 | using heq span_clauses(1) span_linear_image by blast | 
| 67399 | 969 |   then have "g ` h ` (+) (- a) ` S \<subseteq> g ` {x. i \<bullet> x = 0}"
 | 
| 63130 | 970 | using Tsub by (simp add: image_mono) | 
| 971 |   also have "... \<subseteq> sphere 0 1 - {i}"
 | |
| 972 | by (simp add: fg [unfolded homeomorphism_def]) | |
| 67399 | 973 |   finally have gh_sub_sph: "(g \<circ> h) ` (+) (- a) ` S \<subseteq> sphere 0 1 - {i}"
 | 
| 63130 | 974 | by (metis image_comp) | 
| 67399 | 975 | then have gh_sub_cb: "(g \<circ> h) ` (+) (- a) ` S \<subseteq> cball 0 1" | 
| 63130 | 976 | by (metis Diff_subset order_trans sphere_cball) | 
| 977 | have [simp]: "\<And>u. u \<in> S \<Longrightarrow> norm (g (h (u - a))) = 1" | |
| 978 | using gh_sub_sph [THEN subsetD] by (auto simp: o_def) | |
| 67399 | 979 | have ghcont: "continuous_on ((+) (- a) ` S) (\<lambda>x. g (h x))" | 
| 63130 | 980 | apply (rule continuous_on_compose2 [OF homeomorphism_cont2 [OF fg] hcont], force) | 
| 981 | done | |
| 67399 | 982 | have kfcont: "continuous_on ((g \<circ> h \<circ> (+) (- a)) ` S) (\<lambda>x. k (f x))" | 
| 63130 | 983 | apply (rule continuous_on_compose2 [OF kcont]) | 
| 984 | using homeomorphism_cont1 [OF fg] gh_sub_sph apply (force intro: continuous_on_subset, blast) | |
| 985 | done | |
| 67399 | 986 | have "S homeomorphic (+) (- a) ` S" | 
| 63130 | 987 | by (simp add: homeomorphic_translation) | 
| 67399 | 988 | also have Shom: "\<dots> homeomorphic (g \<circ> h) ` (+) (- a) ` S" | 
| 63130 | 989 | apply (simp add: homeomorphic_def homeomorphism_def) | 
| 990 | apply (rule_tac x="g \<circ> h" in exI) | |
| 991 | apply (rule_tac x="k \<circ> f" in exI) | |
| 992 | apply (auto simp: ghcont kfcont span_clauses(1) homeomorphism_apply2 [OF fg] image_comp) | |
| 993 | apply (force simp: o_def homeomorphism_apply2 [OF fg] span_clauses(1)) | |
| 994 | done | |
| 67399 | 995 | finally have Shom: "S homeomorphic (g \<circ> h) ` (+) (- a) ` S" . | 
| 63130 | 996 | show ?thesis | 
| 67399 | 997 | apply (rule_tac U = "ball 0 1 \<union> image (g o h) ((+) (- a) ` S)" | 
| 998 | and T = "image (g o h) ((+) (- a) ` S)" | |
| 63130 | 999 | in that) | 
| 1000 | apply (rule convex_intermediate_ball [of 0 1], force) | |
| 1001 | using gh_sub_cb apply force | |
| 1002 | apply force | |
| 1003 | apply (simp add: closedin_closed) | |
| 1004 | apply (rule_tac x="sphere 0 1" in exI) | |
| 1005 | apply (auto simp: Shom) | |
| 1006 | done | |
| 1007 | qed | |
| 1008 | ||
| 1009 | subsection\<open>Locally compact sets in an open set\<close> | |
| 1010 | ||
| 1011 | text\<open> Locally compact sets are closed in an open set and are homeomorphic | |
| 1012 | to an absolutely closed set if we have one more dimension to play with.\<close> | |
| 1013 | ||
| 1014 | lemma locally_compact_open_Int_closure: | |
| 1015 | fixes S :: "'a :: metric_space set" | |
| 1016 | assumes "locally compact S" | |
| 1017 | obtains T where "open T" "S = T \<inter> closure S" | |
| 1018 | proof - | |
| 1019 | have "\<forall>x\<in>S. \<exists>T v u. u = S \<inter> T \<and> x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> S \<and> open T \<and> compact v" | |
| 1020 | by (metis assms locally_compact openin_open) | |
| 1021 | then obtain t v where | |
| 1022 | tv: "\<And>x. x \<in> S | |
| 1023 | \<Longrightarrow> v x \<subseteq> S \<and> open (t x) \<and> compact (v x) \<and> (\<exists>u. x \<in> u \<and> u \<subseteq> v x \<and> u = S \<inter> t x)" | |
| 1024 | by metis | |
| 1025 | then have o: "open (UNION S t)" | |
| 1026 | by blast | |
| 1027 | have "S = \<Union> (v ` S)" | |
| 1028 | using tv by blast | |
| 1029 | also have "... = UNION S t \<inter> closure S" | |
| 1030 | proof | |
| 1031 | show "UNION S v \<subseteq> UNION S t \<inter> closure S" | |
| 1032 | apply safe | |
| 1033 | apply (metis Int_iff subsetD UN_iff tv) | |
| 1034 | apply (simp add: closure_def rev_subsetD tv) | |
| 1035 | done | |
| 1036 | have "t x \<inter> closure S \<subseteq> v x" if "x \<in> S" for x | |
| 1037 | proof - | |
| 1038 | have "t x \<inter> closure S \<subseteq> closure (t x \<inter> S)" | |
| 1039 | by (simp add: open_Int_closure_subset that tv) | |
| 1040 | also have "... \<subseteq> v x" | |
| 1041 | by (metis Int_commute closure_minimal compact_imp_closed that tv) | |
| 1042 | finally show ?thesis . | |
| 1043 | qed | |
| 1044 | then show "UNION S t \<inter> closure S \<subseteq> UNION S v" | |
| 1045 | by blast | |
| 1046 | qed | |
| 1047 | finally have e: "S = UNION S t \<inter> closure S" . | |
| 1048 | show ?thesis | |
| 1049 | by (rule that [OF o e]) | |
| 1050 | qed | |
| 1051 | ||
| 1052 | ||
| 1053 | lemma locally_compact_closedin_open: | |
| 1054 | fixes S :: "'a :: metric_space set" | |
| 1055 | assumes "locally compact S" | |
| 1056 | obtains T where "open T" "closedin (subtopology euclidean T) S" | |
| 1057 | by (metis locally_compact_open_Int_closure [OF assms] closed_closure closedin_closed_Int) | |
| 1058 | ||
| 1059 | ||
| 1060 | lemma locally_compact_homeomorphism_projection_closed: | |
| 1061 | assumes "locally compact S" | |
| 1062 | obtains T and f :: "'a \<Rightarrow> 'a :: euclidean_space \<times> 'b :: euclidean_space" | |
| 1063 | where "closed T" "homeomorphism S T f fst" | |
| 1064 | proof (cases "closed S") | |
| 1065 | case True | |
| 1066 | then show ?thesis | |
| 1067 |       apply (rule_tac T = "S \<times> {0}" and f = "\<lambda>x. (x, 0)" in that)
 | |
| 1068 | apply (auto simp: closed_Times homeomorphism_def continuous_intros) | |
| 1069 | done | |
| 1070 | next | |
| 1071 | case False | |
| 1072 | obtain U where "open U" and US: "U \<inter> closure S = S" | |
| 1073 | by (metis locally_compact_open_Int_closure [OF assms]) | |
| 1074 |     with False have Ucomp: "-U \<noteq> {}"
 | |
| 1075 | using closure_eq by auto | |
| 1076 | have [simp]: "closure (- U) = -U" | |
| 1077 | by (simp add: \<open>open U\<close> closed_Compl) | |
| 1078 |     define f :: "'a \<Rightarrow> 'a \<times> 'b" where "f \<equiv> \<lambda>x. (x, One /\<^sub>R setdist {x} (- U))"
 | |
| 1079 |     have "continuous_on U (\<lambda>x. (x, One /\<^sub>R setdist {x} (- U)))"
 | |
| 63301 | 1080 | apply (intro continuous_intros continuous_on_setdist) | 
| 1081 | by (simp add: Ucomp setdist_eq_0_sing_1) | |
| 63130 | 1082 | then have homU: "homeomorphism U (f`U) f fst" | 
| 1083 | by (auto simp: f_def homeomorphism_def image_iff continuous_intros) | |
| 1084 | have cloS: "closedin (subtopology euclidean U) S" | |
| 1085 | by (metis US closed_closure closedin_closed_Int) | |
| 1086 |     have cont: "isCont ((\<lambda>x. setdist {x} (- U)) o fst) z" for z :: "'a \<times> 'b"
 | |
| 66827 
c94531b5007d
Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
 paulson <lp15@cam.ac.uk> parents: 
66710diff
changeset | 1087 | by (rule continuous_at_compose continuous_intros continuous_at_setdist)+ | 
| 63130 | 1088 |     have setdist1D: "setdist {a} (- U) *\<^sub>R b = One \<Longrightarrow> setdist {a} (- U) \<noteq> 0" for a::'a and b::'b
 | 
| 1089 | by force | |
| 1090 | have *: "r *\<^sub>R b = One \<Longrightarrow> b = (1 / r) *\<^sub>R One" for r and b::'b | |
| 1091 | by (metis One_non_0 nonzero_divide_eq_eq real_vector.scale_eq_0_iff real_vector.scale_scale scaleR_one) | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1092 |     have "f ` U = (\<lambda>z. (setdist {fst z} (- U) *\<^sub>R snd z)) -` {One}"
 | 
| 63301 | 1093 | apply (auto simp: f_def setdist_eq_0_sing_1 field_simps Ucomp) | 
| 63130 | 1094 | apply (rule_tac x=a in image_eqI) | 
| 63301 | 1095 | apply (auto simp: * setdist_eq_0_sing_1 dest: setdist1D) | 
| 63130 | 1096 | done | 
| 1097 | then have clfU: "closed (f ` U)" | |
| 1098 | apply (rule ssubst) | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1099 | apply (rule continuous_closed_vimage) | 
| 63130 | 1100 | apply (auto intro: continuous_intros cont [unfolded o_def]) | 
| 1101 | done | |
| 1102 | have "closed (f ` S)" | |
| 1103 | apply (rule closedin_closed_trans [OF _ clfU]) | |
| 1104 | apply (rule homeomorphism_imp_closed_map [OF homU cloS]) | |
| 1105 | done | |
| 1106 | then show ?thesis | |
| 1107 | apply (rule that) | |
| 1108 | apply (rule homeomorphism_of_subsets [OF homU]) | |
| 1109 | using US apply auto | |
| 1110 | done | |
| 1111 | qed | |
| 1112 | ||
| 1113 | lemma locally_compact_closed_Int_open: | |
| 1114 | fixes S :: "'a :: euclidean_space set" | |
| 1115 | shows | |
| 1116 | "locally compact S \<longleftrightarrow> (\<exists>U u. closed U \<and> open u \<and> S = U \<inter> u)" | |
| 1117 | by (metis closed_closure closed_imp_locally_compact inf_commute locally_compact_Int locally_compact_open_Int_closure open_imp_locally_compact) | |
| 1118 | ||
| 1119 | ||
| 63945 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1120 | lemma lowerdim_embeddings: | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1121 |   assumes  "DIM('a) < DIM('b)"
 | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1122 | obtains f :: "'a::euclidean_space*real \<Rightarrow> 'b::euclidean_space" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1123 | and g :: "'b \<Rightarrow> 'a*real" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1124 | and j :: 'b | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1125 | where "linear f" "linear g" "\<And>z. g (f z) = z" "j \<in> Basis" "\<And>x. f(x,0) \<bullet> j = 0" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1126 | proof - | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1127 |   let ?B = "Basis :: ('a*real) set"
 | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1128 | have b01: "(0,1) \<in> ?B" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1129 | by (simp add: Basis_prod_def) | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1130 |   have "DIM('a * real) \<le> DIM('b)"
 | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1131 | by (simp add: Suc_leI assms) | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1132 | then obtain basf :: "'a*real \<Rightarrow> 'b" where sbf: "basf ` ?B \<subseteq> Basis" and injbf: "inj_on basf Basis" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1133 | by (metis finite_Basis card_le_inj) | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1134 | define basg:: "'b \<Rightarrow> 'a * real" where | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1135 | "basg \<equiv> \<lambda>i. if i \<in> basf ` Basis then inv_into Basis basf i else (0,1)" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1136 | have bgf[simp]: "basg (basf i) = i" if "i \<in> Basis" for i | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1137 | using inv_into_f_f injbf that by (force simp: basg_def) | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1138 | have sbg: "basg ` Basis \<subseteq> ?B" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1139 | by (force simp: basg_def injbf b01) | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1140 | define f :: "'a*real \<Rightarrow> 'b" where "f \<equiv> \<lambda>u. \<Sum>j\<in>Basis. (u \<bullet> basg j) *\<^sub>R j" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1141 | define g :: "'b \<Rightarrow> 'a*real" where "g \<equiv> \<lambda>z. (\<Sum>i\<in>Basis. (z \<bullet> basf i) *\<^sub>R i)" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1142 | show ?thesis | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1143 | proof | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1144 | show "linear f" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1145 | unfolding f_def | 
| 64267 | 1146 | by (intro linear_compose_sum linearI ballI) (auto simp: algebra_simps) | 
| 63945 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1147 | show "linear g" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1148 | unfolding g_def | 
| 64267 | 1149 | by (intro linear_compose_sum linearI ballI) (auto simp: algebra_simps) | 
| 63945 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1150 | have *: "(\<Sum>a \<in> Basis. a \<bullet> basf b * (x \<bullet> basg a)) = x \<bullet> b" if "b \<in> Basis" for x b | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1151 | using sbf that by auto | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1152 | show gf: "g (f x) = x" for x | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1153 | apply (rule euclidean_eqI) | 
| 64267 | 1154 | apply (simp add: f_def g_def inner_sum_left scaleR_sum_left algebra_simps) | 
| 1155 | apply (simp add: Groups_Big.sum_distrib_left [symmetric] *) | |
| 63945 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1156 | done | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1157 | show "basf(0,1) \<in> Basis" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1158 | using b01 sbf by auto | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1159 | then show "f(x,0) \<bullet> basf(0,1) = 0" for x | 
| 64267 | 1160 | apply (simp add: f_def inner_sum_left) | 
| 1161 | apply (rule comm_monoid_add_class.sum.neutral) | |
| 63945 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1162 | using b01 inner_not_same_Basis by fastforce | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1163 | qed | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1164 | qed | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1165 | |
| 63130 | 1166 | proposition locally_compact_homeomorphic_closed: | 
| 1167 | fixes S :: "'a::euclidean_space set" | |
| 1168 |   assumes "locally compact S" and dimlt: "DIM('a) < DIM('b)"
 | |
| 1169 | obtains T :: "'b::euclidean_space set" where "closed T" "S homeomorphic T" | |
| 1170 | proof - | |
| 1171 |   obtain U:: "('a*real)set" and h
 | |
| 1172 | where "closed U" and homU: "homeomorphism S U h fst" | |
| 1173 | using locally_compact_homeomorphism_projection_closed assms by metis | |
| 63945 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1174 | obtain f :: "'a*real \<Rightarrow> 'b" and g :: "'b \<Rightarrow> 'a*real" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1175 | where "linear f" "linear g" and gf [simp]: "\<And>z. g (f z) = z" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1176 | using lowerdim_embeddings [OF dimlt] by metis | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1177 | then have "inj f" | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1178 | by (metis injI) | 
| 63130 | 1179 | have gfU: "g ` f ` U = U" | 
| 63945 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1180 | by (simp add: image_comp o_def) | 
| 63130 | 1181 | have "S homeomorphic U" | 
| 1182 | using homU homeomorphic_def by blast | |
| 1183 | also have "... homeomorphic f ` U" | |
| 1184 | apply (rule homeomorphicI [OF refl gfU]) | |
| 1185 | apply (meson \<open>inj f\<close> \<open>linear f\<close> homeomorphism_cont2 linear_homeomorphism_image) | |
| 63945 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1186 | using \<open>linear g\<close> linear_continuous_on linear_conv_bounded_linear apply blast | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1187 | apply (auto simp: o_def) | 
| 
444eafb6e864
a few new theorems and a renaming
 paulson <lp15@cam.ac.uk> parents: 
63918diff
changeset | 1188 | done | 
| 63130 | 1189 | finally show ?thesis | 
| 1190 | apply (rule_tac T = "f ` U" in that) | |
| 1191 | apply (rule closed_injective_linear_image [OF \<open>closed U\<close> \<open>linear f\<close> \<open>inj f\<close>], assumption) | |
| 1192 | done | |
| 1193 | qed | |
| 1194 | ||
| 1195 | ||
| 1196 | lemma homeomorphic_convex_compact_lemma: | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1197 | fixes S :: "'a::euclidean_space set" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1198 | assumes "convex S" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1199 | and "compact S" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1200 | and "cball 0 1 \<subseteq> S" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1201 | shows "S homeomorphic (cball (0::'a) 1)" | 
| 63130 | 1202 | proof (rule starlike_compact_projective_special[OF assms(2-3)]) | 
| 1203 | fix x u | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1204 | assume "x \<in> S" and "0 \<le> u" and "u < (1::real)" | 
| 63130 | 1205 | have "open (ball (u *\<^sub>R x) (1 - u))" | 
| 1206 | by (rule open_ball) | |
| 1207 | moreover have "u *\<^sub>R x \<in> ball (u *\<^sub>R x) (1 - u)" | |
| 1208 | unfolding centre_in_ball using \<open>u < 1\<close> by simp | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1209 | moreover have "ball (u *\<^sub>R x) (1 - u) \<subseteq> S" | 
| 63130 | 1210 | proof | 
| 1211 | fix y | |
| 1212 | assume "y \<in> ball (u *\<^sub>R x) (1 - u)" | |
| 1213 | then have "dist (u *\<^sub>R x) y < 1 - u" | |
| 1214 | unfolding mem_ball . | |
| 1215 | with \<open>u < 1\<close> have "inverse (1 - u) *\<^sub>R (y - u *\<^sub>R x) \<in> cball 0 1" | |
| 1216 | by (simp add: dist_norm inverse_eq_divide norm_minus_commute) | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1217 | with assms(3) have "inverse (1 - u) *\<^sub>R (y - u *\<^sub>R x) \<in> S" .. | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1218 | with assms(1) have "(1 - u) *\<^sub>R ((y - u *\<^sub>R x) /\<^sub>R (1 - u)) + u *\<^sub>R x \<in> S" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1219 | using \<open>x \<in> S\<close> \<open>0 \<le> u\<close> \<open>u < 1\<close> [THEN less_imp_le] by (rule convexD_alt) | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1220 | then show "y \<in> S" using \<open>u < 1\<close> | 
| 63130 | 1221 | by simp | 
| 1222 | qed | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1223 | ultimately have "u *\<^sub>R x \<in> interior S" .. | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1224 | then show "u *\<^sub>R x \<in> S - frontier S" | 
| 63130 | 1225 | using frontier_def and interior_subset by auto | 
| 1226 | qed | |
| 1227 | ||
| 1228 | proposition homeomorphic_convex_compact_cball: | |
| 1229 | fixes e :: real | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1230 | and S :: "'a::euclidean_space set" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1231 | assumes "convex S" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1232 | and "compact S" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1233 |     and "interior S \<noteq> {}"
 | 
| 63130 | 1234 | and "e > 0" | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1235 | shows "S homeomorphic (cball (b::'a) e)" | 
| 63130 | 1236 | proof - | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1237 | obtain a where "a \<in> interior S" | 
| 63130 | 1238 | using assms(3) by auto | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1239 | then obtain d where "d > 0" and d: "cball a d \<subseteq> S" | 
| 63130 | 1240 | unfolding mem_interior_cball by auto | 
| 1241 | let ?d = "inverse d" and ?n = "0::'a" | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1242 | have "cball ?n 1 \<subseteq> (\<lambda>x. inverse d *\<^sub>R (x - a)) ` S" | 
| 63130 | 1243 | apply rule | 
| 1244 | apply (rule_tac x="d *\<^sub>R x + a" in image_eqI) | |
| 1245 | defer | |
| 1246 | apply (rule d[unfolded subset_eq, rule_format]) | |
| 1247 | using \<open>d > 0\<close> | |
| 1248 | unfolding mem_cball dist_norm | |
| 1249 | apply (auto simp add: mult_right_le_one_le) | |
| 1250 | done | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1251 | then have "(\<lambda>x. inverse d *\<^sub>R (x - a)) ` S homeomorphic cball ?n 1" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1252 | using homeomorphic_convex_compact_lemma[of "(\<lambda>x. ?d *\<^sub>R -a + ?d *\<^sub>R x) ` S", | 
| 63130 | 1253 | OF convex_affinity compact_affinity] | 
| 1254 | using assms(1,2) | |
| 1255 | by (auto simp add: scaleR_right_diff_distrib) | |
| 1256 | then show ?thesis | |
| 1257 | apply (rule_tac homeomorphic_trans[OF _ homeomorphic_balls(2)[of 1 _ ?n]]) | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1258 | apply (rule homeomorphic_trans[OF homeomorphic_affinity[of "?d" S "?d *\<^sub>R -a"]]) | 
| 63130 | 1259 | using \<open>d>0\<close> \<open>e>0\<close> | 
| 1260 | apply (auto simp add: scaleR_right_diff_distrib) | |
| 1261 | done | |
| 1262 | qed | |
| 1263 | ||
| 1264 | corollary homeomorphic_convex_compact: | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1265 | fixes S :: "'a::euclidean_space set" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1266 | and T :: "'a set" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1267 |   assumes "convex S" "compact S" "interior S \<noteq> {}"
 | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1268 |     and "convex T" "compact T" "interior T \<noteq> {}"
 | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1269 | shows "S homeomorphic T" | 
| 63130 | 1270 | using assms | 
| 1271 | by (meson zero_less_one homeomorphic_trans homeomorphic_convex_compact_cball homeomorphic_sym) | |
| 1272 | ||
| 63301 | 1273 | subsection\<open>Covering spaces and lifting results for them\<close> | 
| 1274 | ||
| 1275 | definition covering_space | |
| 1276 |            :: "'a::topological_space set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b::topological_space set \<Rightarrow> bool"
 | |
| 1277 | where | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1278 | "covering_space c p S \<equiv> | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1279 | continuous_on c p \<and> p ` c = S \<and> | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1280 | (\<forall>x \<in> S. \<exists>T. x \<in> T \<and> openin (subtopology euclidean S) T \<and> | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1281 | (\<exists>v. \<Union>v = c \<inter> p -` T \<and> | 
| 63301 | 1282 | (\<forall>u \<in> v. openin (subtopology euclidean c) u) \<and> | 
| 1283 | pairwise disjnt v \<and> | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1284 | (\<forall>u \<in> v. \<exists>q. homeomorphism u T p q)))" | 
| 63301 | 1285 | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1286 | lemma covering_space_imp_continuous: "covering_space c p S \<Longrightarrow> continuous_on c p" | 
| 63301 | 1287 | by (simp add: covering_space_def) | 
| 1288 | ||
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1289 | lemma covering_space_imp_surjective: "covering_space c p S \<Longrightarrow> p ` c = S" | 
| 63301 | 1290 | by (simp add: covering_space_def) | 
| 1291 | ||
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1292 | lemma homeomorphism_imp_covering_space: "homeomorphism S T f g \<Longrightarrow> covering_space S f T" | 
| 63301 | 1293 | apply (simp add: homeomorphism_def covering_space_def, clarify) | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1294 | apply (rule_tac x=T in exI, simp) | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1295 |   apply (rule_tac x="{S}" in exI, auto)
 | 
| 63301 | 1296 | done | 
| 1297 | ||
| 1298 | lemma covering_space_local_homeomorphism: | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1299 | assumes "covering_space c p S" "x \<in> c" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1300 | obtains T u q where "x \<in> T" "openin (subtopology euclidean c) T" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1301 | "p x \<in> u" "openin (subtopology euclidean S) u" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1302 | "homeomorphism T u p q" | 
| 63301 | 1303 | using assms | 
| 1304 | apply (simp add: covering_space_def, clarify) | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1305 | apply (drule_tac x="p x" in bspec, force) | 
| 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1306 | by (metis IntI UnionE vimage_eq) | 
| 63301 | 1307 | |
| 1308 | ||
| 1309 | lemma covering_space_local_homeomorphism_alt: | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1310 | assumes p: "covering_space c p S" and "y \<in> S" | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1311 | obtains x T U q where "p x = y" | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1312 | "x \<in> T" "openin (subtopology euclidean c) T" | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1313 | "y \<in> U" "openin (subtopology euclidean S) U" | 
| 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1314 | "homeomorphism T U p q" | 
| 63301 | 1315 | proof - | 
| 1316 | obtain x where "p x = y" "x \<in> c" | |
| 1317 | using assms covering_space_imp_surjective by blast | |
| 1318 | show ?thesis | |
| 1319 | apply (rule covering_space_local_homeomorphism [OF p \<open>x \<in> c\<close>]) | |
| 1320 | using that \<open>p x = y\<close> by blast | |
| 1321 | qed | |
| 1322 | ||
| 1323 | proposition covering_space_open_map: | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1324 | fixes S :: "'a :: metric_space set" and T :: "'b :: metric_space set" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1325 | assumes p: "covering_space c p S" and T: "openin (subtopology euclidean c) T" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1326 | shows "openin (subtopology euclidean S) (p ` T)" | 
| 63301 | 1327 | proof - | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1328 | have pce: "p ` c = S" | 
| 63301 | 1329 | and covs: | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1330 | "\<And>x. x \<in> S \<Longrightarrow> | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1331 | \<exists>X VS. x \<in> X \<and> openin (subtopology euclidean S) X \<and> | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1332 | \<Union>VS = c \<inter> p -` X \<and> | 
| 63301 | 1333 | (\<forall>u \<in> VS. openin (subtopology euclidean c) u) \<and> | 
| 1334 | pairwise disjnt VS \<and> | |
| 1335 | (\<forall>u \<in> VS. \<exists>q. homeomorphism u X p q)" | |
| 1336 | using p by (auto simp: covering_space_def) | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1337 | have "T \<subseteq> c" by (metis openin_euclidean_subtopology_iff T) | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1338 | have "\<exists>X. openin (subtopology euclidean S) X \<and> y \<in> X \<and> X \<subseteq> p ` T" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1339 | if "y \<in> p ` T" for y | 
| 63301 | 1340 | proof - | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1341 | have "y \<in> S" using \<open>T \<subseteq> c\<close> pce that by blast | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1342 | obtain U VS where "y \<in> U" and U: "openin (subtopology euclidean S) U" | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1343 | and VS: "\<Union>VS = c \<inter> p -` U" | 
| 63301 | 1344 | and openVS: "\<forall>V \<in> VS. openin (subtopology euclidean c) V" | 
| 1345 | and homVS: "\<And>V. V \<in> VS \<Longrightarrow> \<exists>q. homeomorphism V U p q" | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1346 | using covs [OF \<open>y \<in> S\<close>] by auto | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1347 | obtain x where "x \<in> c" "p x \<in> U" "x \<in> T" "p x = y" | 
| 63301 | 1348 | apply simp | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1349 | using T [unfolded openin_euclidean_subtopology_iff] \<open>y \<in> U\<close> \<open>y \<in> p ` T\<close> by blast | 
| 63301 | 1350 | with VS obtain V where "x \<in> V" "V \<in> VS" by auto | 
| 1351 | then obtain q where q: "homeomorphism V U p q" using homVS by blast | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1352 | then have ptV: "p ` (T \<inter> V) = U \<inter> q -` (T \<inter> V)" | 
| 63301 | 1353 | using VS \<open>V \<in> VS\<close> by (auto simp: homeomorphism_def) | 
| 1354 | have ocv: "openin (subtopology euclidean c) V" | |
| 1355 | by (simp add: \<open>V \<in> VS\<close> openVS) | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1356 | have "openin (subtopology euclidean U) (U \<inter> q -` (T \<inter> V))" | 
| 63301 | 1357 | apply (rule continuous_on_open [THEN iffD1, rule_format]) | 
| 1358 | using homeomorphism_def q apply blast | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1359 | using openin_subtopology_Int_subset [of c] q T unfolding homeomorphism_def | 
| 63301 | 1360 | by (metis inf.absorb_iff2 Int_commute ocv openin_euclidean_subtopology_iff) | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1361 | then have os: "openin (subtopology euclidean S) (U \<inter> q -` (T \<inter> V))" | 
| 63301 | 1362 | using openin_trans [of U] by (simp add: Collect_conj_eq U) | 
| 1363 | show ?thesis | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1364 | apply (rule_tac x = "p ` (T \<inter> V)" in exI) | 
| 63301 | 1365 | apply (rule conjI) | 
| 1366 | apply (simp only: ptV os) | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1367 | using \<open>p x = y\<close> \<open>x \<in> V\<close> \<open>x \<in> T\<close> apply blast | 
| 63301 | 1368 | done | 
| 1369 | qed | |
| 1370 | with openin_subopen show ?thesis by blast | |
| 1371 | qed | |
| 1372 | ||
| 1373 | lemma covering_space_lift_unique_gen: | |
| 1374 | fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space" | |
| 1375 | fixes g1 :: "'a \<Rightarrow> 'c::real_normed_vector" | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1376 | assumes cov: "covering_space c p S" | 
| 63301 | 1377 | and eq: "g1 a = g2 a" | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1378 | and f: "continuous_on T f" "f ` T \<subseteq> S" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1379 | and g1: "continuous_on T g1" "g1 ` T \<subseteq> c" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1380 | and fg1: "\<And>x. x \<in> T \<Longrightarrow> f x = p(g1 x)" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1381 | and g2: "continuous_on T g2" "g2 ` T \<subseteq> c" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1382 | and fg2: "\<And>x. x \<in> T \<Longrightarrow> f x = p(g2 x)" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1383 | and u_compt: "U \<in> components T" and "a \<in> U" "x \<in> U" | 
| 63301 | 1384 | shows "g1 x = g2 x" | 
| 1385 | proof - | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1386 | have "U \<subseteq> T" by (rule in_components_subset [OF u_compt]) | 
| 65064 
a4abec71279a
Renamed ii to imaginary_unit in order to free up ii as a variable name.  Also replaced some legacy def commands
 paulson <lp15@cam.ac.uk> parents: 
64792diff
changeset | 1387 |   define G12 where "G12 \<equiv> {x \<in> U. g1 x - g2 x = 0}"
 | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1388 | have "connected U" by (rule in_components_connected [OF u_compt]) | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1389 | have contu: "continuous_on U g1" "continuous_on U g2" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1390 | using \<open>U \<subseteq> T\<close> continuous_on_subset g1 g2 by blast+ | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1391 | have o12: "openin (subtopology euclidean U) G12" | 
| 63301 | 1392 | unfolding G12_def | 
| 1393 | proof (subst openin_subopen, clarify) | |
| 1394 | fix z | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1395 | assume z: "z \<in> U" "g1 z - g2 z = 0" | 
| 63301 | 1396 | obtain v w q where "g1 z \<in> v" and ocv: "openin (subtopology euclidean c) v" | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1397 | and "p (g1 z) \<in> w" and osw: "openin (subtopology euclidean S) w" | 
| 63301 | 1398 | and hom: "homeomorphism v w p q" | 
| 1399 | apply (rule_tac x = "g1 z" in covering_space_local_homeomorphism [OF cov]) | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1400 | using \<open>U \<subseteq> T\<close> \<open>z \<in> U\<close> g1(2) apply blast+ | 
| 63301 | 1401 | done | 
| 1402 | have "g2 z \<in> v" using \<open>g1 z \<in> v\<close> z by auto | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1403 | have gg: "U \<inter> g -` v = U \<inter> g -` (v \<inter> g ` U)" for g | 
| 63301 | 1404 | by auto | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1405 | have "openin (subtopology euclidean (g1 ` U)) (v \<inter> g1 ` U)" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1406 | using ocv \<open>U \<subseteq> T\<close> g1 by (fastforce simp add: openin_open) | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1407 | then have 1: "openin (subtopology euclidean U) (U \<inter> g1 -` v)" | 
| 63301 | 1408 | unfolding gg by (blast intro: contu continuous_on_open [THEN iffD1, rule_format]) | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1409 | have "openin (subtopology euclidean (g2 ` U)) (v \<inter> g2 ` U)" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1410 | using ocv \<open>U \<subseteq> T\<close> g2 by (fastforce simp add: openin_open) | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1411 | then have 2: "openin (subtopology euclidean U) (U \<inter> g2 -` v)" | 
| 63301 | 1412 | unfolding gg by (blast intro: contu continuous_on_open [THEN iffD1, rule_format]) | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1413 |     show "\<exists>T. openin (subtopology euclidean U) T \<and> z \<in> T \<and> T \<subseteq> {z \<in> U. g1 z - g2 z = 0}"
 | 
| 63301 | 1414 | using z | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1415 | apply (rule_tac x = "(U \<inter> g1 -` v) \<inter> (U \<inter> g2 -` v)" in exI) | 
| 63301 | 1416 | apply (intro conjI) | 
| 1417 | apply (rule openin_Int [OF 1 2]) | |
| 1418 | using \<open>g1 z \<in> v\<close> \<open>g2 z \<in> v\<close> apply (force simp:, clarify) | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1419 | apply (metis \<open>U \<subseteq> T\<close> subsetD eq_iff_diff_eq_0 fg1 fg2 hom homeomorphism_def) | 
| 63301 | 1420 | done | 
| 1421 | qed | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1422 | have c12: "closedin (subtopology euclidean U) G12" | 
| 63301 | 1423 | unfolding G12_def | 
| 1424 | by (intro continuous_intros continuous_closedin_preimage_constant contu) | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1425 |   have "G12 = {} \<or> G12 = U"
 | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1426 | by (intro connected_clopen [THEN iffD1, rule_format] \<open>connected U\<close> conjI o12 c12) | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1427 | with eq \<open>a \<in> U\<close> have "\<And>x. x \<in> U \<Longrightarrow> g1 x - g2 x = 0" by (auto simp: G12_def) | 
| 63301 | 1428 | then show ?thesis | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1429 | using \<open>x \<in> U\<close> by force | 
| 63301 | 1430 | qed | 
| 1431 | ||
| 1432 | proposition covering_space_lift_unique: | |
| 1433 | fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space" | |
| 1434 | fixes g1 :: "'a \<Rightarrow> 'c::real_normed_vector" | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1435 | assumes "covering_space c p S" | 
| 63301 | 1436 | "g1 a = g2 a" | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1437 | "continuous_on T f" "f ` T \<subseteq> S" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1438 | "continuous_on T g1" "g1 ` T \<subseteq> c" "\<And>x. x \<in> T \<Longrightarrow> f x = p(g1 x)" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1439 | "continuous_on T g2" "g2 ` T \<subseteq> c" "\<And>x. x \<in> T \<Longrightarrow> f x = p(g2 x)" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1440 | "connected T" "a \<in> T" "x \<in> T" | 
| 63301 | 1441 | shows "g1 x = g2 x" | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 1442 | using covering_space_lift_unique_gen [of c p S] in_components_self assms ex_in_conv by blast | 
| 63301 | 1443 | |
| 64791 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1444 | lemma covering_space_locally: | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1445 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1446 | assumes loc: "locally \<phi> C" and cov: "covering_space C p S" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1447 | and pim: "\<And>T. \<lbrakk>T \<subseteq> C; \<phi> T\<rbrakk> \<Longrightarrow> \<psi>(p ` T)" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1448 | shows "locally \<psi> S" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1449 | proof - | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1450 | have "locally \<psi> (p ` C)" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1451 | apply (rule locally_open_map_image [OF loc]) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1452 | using cov covering_space_imp_continuous apply blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1453 | using cov covering_space_imp_surjective covering_space_open_map apply blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1454 | by (simp add: pim) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1455 | then show ?thesis | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1456 | using covering_space_imp_surjective [OF cov] by metis | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1457 | qed | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1458 | |
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1459 | |
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1460 | proposition covering_space_locally_eq: | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1461 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1462 | assumes cov: "covering_space C p S" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1463 | and pim: "\<And>T. \<lbrakk>T \<subseteq> C; \<phi> T\<rbrakk> \<Longrightarrow> \<psi>(p ` T)" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1464 | and qim: "\<And>q U. \<lbrakk>U \<subseteq> S; continuous_on U q; \<psi> U\<rbrakk> \<Longrightarrow> \<phi>(q ` U)" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1465 | shows "locally \<psi> S \<longleftrightarrow> locally \<phi> C" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1466 | (is "?lhs = ?rhs") | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1467 | proof | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1468 | assume L: ?lhs | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1469 | show ?rhs | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1470 | proof (rule locallyI) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1471 | fix V x | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1472 | assume V: "openin (subtopology euclidean C) V" and "x \<in> V" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1473 | have "p x \<in> p ` C" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1474 | by (metis IntE V \<open>x \<in> V\<close> imageI openin_open) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1475 | then obtain T \<V> where "p x \<in> T" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1476 | and opeT: "openin (subtopology euclidean S) T" | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1477 | and veq: "\<Union>\<V> = C \<inter> p -` T" | 
| 64791 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1478 | and ope: "\<forall>U\<in>\<V>. openin (subtopology euclidean C) U" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1479 | and hom: "\<forall>U\<in>\<V>. \<exists>q. homeomorphism U T p q" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1480 | using cov unfolding covering_space_def by (blast intro: that) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1481 | have "x \<in> \<Union>\<V>" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1482 | using V veq \<open>p x \<in> T\<close> \<open>x \<in> V\<close> openin_imp_subset by fastforce | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1483 | then obtain U where "x \<in> U" "U \<in> \<V>" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1484 | by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1485 | then obtain q where opeU: "openin (subtopology euclidean C) U" and q: "homeomorphism U T p q" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1486 | using ope hom by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1487 | with V have "openin (subtopology euclidean C) (U \<inter> V)" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1488 | by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1489 | then have UV: "openin (subtopology euclidean S) (p ` (U \<inter> V))" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1490 | using cov covering_space_open_map by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1491 | obtain W W' where opeW: "openin (subtopology euclidean S) W" and "\<psi> W'" "p x \<in> W" "W \<subseteq> W'" and W'sub: "W' \<subseteq> p ` (U \<inter> V)" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1492 | using locallyE [OF L UV] \<open>x \<in> U\<close> \<open>x \<in> V\<close> by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1493 | then have "W \<subseteq> T" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1494 | by (metis Int_lower1 q homeomorphism_image1 image_Int_subset order_trans) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1495 | show "\<exists>U Z. openin (subtopology euclidean C) U \<and> | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1496 | \<phi> Z \<and> x \<in> U \<and> U \<subseteq> Z \<and> Z \<subseteq> V" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1497 | proof (intro exI conjI) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1498 | have "openin (subtopology euclidean T) W" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1499 | by (meson opeW opeT openin_imp_subset openin_subset_trans \<open>W \<subseteq> T\<close>) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1500 | then have "openin (subtopology euclidean U) (q ` W)" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1501 | by (meson homeomorphism_imp_open_map homeomorphism_symD q) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1502 | then show "openin (subtopology euclidean C) (q ` W)" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1503 | using opeU openin_trans by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1504 | show "\<phi> (q ` W')" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1505 | by (metis (mono_tags, lifting) Int_subset_iff UV W'sub \<open>\<psi> W'\<close> continuous_on_subset dual_order.trans homeomorphism_def image_Int_subset openin_imp_subset q qim) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1506 | show "x \<in> q ` W" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1507 | by (metis \<open>p x \<in> W\<close> \<open>x \<in> U\<close> homeomorphism_def imageI q) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1508 | show "q ` W \<subseteq> q ` W'" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1509 | using \<open>W \<subseteq> W'\<close> by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1510 | have "W' \<subseteq> p ` V" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1511 | using W'sub by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1512 | then show "q ` W' \<subseteq> V" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1513 | using W'sub homeomorphism_apply1 [OF q] by auto | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1514 | qed | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1515 | qed | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1516 | next | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1517 | assume ?rhs | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1518 | then show ?lhs | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1519 | using cov covering_space_locally pim by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1520 | qed | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1521 | |
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1522 | lemma covering_space_locally_compact_eq: | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1523 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1524 | assumes "covering_space C p S" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1525 | shows "locally compact S \<longleftrightarrow> locally compact C" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1526 | apply (rule covering_space_locally_eq [OF assms]) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1527 | apply (meson assms compact_continuous_image continuous_on_subset covering_space_imp_continuous) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1528 | using compact_continuous_image by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1529 | |
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1530 | lemma covering_space_locally_connected_eq: | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1531 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1532 | assumes "covering_space C p S" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1533 | shows "locally connected S \<longleftrightarrow> locally connected C" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1534 | apply (rule covering_space_locally_eq [OF assms]) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1535 | apply (meson connected_continuous_image assms continuous_on_subset covering_space_imp_continuous) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1536 | using connected_continuous_image by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1537 | |
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1538 | lemma covering_space_locally_path_connected_eq: | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1539 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1540 | assumes "covering_space C p S" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1541 | shows "locally path_connected S \<longleftrightarrow> locally path_connected C" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1542 | apply (rule covering_space_locally_eq [OF assms]) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1543 | apply (meson path_connected_continuous_image assms continuous_on_subset covering_space_imp_continuous) | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1544 | using path_connected_continuous_image by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1545 | |
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1546 | |
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1547 | lemma covering_space_locally_compact: | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1548 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1549 | assumes "locally compact C" "covering_space C p S" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1550 | shows "locally compact S" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1551 | using assms covering_space_locally_compact_eq by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1552 | |
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1553 | |
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1554 | lemma covering_space_locally_connected: | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1555 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1556 | assumes "locally connected C" "covering_space C p S" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1557 | shows "locally connected S" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1558 | using assms covering_space_locally_connected_eq by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1559 | |
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1560 | lemma covering_space_locally_path_connected: | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1561 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1562 | assumes "locally path_connected C" "covering_space C p S" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1563 | shows "locally path_connected S" | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1564 | using assms covering_space_locally_path_connected_eq by blast | 
| 
05a2b3b20664
facts about ANRs, ENRs, covering spaces
 paulson <lp15@cam.ac.uk> parents: 
64789diff
changeset | 1565 | |
| 64792 | 1566 | proposition covering_space_lift_homotopy: | 
| 1567 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 1568 | and h :: "real \<times> 'c::real_normed_vector \<Rightarrow> 'b" | |
| 1569 | assumes cov: "covering_space C p S" | |
| 1570 |       and conth: "continuous_on ({0..1} \<times> U) h"
 | |
| 1571 |       and him: "h ` ({0..1} \<times> U) \<subseteq> S"
 | |
| 1572 | and heq: "\<And>y. y \<in> U \<Longrightarrow> h (0,y) = p(f y)" | |
| 1573 | and contf: "continuous_on U f" and fim: "f ` U \<subseteq> C" | |
| 1574 |     obtains k where "continuous_on ({0..1} \<times> U) k"
 | |
| 1575 |                     "k ` ({0..1} \<times> U) \<subseteq> C"
 | |
| 1576 | "\<And>y. y \<in> U \<Longrightarrow> k(0, y) = f y" | |
| 1577 |                     "\<And>z. z \<in> {0..1} \<times> U \<Longrightarrow> h z = p(k z)"
 | |
| 1578 | proof - | |
| 1579 | have "\<exists>V k. openin (subtopology euclidean U) V \<and> y \<in> V \<and> | |
| 1580 |               continuous_on ({0..1} \<times> V) k \<and> k ` ({0..1} \<times> V) \<subseteq> C \<and>
 | |
| 1581 |               (\<forall>z \<in> V. k(0, z) = f z) \<and> (\<forall>z \<in> {0..1} \<times> V. h z = p(k z))"
 | |
| 1582 | if "y \<in> U" for y | |
| 1583 | proof - | |
| 1584 | obtain UU where UU: "\<And>s. s \<in> S \<Longrightarrow> s \<in> (UU s) \<and> openin (subtopology euclidean S) (UU s) \<and> | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1585 | (\<exists>\<V>. \<Union>\<V> = C \<inter> p -` UU s \<and> | 
| 64792 | 1586 | (\<forall>U \<in> \<V>. openin (subtopology euclidean C) U) \<and> | 
| 1587 | pairwise disjnt \<V> \<and> | |
| 1588 | (\<forall>U \<in> \<V>. \<exists>q. homeomorphism U (UU s) p q))" | |
| 1589 | using cov unfolding covering_space_def by (metis (mono_tags)) | |
| 1590 | then have ope: "\<And>s. s \<in> S \<Longrightarrow> s \<in> (UU s) \<and> openin (subtopology euclidean S) (UU s)" | |
| 1591 | by blast | |
| 1592 | have "\<exists>k n i. open k \<and> open n \<and> | |
| 1593 |                   t \<in> k \<and> y \<in> n \<and> i \<in> S \<and> h ` (({0..1} \<inter> k) \<times> (U \<inter> n)) \<subseteq> UU i" if "t \<in> {0..1}" for t
 | |
| 1594 | proof - | |
| 1595 | have hinS: "h (t, y) \<in> S" | |
| 1596 | using \<open>y \<in> U\<close> him that by blast | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1597 |       then have "(t,y) \<in> ({0..1} \<times> U) \<inter> h -` UU(h(t, y))"
 | 
| 64792 | 1598 |         using \<open>y \<in> U\<close> \<open>t \<in> {0..1}\<close>  by (auto simp: ope)
 | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1599 |       moreover have ope_01U: "openin (subtopology euclidean ({0..1} \<times> U)) (({0..1} \<times> U) \<inter> h -` UU(h(t, y)))"
 | 
| 64792 | 1600 | using hinS ope continuous_on_open_gen [OF him] conth by blast | 
| 1601 |       ultimately obtain V W where opeV: "open V" and "t \<in> {0..1} \<inter> V" "t \<in> {0..1} \<inter> V"
 | |
| 1602 | and opeW: "open W" and "y \<in> U" "y \<in> W" | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1603 |                               and VW: "({0..1} \<inter> V) \<times> (U \<inter> W)  \<subseteq> (({0..1} \<times> U) \<inter> h -` UU(h(t, y)))"
 | 
| 64792 | 1604 | by (rule Times_in_interior_subtopology) (auto simp: openin_open) | 
| 1605 | then show ?thesis | |
| 1606 | using hinS by blast | |
| 1607 | qed | |
| 1608 | then obtain K NN X where | |
| 1609 |               K: "\<And>t. t \<in> {0..1} \<Longrightarrow> open (K t)"
 | |
| 1610 |           and NN: "\<And>t. t \<in> {0..1} \<Longrightarrow> open (NN t)"
 | |
| 1611 |           and inUS: "\<And>t. t \<in> {0..1} \<Longrightarrow> t \<in> K t \<and> y \<in> NN t \<and> X t \<in> S"
 | |
| 1612 |           and him: "\<And>t. t \<in> {0..1} \<Longrightarrow> h ` (({0..1} \<inter> K t) \<times> (U \<inter> NN t)) \<subseteq> UU (X t)"
 | |
| 1613 | by (metis (mono_tags)) | |
| 1614 |     obtain \<T> where "\<T> \<subseteq> ((\<lambda>i. K i \<times> NN i)) ` {0..1}" "finite \<T>" "{0::real..1} \<times> {y} \<subseteq> \<Union>\<T>"
 | |
| 1615 | proof (rule compactE) | |
| 1616 |       show "compact ({0::real..1} \<times> {y})"
 | |
| 1617 | by (simp add: compact_Times) | |
| 1618 |       show "{0..1} \<times> {y} \<subseteq> (\<Union>i\<in>{0..1}. K i \<times> NN i)"
 | |
| 1619 | using K inUS by auto | |
| 1620 |       show "\<And>B. B \<in> (\<lambda>i. K i \<times> NN i) ` {0..1} \<Longrightarrow> open B"
 | |
| 1621 | using K NN by (auto simp: open_Times) | |
| 1622 | qed blast | |
| 1623 |     then obtain tk where "tk \<subseteq> {0..1}" "finite tk"
 | |
| 1624 |                      and tk: "{0::real..1} \<times> {y} \<subseteq> (\<Union>i \<in> tk. K i \<times> NN i)"
 | |
| 1625 | by (metis (no_types, lifting) finite_subset_image) | |
| 1626 |     then have "tk \<noteq> {}"
 | |
| 1627 | by auto | |
| 1628 | define n where "n = INTER tk NN" | |
| 1629 | have "y \<in> n" "open n" | |
| 1630 |       using inUS NN \<open>tk \<subseteq> {0..1}\<close> \<open>finite tk\<close>
 | |
| 1631 | by (auto simp: n_def open_INT subset_iff) | |
| 1632 |     obtain \<delta> where "0 < \<delta>" and \<delta>: "\<And>T. \<lbrakk>T \<subseteq> {0..1}; diameter T < \<delta>\<rbrakk> \<Longrightarrow> \<exists>B\<in>K ` tk. T \<subseteq> B"
 | |
| 1633 |     proof (rule Lebesgue_number_lemma [of "{0..1}" "K ` tk"])
 | |
| 1634 |       show "K ` tk \<noteq> {}"
 | |
| 1635 |         using \<open>tk \<noteq> {}\<close> by auto
 | |
| 1636 |       show "{0..1} \<subseteq> UNION tk K"
 | |
| 1637 | using tk by auto | |
| 1638 | show "\<And>B. B \<in> K ` tk \<Longrightarrow> open B" | |
| 1639 |         using \<open>tk \<subseteq> {0..1}\<close> K by auto
 | |
| 1640 | qed auto | |
| 1641 | obtain N::nat where N: "N > 1 / \<delta>" | |
| 1642 | using reals_Archimedean2 by blast | |
| 1643 | then have "N > 0" | |
| 1644 | using \<open>0 < \<delta>\<close> order.asym by force | |
| 1645 | have *: "\<exists>V k. openin (subtopology euclidean U) V \<and> y \<in> V \<and> | |
| 1646 |                    continuous_on ({0..of_nat n / N} \<times> V) k \<and>
 | |
| 1647 |                    k ` ({0..of_nat n / N} \<times> V) \<subseteq> C \<and>
 | |
| 1648 | (\<forall>z\<in>V. k (0, z) = f z) \<and> | |
| 1649 |                    (\<forall>z\<in>{0..of_nat n / N} \<times> V. h z = p (k z))" if "n \<le> N" for n
 | |
| 1650 | using that | |
| 1651 | proof (induction n) | |
| 1652 | case 0 | |
| 1653 | show ?case | |
| 1654 | apply (rule_tac x=U in exI) | |
| 1655 | apply (rule_tac x="f \<circ> snd" in exI) | |
| 1656 | apply (intro conjI \<open>y \<in> U\<close> continuous_intros continuous_on_subset [OF contf]) | |
| 1657 | using fim apply (auto simp: heq) | |
| 1658 | done | |
| 1659 | next | |
| 1660 | case (Suc n) | |
| 1661 | then obtain V k where opeUV: "openin (subtopology euclidean U) V" | |
| 1662 | and "y \<in> V" | |
| 1663 |                         and contk: "continuous_on ({0..real n / real N} \<times> V) k"
 | |
| 1664 |                         and kim: "k ` ({0..real n / real N} \<times> V) \<subseteq> C"
 | |
| 1665 | and keq: "\<And>z. z \<in> V \<Longrightarrow> k (0, z) = f z" | |
| 1666 |                         and heq: "\<And>z. z \<in> {0..real n / real N} \<times> V \<Longrightarrow> h z = p (k z)"
 | |
| 1667 | using Suc_leD by auto | |
| 1668 | have "n \<le> N" | |
| 1669 | using Suc.prems by auto | |
| 1670 |       obtain t where "t \<in> tk" and t: "{real n / real N .. (1 + real n) / real N} \<subseteq> K t"
 | |
| 1671 | proof (rule bexE [OF \<delta>]) | |
| 1672 |         show "{real n / real N .. (1 + real n) / real N} \<subseteq> {0..1}"
 | |
| 1673 | using Suc.prems by (auto simp: divide_simps algebra_simps) | |
| 1674 |         show diameter_less: "diameter {real n / real N .. (1 + real n) / real N} < \<delta>"
 | |
| 1675 | using \<open>0 < \<delta>\<close> N by (auto simp: divide_simps algebra_simps) | |
| 1676 | qed blast | |
| 1677 |       have t01: "t \<in> {0..1}"
 | |
| 1678 |         using \<open>t \<in> tk\<close> \<open>tk \<subseteq> {0..1}\<close> by blast
 | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1679 | obtain \<V> where \<V>: "\<Union>\<V> = C \<inter> p -` UU (X t)" | 
| 64792 | 1680 | and opeC: "\<And>U. U \<in> \<V> \<Longrightarrow> openin (subtopology euclidean C) U" | 
| 1681 | and "pairwise disjnt \<V>" | |
| 1682 | and homuu: "\<And>U. U \<in> \<V> \<Longrightarrow> \<exists>q. homeomorphism U (UU (X t)) p q" | |
| 1683 | using inUS [OF t01] UU by meson | |
| 1684 |       have n_div_N_in: "real n / real N \<in> {real n / real N .. (1 + real n) / real N}"
 | |
| 1685 | using N by (auto simp: divide_simps algebra_simps) | |
| 1686 | with t have nN_in_kkt: "real n / real N \<in> K t" | |
| 1687 | by blast | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1688 | have "k (real n / real N, y) \<in> C \<inter> p -` UU (X t)" | 
| 64792 | 1689 | proof (simp, rule conjI) | 
| 1690 | show "k (real n / real N, y) \<in> C" | |
| 1691 | using \<open>y \<in> V\<close> kim keq by force | |
| 1692 | have "p (k (real n / real N, y)) = h (real n / real N, y)" | |
| 1693 | by (simp add: \<open>y \<in> V\<close> heq) | |
| 1694 |         also have "... \<in> h ` (({0..1} \<inter> K t) \<times> (U \<inter> NN t))"
 | |
| 1695 | apply (rule imageI) | |
| 1696 | using \<open>y \<in> V\<close> t01 \<open>n \<le> N\<close> | |
| 1697 | apply (simp add: nN_in_kkt \<open>y \<in> U\<close> inUS divide_simps) | |
| 1698 | done | |
| 1699 | also have "... \<subseteq> UU (X t)" | |
| 1700 | using him t01 by blast | |
| 1701 | finally show "p (k (real n / real N, y)) \<in> UU (X t)" . | |
| 1702 | qed | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1703 | with \<V> have "k (real n / real N, y) \<in> \<Union>\<V>" | 
| 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1704 | by blast | 
| 64792 | 1705 | then obtain W where W: "k (real n / real N, y) \<in> W" and "W \<in> \<V>" | 
| 1706 | by blast | |
| 1707 | then obtain p' where opeC': "openin (subtopology euclidean C) W" | |
| 1708 | and hom': "homeomorphism W (UU (X t)) p p'" | |
| 1709 | using homuu opeC by blast | |
| 1710 | then have "W \<subseteq> C" | |
| 1711 | using openin_imp_subset by blast | |
| 1712 | define W' where "W' = UU(X t)" | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1713 | have opeVW: "openin (subtopology euclidean V) (V \<inter> (k \<circ> Pair (n / N)) -` W)" | 
| 64792 | 1714 | apply (rule continuous_openin_preimage [OF _ _ opeC']) | 
| 1715 | apply (intro continuous_intros continuous_on_subset [OF contk]) | |
| 1716 | using kim apply (auto simp: \<open>y \<in> V\<close> W) | |
| 1717 | done | |
| 1718 | obtain N' where opeUN': "openin (subtopology euclidean U) N'" | |
| 1719 |                   and "y \<in> N'" and kimw: "k ` ({(real n / real N)} \<times> N') \<subseteq> W"
 | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 1720 | apply (rule_tac N' = "(V \<inter> (k \<circ> Pair (n / N)) -` W)" in that) | 
| 64792 | 1721 | apply (fastforce simp: \<open>y \<in> V\<close> W intro!: openin_trans [OF opeVW opeUV])+ | 
| 1722 | done | |
| 1723 | obtain Q Q' where opeUQ: "openin (subtopology euclidean U) Q" | |
| 1724 | and cloUQ': "closedin (subtopology euclidean U) Q'" | |
| 1725 | and "y \<in> Q" "Q \<subseteq> Q'" | |
| 1726 | and Q': "Q' \<subseteq> (U \<inter> NN(t)) \<inter> N' \<inter> V" | |
| 1727 | proof - | |
| 1728 | obtain VO VX where "open VO" "open VX" and VO: "V = U \<inter> VO" and VX: "N' = U \<inter> VX" | |
| 1729 | using opeUV opeUN' by (auto simp: openin_open) | |
| 1730 | then have "open (NN(t) \<inter> VO \<inter> VX)" | |
| 1731 | using NN t01 by blast | |
| 1732 | then obtain e where "e > 0" and e: "cball y e \<subseteq> NN(t) \<inter> VO \<inter> VX" | |
| 1733 | by (metis Int_iff \<open>N' = U \<inter> VX\<close> \<open>V = U \<inter> VO\<close> \<open>y \<in> N'\<close> \<open>y \<in> V\<close> inUS open_contains_cball t01) | |
| 1734 | show ?thesis | |
| 1735 | proof | |
| 1736 | show "openin (subtopology euclidean U) (U \<inter> ball y e)" | |
| 1737 | by blast | |
| 1738 | show "closedin (subtopology euclidean U) (U \<inter> cball y e)" | |
| 1739 | using e by (auto simp: closedin_closed) | |
| 1740 | qed (use \<open>y \<in> U\<close> \<open>e > 0\<close> VO VX e in auto) | |
| 1741 | qed | |
| 1742 | then have "y \<in> Q'" "Q \<subseteq> (U \<inter> NN(t)) \<inter> N' \<inter> V" | |
| 1743 | by blast+ | |
| 1744 |       have neq: "{0..real n / real N} \<union> {real n / real N..(1 + real n) / real N} = {0..(1 + real n) / real N}"
 | |
| 1745 | apply (auto simp: divide_simps) | |
| 1746 | by (metis mult_zero_left of_nat_0_le_iff of_nat_0_less_iff order_trans real_mult_le_cancel_iff1) | |
| 1747 |       then have neqQ': "{0..real n / real N} \<times> Q' \<union> {real n / real N..(1 + real n) / real N} \<times> Q' = {0..(1 + real n) / real N} \<times> Q'"
 | |
| 1748 | by blast | |
| 1749 |       have cont: "continuous_on ({0..(1 + real n) / real N} \<times> Q')
 | |
| 1750 |         (\<lambda>x. if x \<in> {0..real n / real N} \<times> Q' then k x else (p' \<circ> h) x)"
 | |
| 1751 | unfolding neqQ' [symmetric] | |
| 1752 | proof (rule continuous_on_cases_local, simp_all add: neqQ' del: comp_apply) | |
| 1753 |         show "closedin (subtopology euclidean ({0..(1 + real n) / real N} \<times> Q'))
 | |
| 1754 |                        ({0..real n / real N} \<times> Q')"
 | |
| 1755 | apply (simp add: closedin_closed) | |
| 1756 |           apply (rule_tac x="{0 .. real n / real N} \<times> UNIV" in exI)
 | |
| 1757 | using n_div_N_in apply (auto simp: closed_Times) | |
| 1758 | done | |
| 1759 |         show "closedin (subtopology euclidean ({0..(1 + real n) / real N} \<times> Q'))
 | |
| 1760 |                        ({real n / real N..(1 + real n) / real N} \<times> Q')"
 | |
| 1761 | apply (simp add: closedin_closed) | |
| 1762 |           apply (rule_tac x="{real n / real N .. (1 + real n) / real N} \<times> UNIV" in exI)
 | |
| 1763 | apply (auto simp: closed_Times) | |
| 1764 | by (meson divide_nonneg_nonneg of_nat_0_le_iff order_trans) | |
| 1765 |         show "continuous_on ({0..real n / real N} \<times> Q') k"
 | |
| 1766 | apply (rule continuous_on_subset [OF contk]) | |
| 1767 | using Q' by auto | |
| 1768 |         have "continuous_on ({real n / real N..(1 + real n) / real N} \<times> Q') h"
 | |
| 1769 | proof (rule continuous_on_subset [OF conth]) | |
| 1770 |           show "{real n / real N..(1 + real n) / real N} \<times> Q' \<subseteq> {0..1} \<times> U"
 | |
| 1771 | using \<open>N > 0\<close> | |
| 1772 | apply auto | |
| 1773 | apply (meson divide_nonneg_nonneg of_nat_0_le_iff order_trans) | |
| 1774 | using Suc.prems order_trans apply fastforce | |
| 1775 | apply (metis IntE cloUQ' closedin_closed) | |
| 1776 | done | |
| 1777 | qed | |
| 1778 |         moreover have "continuous_on (h ` ({real n / real N..(1 + real n) / real N} \<times> Q')) p'"
 | |
| 1779 | proof (rule continuous_on_subset [OF homeomorphism_cont2 [OF hom']]) | |
| 1780 |           have "h ` ({real n / real N..(1 + real n) / real N} \<times> Q') \<subseteq> h ` (({0..1} \<inter> K t) \<times> (U \<inter> NN t))"
 | |
| 1781 | apply (rule image_mono) | |
| 1782 | using \<open>0 < \<delta>\<close> \<open>N > 0\<close> Suc.prems apply auto | |
| 1783 | apply (meson divide_nonneg_nonneg of_nat_0_le_iff order_trans) | |
| 1784 | using Suc.prems order_trans apply fastforce | |
| 1785 | using t Q' apply auto | |
| 1786 | done | |
| 1787 |           with him show "h ` ({real n / real N..(1 + real n) / real N} \<times> Q') \<subseteq> UU (X t)"
 | |
| 1788 | using t01 by blast | |
| 1789 | qed | |
| 1790 |         ultimately show "continuous_on ({real n / real N..(1 + real n) / real N} \<times> Q') (p' \<circ> h)"
 | |
| 1791 | by (rule continuous_on_compose) | |
| 1792 | have "k (real n / real N, b) = p' (h (real n / real N, b))" if "b \<in> Q'" for b | |
| 1793 | proof - | |
| 1794 | have "k (real n / real N, b) \<in> W" | |
| 1795 | using that Q' kimw by force | |
| 1796 | then have "k (real n / real N, b) = p' (p (k (real n / real N, b)))" | |
| 1797 | by (simp add: homeomorphism_apply1 [OF hom']) | |
| 1798 | then show ?thesis | |
| 1799 | using Q' that by (force simp: heq) | |
| 1800 | qed | |
| 1801 |         then show "\<And>x. x \<in> {real n / real N..(1 + real n) / real N} \<times> Q' \<and>
 | |
| 1802 |                   x \<in> {0..real n / real N} \<times> Q' \<Longrightarrow> k x = (p' \<circ> h) x"
 | |
| 1803 | by auto | |
| 1804 | qed | |
| 1805 | have h_in_UU: "h (x, y) \<in> UU (X t)" if "y \<in> Q" "\<not> x \<le> real n / real N" "0 \<le> x" "x \<le> (1 + real n) / real N" for x y | |
| 1806 | proof - | |
| 1807 | have "x \<le> 1" | |
| 1808 | using Suc.prems that order_trans by force | |
| 1809 | moreover have "x \<in> K t" | |
| 1810 | by (meson atLeastAtMost_iff le_less not_le subset_eq t that) | |
| 1811 | moreover have "y \<in> U" | |
| 1812 | using \<open>y \<in> Q\<close> opeUQ openin_imp_subset by blast | |
| 1813 | moreover have "y \<in> NN t" | |
| 1814 | using Q' \<open>Q \<subseteq> Q'\<close> \<open>y \<in> Q\<close> by auto | |
| 1815 |         ultimately have "(x, y) \<in> (({0..1} \<inter> K t) \<times> (U \<inter> NN t))"
 | |
| 1816 | using that by auto | |
| 1817 |         then have "h (x, y) \<in> h ` (({0..1} \<inter> K t) \<times> (U \<inter> NN t))"
 | |
| 1818 | by blast | |
| 1819 | also have "... \<subseteq> UU (X t)" | |
| 1820 | by (metis him t01) | |
| 1821 | finally show ?thesis . | |
| 1822 | qed | |
| 1823 |       let ?k = "(\<lambda>x. if x \<in> {0..real n / real N} \<times> Q' then k x else (p' \<circ> h) x)"
 | |
| 1824 | show ?case | |
| 1825 | proof (intro exI conjI) | |
| 1826 |         show "continuous_on ({0..real (Suc n) / real N} \<times> Q) ?k"
 | |
| 1827 | apply (rule continuous_on_subset [OF cont]) | |
| 1828 | using \<open>Q \<subseteq> Q'\<close> by auto | |
| 1829 | have "\<And>a b. \<lbrakk>a \<le> real n / real N; b \<in> Q'; 0 \<le> a\<rbrakk> \<Longrightarrow> k (a, b) \<in> C" | |
| 1830 | using kim Q' by force | |
| 1831 | moreover have "\<And>a b. \<lbrakk>b \<in> Q; 0 \<le> a; a \<le> (1 + real n) / real N; \<not> a \<le> real n / real N\<rbrakk> \<Longrightarrow> p' (h (a, b)) \<in> C" | |
| 1832 | apply (rule \<open>W \<subseteq> C\<close> [THEN subsetD]) | |
| 1833 | using homeomorphism_image2 [OF hom', symmetric] h_in_UU Q' \<open>Q \<subseteq> Q'\<close> \<open>W \<subseteq> C\<close> | |
| 1834 | apply auto | |
| 1835 | done | |
| 1836 |         ultimately show "?k ` ({0..real (Suc n) / real N} \<times> Q) \<subseteq> C"
 | |
| 1837 | using Q' \<open>Q \<subseteq> Q'\<close> by force | |
| 1838 | show "\<forall>z\<in>Q. ?k (0, z) = f z" | |
| 1839 | using Q' keq \<open>Q \<subseteq> Q'\<close> by auto | |
| 1840 |         show "\<forall>z \<in> {0..real (Suc n) / real N} \<times> Q. h z = p(?k z)"
 | |
| 1841 | using \<open>Q \<subseteq> U \<inter> NN t \<inter> N' \<inter> V\<close> heq apply clarsimp | |
| 1842 | using h_in_UU Q' \<open>Q \<subseteq> Q'\<close> apply (auto simp: homeomorphism_apply2 [OF hom', symmetric]) | |
| 1843 | done | |
| 1844 | qed (auto simp: \<open>y \<in> Q\<close> opeUQ) | |
| 1845 | qed | |
| 1846 | show ?thesis | |
| 1847 | using*[OF order_refl] N \<open>0 < \<delta>\<close> by (simp add: split: if_split_asm) | |
| 1848 | qed | |
| 1849 | then obtain V fs where opeV: "\<And>y. y \<in> U \<Longrightarrow> openin (subtopology euclidean U) (V y)" | |
| 1850 | and V: "\<And>y. y \<in> U \<Longrightarrow> y \<in> V y" | |
| 1851 |           and contfs: "\<And>y. y \<in> U \<Longrightarrow> continuous_on ({0..1} \<times> V y) (fs y)"
 | |
| 1852 |           and *: "\<And>y. y \<in> U \<Longrightarrow> (fs y) ` ({0..1} \<times> V y) \<subseteq> C \<and>
 | |
| 1853 | (\<forall>z \<in> V y. fs y (0, z) = f z) \<and> | |
| 1854 |                             (\<forall>z \<in> {0..1} \<times> V y. h z = p(fs y z))"
 | |
| 1855 | by (metis (mono_tags)) | |
| 1856 | then have VU: "\<And>y. y \<in> U \<Longrightarrow> V y \<subseteq> U" | |
| 1857 | by (meson openin_imp_subset) | |
| 1858 |   obtain k where contk: "continuous_on ({0..1} \<times> U) k"
 | |
| 1859 |              and k: "\<And>x i. \<lbrakk>i \<in> U; x \<in> {0..1} \<times> U \<inter> {0..1} \<times> V i\<rbrakk> \<Longrightarrow> k x = fs i x"
 | |
| 1860 | proof (rule pasting_lemma_exists) | |
| 1861 |     show "{0..1} \<times> U \<subseteq> (\<Union>i\<in>U. {0..1} \<times> V i)"
 | |
| 1862 | apply auto | |
| 1863 | using V by blast | |
| 1864 |     show "\<And>i. i \<in> U \<Longrightarrow> openin (subtopology euclidean ({0..1} \<times> U)) ({0..1} \<times> V i)"
 | |
| 1865 | by (simp add: opeV openin_Times) | |
| 1866 |     show "\<And>i. i \<in> U \<Longrightarrow> continuous_on ({0..1} \<times> V i) (fs i)"
 | |
| 1867 | using contfs by blast | |
| 1868 |     show "fs i x = fs j x"  if "i \<in> U" "j \<in> U" and x: "x \<in> {0..1} \<times> U \<inter> {0..1} \<times> V i \<inter> {0..1} \<times> V j"
 | |
| 1869 | for i j x | |
| 1870 | proof - | |
| 1871 | obtain u y where "x = (u, y)" "y \<in> V i" "y \<in> V j" "0 \<le> u" "u \<le> 1" | |
| 1872 | using x by auto | |
| 1873 | show ?thesis | |
| 1874 |       proof (rule covering_space_lift_unique [OF cov, of _ "(0,y)" _ "{0..1} \<times> {y}" h])
 | |
| 1875 | show "fs i (0, y) = fs j (0, y)" | |
| 1876 | using*V by (simp add: \<open>y \<in> V i\<close> \<open>y \<in> V j\<close> that) | |
| 1877 |         show conth_y: "continuous_on ({0..1} \<times> {y}) h"
 | |
| 1878 | apply (rule continuous_on_subset [OF conth]) | |
| 1879 | using VU \<open>y \<in> V j\<close> that by auto | |
| 1880 |         show "h ` ({0..1} \<times> {y}) \<subseteq> S"
 | |
| 1881 | using \<open>y \<in> V i\<close> assms(3) VU that by fastforce | |
| 1882 |         show "continuous_on ({0..1} \<times> {y}) (fs i)"
 | |
| 1883 | using continuous_on_subset [OF contfs] \<open>i \<in> U\<close> | |
| 1884 | by (simp add: \<open>y \<in> V i\<close> subset_iff) | |
| 1885 |         show "fs i ` ({0..1} \<times> {y}) \<subseteq> C"
 | |
| 1886 | using "*" \<open>y \<in> V i\<close> \<open>i \<in> U\<close> by fastforce | |
| 1887 |         show "\<And>x. x \<in> {0..1} \<times> {y} \<Longrightarrow> h x = p (fs i x)"
 | |
| 1888 | using "*" \<open>y \<in> V i\<close> \<open>i \<in> U\<close> by blast | |
| 1889 |         show "continuous_on ({0..1} \<times> {y}) (fs j)"
 | |
| 1890 | using continuous_on_subset [OF contfs] \<open>j \<in> U\<close> | |
| 1891 | by (simp add: \<open>y \<in> V j\<close> subset_iff) | |
| 1892 |         show "fs j ` ({0..1} \<times> {y}) \<subseteq> C"
 | |
| 1893 | using "*" \<open>y \<in> V j\<close> \<open>j \<in> U\<close> by fastforce | |
| 1894 |         show "\<And>x. x \<in> {0..1} \<times> {y} \<Longrightarrow> h x = p (fs j x)"
 | |
| 1895 | using "*" \<open>y \<in> V j\<close> \<open>j \<in> U\<close> by blast | |
| 1896 |         show "connected ({0..1::real} \<times> {y})"
 | |
| 1897 | using connected_Icc connected_Times connected_sing by blast | |
| 1898 |         show "(0, y) \<in> {0..1::real} \<times> {y}"
 | |
| 1899 | by force | |
| 1900 |         show "x \<in> {0..1} \<times> {y}"
 | |
| 1901 | using \<open>x = (u, y)\<close> x by blast | |
| 1902 | qed | |
| 1903 | qed | |
| 1904 | qed blast | |
| 1905 | show ?thesis | |
| 1906 | proof | |
| 1907 |     show "k ` ({0..1} \<times> U) \<subseteq> C"
 | |
| 1908 | using V*k VU by fastforce | |
| 1909 | show "\<And>y. y \<in> U \<Longrightarrow> k (0, y) = f y" | |
| 1910 | by (simp add: V*k) | |
| 1911 |     show "\<And>z. z \<in> {0..1} \<times> U \<Longrightarrow> h z = p (k z)"
 | |
| 1912 | using V*k by auto | |
| 1913 | qed (auto simp: contk) | |
| 1914 | qed | |
| 1915 | ||
| 1916 | corollary covering_space_lift_homotopy_alt: | |
| 1917 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 1918 | and h :: "'c::real_normed_vector \<times> real \<Rightarrow> 'b" | |
| 1919 | assumes cov: "covering_space C p S" | |
| 1920 |       and conth: "continuous_on (U \<times> {0..1}) h"
 | |
| 1921 |       and him: "h ` (U \<times> {0..1}) \<subseteq> S"
 | |
| 1922 | and heq: "\<And>y. y \<in> U \<Longrightarrow> h (y,0) = p(f y)" | |
| 1923 | and contf: "continuous_on U f" and fim: "f ` U \<subseteq> C" | |
| 1924 |   obtains k where "continuous_on (U \<times> {0..1}) k"
 | |
| 1925 |                   "k ` (U \<times> {0..1}) \<subseteq> C"
 | |
| 1926 | "\<And>y. y \<in> U \<Longrightarrow> k(y, 0) = f y" | |
| 1927 |                   "\<And>z. z \<in> U \<times> {0..1} \<Longrightarrow> h z = p(k z)"
 | |
| 1928 | proof - | |
| 1929 |   have "continuous_on ({0..1} \<times> U) (h \<circ> (\<lambda>z. (snd z, fst z)))"
 | |
| 1930 | by (intro continuous_intros continuous_on_subset [OF conth]) auto | |
| 1931 |   then obtain k where contk: "continuous_on ({0..1} \<times> U) k"
 | |
| 1932 |                   and kim:  "k ` ({0..1} \<times> U) \<subseteq> C"
 | |
| 1933 | and k0: "\<And>y. y \<in> U \<Longrightarrow> k(0, y) = f y" | |
| 1934 |                   and heqp: "\<And>z. z \<in> {0..1} \<times> U \<Longrightarrow> (h \<circ> (\<lambda>z. Pair (snd z) (fst z))) z = p(k z)"
 | |
| 1935 | apply (rule covering_space_lift_homotopy [OF cov _ _ _ contf fim]) | |
| 1936 | using him by (auto simp: contf heq) | |
| 1937 | show ?thesis | |
| 1938 | apply (rule_tac k="k \<circ> (\<lambda>z. Pair (snd z) (fst z))" in that) | |
| 1939 | apply (intro continuous_intros continuous_on_subset [OF contk]) | |
| 1940 | using kim heqp apply (auto simp: k0) | |
| 1941 | done | |
| 1942 | qed | |
| 1943 | ||
| 1944 | corollary covering_space_lift_homotopic_function: | |
| 1945 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" and g:: "'c::real_normed_vector \<Rightarrow> 'a" | |
| 1946 | assumes cov: "covering_space C p S" | |
| 1947 | and contg: "continuous_on U g" | |
| 1948 | and gim: "g ` U \<subseteq> C" | |
| 1949 | and pgeq: "\<And>y. y \<in> U \<Longrightarrow> p(g y) = f y" | |
| 1950 | and hom: "homotopic_with (\<lambda>x. True) U S f f'" | |
| 1951 | obtains g' where "continuous_on U g'" "image g' U \<subseteq> C" "\<And>y. y \<in> U \<Longrightarrow> p(g' y) = f' y" | |
| 1952 | proof - | |
| 1953 |   obtain h where conth: "continuous_on ({0..1::real} \<times> U) h"
 | |
| 1954 |              and him: "h ` ({0..1} \<times> U) \<subseteq> S"
 | |
| 1955 | and h0: "\<And>x. h(0, x) = f x" | |
| 1956 | and h1: "\<And>x. h(1, x) = f' x" | |
| 1957 | using hom by (auto simp: homotopic_with_def) | |
| 1958 | have "\<And>y. y \<in> U \<Longrightarrow> h (0, y) = p (g y)" | |
| 1959 | by (simp add: h0 pgeq) | |
| 1960 |   then obtain k where contk: "continuous_on ({0..1} \<times> U) k"
 | |
| 1961 |                   and kim: "k ` ({0..1} \<times> U) \<subseteq> C"
 | |
| 1962 | and k0: "\<And>y. y \<in> U \<Longrightarrow> k(0, y) = g y" | |
| 1963 |                   and heq: "\<And>z. z \<in> {0..1} \<times> U \<Longrightarrow> h z = p(k z)"
 | |
| 1964 | using covering_space_lift_homotopy [OF cov conth him _ contg gim] by metis | |
| 1965 | show ?thesis | |
| 1966 | proof | |
| 1967 | show "continuous_on U (k \<circ> Pair 1)" | |
| 1968 | by (meson contk atLeastAtMost_iff continuous_on_o_Pair order_refl zero_le_one) | |
| 1969 | show "(k \<circ> Pair 1) ` U \<subseteq> C" | |
| 1970 | using kim by auto | |
| 1971 | show "\<And>y. y \<in> U \<Longrightarrow> p ((k \<circ> Pair 1) y) = f' y" | |
| 1972 | by (auto simp: h1 heq [symmetric]) | |
| 1973 | qed | |
| 1974 | qed | |
| 1975 | ||
| 1976 | corollary covering_space_lift_inessential_function: | |
| 1977 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" and U :: "'c::real_normed_vector set" | |
| 1978 | assumes cov: "covering_space C p S" | |
| 1979 | and hom: "homotopic_with (\<lambda>x. True) U S f (\<lambda>x. a)" | |
| 1980 | obtains g where "continuous_on U g" "g ` U \<subseteq> C" "\<And>y. y \<in> U \<Longrightarrow> p(g y) = f y" | |
| 1981 | proof (cases "U = {}")
 | |
| 1982 | case True | |
| 1983 | then show ?thesis | |
| 1984 | using that continuous_on_empty by blast | |
| 1985 | next | |
| 1986 | case False | |
| 1987 | then obtain b where b: "b \<in> C" "p b = a" | |
| 1988 | using covering_space_imp_surjective [OF cov] homotopic_with_imp_subset2 [OF hom] | |
| 1989 | by auto | |
| 1990 | then have gim: "(\<lambda>y. b) ` U \<subseteq> C" | |
| 1991 | by blast | |
| 1992 | show ?thesis | |
| 1993 | apply (rule covering_space_lift_homotopic_function | |
| 1994 | [OF cov continuous_on_const gim _ homotopic_with_symD [OF hom]]) | |
| 1995 | using b that apply auto | |
| 1996 | done | |
| 1997 | qed | |
| 1998 | ||
| 1999 | subsection\<open> Lifting of general functions to covering space\<close> | |
| 2000 | ||
| 2001 | proposition covering_space_lift_path_strong: | |
| 2002 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 2003 | and f :: "'c::real_normed_vector \<Rightarrow> 'b" | |
| 2004 | assumes cov: "covering_space C p S" and "a \<in> C" | |
| 2005 | and "path g" and pag: "path_image g \<subseteq> S" and pas: "pathstart g = p a" | |
| 2006 | obtains h where "path h" "path_image h \<subseteq> C" "pathstart h = a" | |
| 2007 |                 and "\<And>t. t \<in> {0..1} \<Longrightarrow> p(h t) = g t"
 | |
| 2008 | proof - | |
| 2009 | obtain k:: "real \<times> 'c \<Rightarrow> 'a" | |
| 2010 |     where contk: "continuous_on ({0..1} \<times> {undefined}) k"
 | |
| 2011 |       and kim: "k ` ({0..1} \<times> {undefined}) \<subseteq> C"
 | |
| 2012 | and k0: "k (0, undefined) = a" | |
| 2013 |       and pk: "\<And>z. z \<in> {0..1} \<times> {undefined} \<Longrightarrow> p(k z) = (g \<circ> fst) z"
 | |
| 2014 |   proof (rule covering_space_lift_homotopy [OF cov, of "{undefined}" "g \<circ> fst"])
 | |
| 2015 |     show "continuous_on ({0..1::real} \<times> {undefined::'c}) (g \<circ> fst)"
 | |
| 2016 | apply (intro continuous_intros) | |
| 2017 | using \<open>path g\<close> by (simp add: path_def) | |
| 2018 |     show "(g \<circ> fst) ` ({0..1} \<times> {undefined}) \<subseteq> S"
 | |
| 2019 | using pag by (auto simp: path_image_def) | |
| 2020 |     show "(g \<circ> fst) (0, y) = p a" if "y \<in> {undefined}" for y::'c
 | |
| 2021 | by (metis comp_def fst_conv pas pathstart_def) | |
| 2022 | qed (use assms in auto) | |
| 2023 | show ?thesis | |
| 2024 | proof | |
| 2025 | show "path (k \<circ> (\<lambda>t. Pair t undefined))" | |
| 2026 | unfolding path_def | |
| 2027 | by (intro continuous_on_compose continuous_intros continuous_on_subset [OF contk]) auto | |
| 2028 | show "path_image (k \<circ> (\<lambda>t. (t, undefined))) \<subseteq> C" | |
| 2029 | using kim by (auto simp: path_image_def) | |
| 2030 | show "pathstart (k \<circ> (\<lambda>t. (t, undefined))) = a" | |
| 2031 | by (auto simp: pathstart_def k0) | |
| 2032 |     show "\<And>t. t \<in> {0..1} \<Longrightarrow> p ((k \<circ> (\<lambda>t. (t, undefined))) t) = g t"
 | |
| 2033 | by (auto simp: pk) | |
| 2034 | qed | |
| 2035 | qed | |
| 2036 | ||
| 2037 | corollary covering_space_lift_path: | |
| 2038 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 2039 | assumes cov: "covering_space C p S" and "path g" and pig: "path_image g \<subseteq> S" | |
| 2040 |   obtains h where "path h" "path_image h \<subseteq> C" "\<And>t. t \<in> {0..1} \<Longrightarrow> p(h t) = g t"
 | |
| 2041 | proof - | |
| 2042 | obtain a where "a \<in> C" "pathstart g = p a" | |
| 2043 | by (metis pig cov covering_space_imp_surjective imageE pathstart_in_path_image subsetCE) | |
| 2044 | show ?thesis | |
| 2045 | using covering_space_lift_path_strong [OF cov \<open>a \<in> C\<close> \<open>path g\<close> pig] | |
| 2046 | by (metis \<open>pathstart g = p a\<close> that) | |
| 2047 | qed | |
| 2048 | ||
| 2049 | ||
| 2050 | proposition covering_space_lift_homotopic_paths: | |
| 2051 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 2052 | assumes cov: "covering_space C p S" | |
| 2053 | and "path g1" and pig1: "path_image g1 \<subseteq> S" | |
| 2054 | and "path g2" and pig2: "path_image g2 \<subseteq> S" | |
| 2055 | and hom: "homotopic_paths S g1 g2" | |
| 2056 |       and "path h1" and pih1: "path_image h1 \<subseteq> C" and ph1: "\<And>t. t \<in> {0..1} \<Longrightarrow> p(h1 t) = g1 t"
 | |
| 2057 |       and "path h2" and pih2: "path_image h2 \<subseteq> C" and ph2: "\<And>t. t \<in> {0..1} \<Longrightarrow> p(h2 t) = g2 t"
 | |
| 2058 | and h1h2: "pathstart h1 = pathstart h2" | |
| 2059 | shows "homotopic_paths C h1 h2" | |
| 2060 | proof - | |
| 2061 | obtain h :: "real \<times> real \<Rightarrow> 'b" | |
| 2062 |      where conth: "continuous_on ({0..1} \<times> {0..1}) h"
 | |
| 2063 |        and him: "h ` ({0..1} \<times> {0..1}) \<subseteq> S"
 | |
| 2064 | and h0: "\<And>x. h (0, x) = g1 x" and h1: "\<And>x. h (1, x) = g2 x" | |
| 2065 |        and heq0: "\<And>t. t \<in> {0..1} \<Longrightarrow> h (t, 0) = g1 0"
 | |
| 2066 |        and heq1: "\<And>t. t \<in> {0..1} \<Longrightarrow> h (t, 1) = g1 1"
 | |
| 2067 | using hom by (auto simp: homotopic_paths_def homotopic_with_def pathstart_def pathfinish_def) | |
| 2068 |   obtain k where contk: "continuous_on ({0..1} \<times> {0..1}) k"
 | |
| 2069 |              and kim: "k ` ({0..1} \<times> {0..1}) \<subseteq> C"
 | |
| 2070 |              and kh2: "\<And>y. y \<in> {0..1} \<Longrightarrow> k (y, 0) = h2 0"
 | |
| 2071 |              and hpk: "\<And>z. z \<in> {0..1} \<times> {0..1} \<Longrightarrow> h z = p (k z)"
 | |
| 2072 | apply (rule covering_space_lift_homotopy_alt [OF cov conth him, of "\<lambda>x. h2 0"]) | |
| 2073 | using h1h2 ph1 ph2 apply (force simp: heq0 pathstart_def pathfinish_def) | |
| 2074 | using path_image_def pih2 continuous_on_const by fastforce+ | |
| 2075 |   have contg1: "continuous_on {0..1} g1" and contg2: "continuous_on {0..1} g2"
 | |
| 2076 | using \<open>path g1\<close> \<open>path g2\<close> path_def by blast+ | |
| 2077 |   have g1im: "g1 ` {0..1} \<subseteq> S" and g2im: "g2 ` {0..1} \<subseteq> S"
 | |
| 2078 | using path_image_def pig1 pig2 by auto | |
| 2079 |   have conth1: "continuous_on {0..1} h1" and conth2: "continuous_on {0..1} h2"
 | |
| 2080 | using \<open>path h1\<close> \<open>path h2\<close> path_def by blast+ | |
| 2081 |   have h1im: "h1 ` {0..1} \<subseteq> C" and h2im: "h2 ` {0..1} \<subseteq> C"
 | |
| 2082 | using path_image_def pih1 pih2 by auto | |
| 2083 | show ?thesis | |
| 2084 | unfolding homotopic_paths pathstart_def pathfinish_def | |
| 2085 | proof (intro exI conjI ballI) | |
| 2086 |     show keqh1: "k(0, x) = h1 x" if "x \<in> {0..1}" for x
 | |
| 2087 | proof (rule covering_space_lift_unique [OF cov _ contg1 g1im]) | |
| 2088 | show "k (0,0) = h1 0" | |
| 2089 | by (metis atLeastAtMost_iff h1h2 kh2 order_refl pathstart_def zero_le_one) | |
| 2090 |       show "continuous_on {0..1} (\<lambda>a. k (0, a))"
 | |
| 2091 | by (intro continuous_intros continuous_on_compose2 [OF contk]) auto | |
| 2092 |       show "\<And>x. x \<in> {0..1} \<Longrightarrow> g1 x = p (k (0, x))"
 | |
| 2093 | by (metis atLeastAtMost_iff h0 hpk zero_le_one mem_Sigma_iff order_refl) | |
| 2094 | qed (use conth1 h1im kim that in \<open>auto simp: ph1\<close>) | |
| 2095 |     show "k(1, x) = h2 x" if "x \<in> {0..1}" for x
 | |
| 2096 | proof (rule covering_space_lift_unique [OF cov _ contg2 g2im]) | |
| 2097 | show "k (1,0) = h2 0" | |
| 2098 | by (metis atLeastAtMost_iff kh2 order_refl zero_le_one) | |
| 2099 |       show "continuous_on {0..1} (\<lambda>a. k (1, a))"
 | |
| 2100 | by (intro continuous_intros continuous_on_compose2 [OF contk]) auto | |
| 2101 |       show "\<And>x. x \<in> {0..1} \<Longrightarrow> g2 x = p (k (1, x))"
 | |
| 2102 | by (metis atLeastAtMost_iff h1 hpk mem_Sigma_iff order_refl zero_le_one) | |
| 2103 | qed (use conth2 h2im kim that in \<open>auto simp: ph2\<close>) | |
| 2104 |     show "\<And>t. t \<in> {0..1} \<Longrightarrow> (k \<circ> Pair t) 0 = h1 0"
 | |
| 2105 | by (metis comp_apply h1h2 kh2 pathstart_def) | |
| 2106 |     show "(k \<circ> Pair t) 1 = h1 1" if "t \<in> {0..1}" for t
 | |
| 2107 | proof (rule covering_space_lift_unique | |
| 2108 |            [OF cov, of "\<lambda>a. (k \<circ> Pair a) 1" 0 "\<lambda>a. h1 1" "{0..1}"  "\<lambda>x. g1 1"])
 | |
| 2109 | show "(k \<circ> Pair 0) 1 = h1 1" | |
| 2110 | using keqh1 by auto | |
| 2111 |       show "continuous_on {0..1} (\<lambda>a. (k \<circ> Pair a) 1)"
 | |
| 2112 | apply simp | |
| 2113 | by (intro continuous_intros continuous_on_compose2 [OF contk]) auto | |
| 2114 |       show "\<And>x. x \<in> {0..1} \<Longrightarrow> g1 1 = p ((k \<circ> Pair x) 1)"
 | |
| 2115 | using heq1 hpk by auto | |
| 2116 | qed (use contk kim g1im h1im that in \<open>auto simp: ph1 continuous_on_const\<close>) | |
| 2117 | qed (use contk kim in auto) | |
| 2118 | qed | |
| 2119 | ||
| 2120 | ||
| 2121 | corollary covering_space_monodromy: | |
| 2122 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 2123 | assumes cov: "covering_space C p S" | |
| 2124 | and "path g1" and pig1: "path_image g1 \<subseteq> S" | |
| 2125 | and "path g2" and pig2: "path_image g2 \<subseteq> S" | |
| 2126 | and hom: "homotopic_paths S g1 g2" | |
| 2127 |       and "path h1" and pih1: "path_image h1 \<subseteq> C" and ph1: "\<And>t. t \<in> {0..1} \<Longrightarrow> p(h1 t) = g1 t"
 | |
| 2128 |       and "path h2" and pih2: "path_image h2 \<subseteq> C" and ph2: "\<And>t. t \<in> {0..1} \<Longrightarrow> p(h2 t) = g2 t"
 | |
| 2129 | and h1h2: "pathstart h1 = pathstart h2" | |
| 2130 | shows "pathfinish h1 = pathfinish h2" | |
| 2131 | using covering_space_lift_homotopic_paths [OF assms] homotopic_paths_imp_pathfinish by blast | |
| 2132 | ||
| 2133 | ||
| 2134 | corollary covering_space_lift_homotopic_path: | |
| 2135 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 2136 | assumes cov: "covering_space C p S" | |
| 2137 | and hom: "homotopic_paths S f f'" | |
| 2138 | and "path g" and pig: "path_image g \<subseteq> C" | |
| 2139 | and a: "pathstart g = a" and b: "pathfinish g = b" | |
| 2140 |       and pgeq: "\<And>t. t \<in> {0..1} \<Longrightarrow> p(g t) = f t"
 | |
| 2141 | obtains g' where "path g'" "path_image g' \<subseteq> C" | |
| 2142 |                    "pathstart g' = a" "pathfinish g' = b" "\<And>t. t \<in> {0..1} \<Longrightarrow> p(g' t) = f' t"
 | |
| 2143 | proof (rule covering_space_lift_path_strong [OF cov, of a f']) | |
| 2144 | show "a \<in> C" | |
| 2145 | using a pig by auto | |
| 2146 | show "path f'" "path_image f' \<subseteq> S" | |
| 2147 | using hom homotopic_paths_imp_path homotopic_paths_imp_subset by blast+ | |
| 2148 | show "pathstart f' = p a" | |
| 2149 | by (metis a atLeastAtMost_iff hom homotopic_paths_imp_pathstart order_refl pathstart_def pgeq zero_le_one) | |
| 2150 | qed (metis (mono_tags, lifting) assms cov covering_space_monodromy hom homotopic_paths_imp_path homotopic_paths_imp_subset pgeq pig) | |
| 2151 | ||
| 2152 | ||
| 2153 | proposition covering_space_lift_general: | |
| 2154 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 2155 | and f :: "'c::real_normed_vector \<Rightarrow> 'b" | |
| 2156 | assumes cov: "covering_space C p S" and "a \<in> C" "z \<in> U" | |
| 2157 | and U: "path_connected U" "locally path_connected U" | |
| 2158 | and contf: "continuous_on U f" and fim: "f ` U \<subseteq> S" | |
| 2159 | and feq: "f z = p a" | |
| 2160 | and hom: "\<And>r. \<lbrakk>path r; path_image r \<subseteq> U; pathstart r = z; pathfinish r = z\<rbrakk> | |
| 2161 | \<Longrightarrow> \<exists>q. path q \<and> path_image q \<subseteq> C \<and> | |
| 2162 | pathstart q = a \<and> pathfinish q = a \<and> | |
| 2163 | homotopic_paths S (f \<circ> r) (p \<circ> q)" | |
| 2164 | obtains g where "continuous_on U g" "g ` U \<subseteq> C" "g z = a" "\<And>y. y \<in> U \<Longrightarrow> p(g y) = f y" | |
| 2165 | proof - | |
| 2166 | have *: "\<exists>g h. path g \<and> path_image g \<subseteq> U \<and> | |
| 2167 | pathstart g = z \<and> pathfinish g = y \<and> | |
| 2168 | path h \<and> path_image h \<subseteq> C \<and> pathstart h = a \<and> | |
| 2169 |                  (\<forall>t \<in> {0..1}. p(h t) = f(g t))"
 | |
| 2170 | if "y \<in> U" for y | |
| 2171 | proof - | |
| 2172 | obtain g where "path g" "path_image g \<subseteq> U" and pastg: "pathstart g = z" | |
| 2173 | and pafig: "pathfinish g = y" | |
| 2174 | using U \<open>z \<in> U\<close> \<open>y \<in> U\<close> by (force simp: path_connected_def) | |
| 2175 | obtain h where "path h" "path_image h \<subseteq> C" "pathstart h = a" | |
| 2176 |                and "\<And>t. t \<in> {0..1} \<Longrightarrow> p(h t) = (f \<circ> g) t"
 | |
| 2177 | proof (rule covering_space_lift_path_strong [OF cov \<open>a \<in> C\<close>]) | |
| 2178 | show "path (f \<circ> g)" | |
| 2179 | using \<open>path g\<close> \<open>path_image g \<subseteq> U\<close> contf continuous_on_subset path_continuous_image by blast | |
| 2180 | show "path_image (f \<circ> g) \<subseteq> S" | |
| 2181 | by (metis \<open>path_image g \<subseteq> U\<close> fim image_mono path_image_compose subset_trans) | |
| 2182 | show "pathstart (f \<circ> g) = p a" | |
| 2183 | by (simp add: feq pastg pathstart_compose) | |
| 2184 | qed auto | |
| 2185 | then show ?thesis | |
| 2186 | by (metis \<open>path g\<close> \<open>path_image g \<subseteq> U\<close> comp_apply pafig pastg) | |
| 2187 | qed | |
| 2188 | have "\<exists>l. \<forall>g h. path g \<and> path_image g \<subseteq> U \<and> pathstart g = z \<and> pathfinish g = y \<and> | |
| 2189 | path h \<and> path_image h \<subseteq> C \<and> pathstart h = a \<and> | |
| 2190 |                   (\<forall>t \<in> {0..1}. p(h t) = f(g t))  \<longrightarrow> pathfinish h = l" for y
 | |
| 2191 | proof - | |
| 2192 | have "pathfinish h = pathfinish h'" | |
| 2193 | if g: "path g" "path_image g \<subseteq> U" "pathstart g = z" "pathfinish g = y" | |
| 2194 | and h: "path h" "path_image h \<subseteq> C" "pathstart h = a" | |
| 2195 |             and phg: "\<And>t. t \<in> {0..1} \<Longrightarrow> p(h t) = f(g t)"
 | |
| 2196 | and g': "path g'" "path_image g' \<subseteq> U" "pathstart g' = z" "pathfinish g' = y" | |
| 2197 | and h': "path h'" "path_image h' \<subseteq> C" "pathstart h' = a" | |
| 2198 |             and phg': "\<And>t. t \<in> {0..1} \<Longrightarrow> p(h' t) = f(g' t)"
 | |
| 2199 | for g h g' h' | |
| 2200 | proof - | |
| 2201 | obtain q where "path q" and piq: "path_image q \<subseteq> C" and pastq: "pathstart q = a" and pafiq: "pathfinish q = a" | |
| 2202 | and homS: "homotopic_paths S (f \<circ> g +++ reversepath g') (p \<circ> q)" | |
| 2203 | using g g' hom [of "g +++ reversepath g'"] by (auto simp: subset_path_image_join) | |
| 2204 | have papq: "path (p \<circ> q)" | |
| 2205 | using homS homotopic_paths_imp_path by blast | |
| 2206 | have pipq: "path_image (p \<circ> q) \<subseteq> S" | |
| 2207 | using homS homotopic_paths_imp_subset by blast | |
| 2208 | obtain q' where "path q'" "path_image q' \<subseteq> C" | |
| 2209 | and "pathstart q' = pathstart q" "pathfinish q' = pathfinish q" | |
| 2210 |                 and pq'_eq: "\<And>t. t \<in> {0..1} \<Longrightarrow> p (q' t) = (f \<circ> g +++ reversepath g') t"
 | |
| 2211 | using covering_space_lift_homotopic_path [OF cov homotopic_paths_sym [OF homS] \<open>path q\<close> piq refl refl] | |
| 2212 | by auto | |
| 67399 | 2213 | have "q' t = (h \<circ> ( *\<^sub>R) 2) t" if "0 \<le> t" "t \<le> 1/2" for t | 
| 2214 |       proof (rule covering_space_lift_unique [OF cov, of q' 0 "h \<circ> ( *\<^sub>R) 2" "{0..1/2}" "f \<circ> g \<circ> ( *\<^sub>R) 2" t])
 | |
| 2215 | show "q' 0 = (h \<circ> ( *\<^sub>R) 2) 0" | |
| 64792 | 2216 | by (metis \<open>pathstart q' = pathstart q\<close> comp_def g h pastq pathstart_def pth_4(2)) | 
| 67399 | 2217 |         show "continuous_on {0..1/2} (f \<circ> g \<circ> ( *\<^sub>R) 2)"
 | 
| 64792 | 2218 | apply (intro continuous_intros continuous_on_compose continuous_on_path [OF \<open>path g\<close>] continuous_on_subset [OF contf]) | 
| 2219 | using g(2) path_image_def by fastforce+ | |
| 67399 | 2220 |         show "(f \<circ> g \<circ> ( *\<^sub>R) 2) ` {0..1/2} \<subseteq> S"
 | 
| 64792 | 2221 | using g(2) path_image_def fim by fastforce | 
| 67399 | 2222 |         show "(h \<circ> ( *\<^sub>R) 2) ` {0..1/2} \<subseteq> C"
 | 
| 64792 | 2223 | using h path_image_def by fastforce | 
| 2224 |         show "q' ` {0..1/2} \<subseteq> C"
 | |
| 2225 | using \<open>path_image q' \<subseteq> C\<close> path_image_def by fastforce | |
| 67399 | 2226 |         show "\<And>x. x \<in> {0..1/2} \<Longrightarrow> (f \<circ> g \<circ> ( *\<^sub>R) 2) x = p (q' x)"
 | 
| 64792 | 2227 | by (auto simp: joinpaths_def pq'_eq) | 
| 67399 | 2228 |         show "\<And>x. x \<in> {0..1/2} \<Longrightarrow> (f \<circ> g \<circ> ( *\<^sub>R) 2) x = p ((h \<circ> ( *\<^sub>R) 2) x)"
 | 
| 64792 | 2229 | by (simp add: phg) | 
| 2230 |         show "continuous_on {0..1/2} q'"
 | |
| 2231 | by (simp add: continuous_on_path \<open>path q'\<close>) | |
| 67399 | 2232 |         show "continuous_on {0..1/2} (h \<circ> ( *\<^sub>R) 2)"
 | 
| 64792 | 2233 | apply (intro continuous_intros continuous_on_compose continuous_on_path [OF \<open>path h\<close>], force) | 
| 2234 | done | |
| 2235 | qed (use that in auto) | |
| 2236 | moreover have "q' t = (reversepath h' \<circ> (\<lambda>t. 2 *\<^sub>R t - 1)) t" if "1/2 < t" "t \<le> 1" for t | |
| 2237 |       proof (rule covering_space_lift_unique [OF cov, of q' 1 "reversepath h' \<circ> (\<lambda>t. 2 *\<^sub>R t - 1)" "{1/2<..1}" "f \<circ> reversepath g' \<circ> (\<lambda>t. 2 *\<^sub>R t - 1)" t])
 | |
| 2238 | show "q' 1 = (reversepath h' \<circ> (\<lambda>t. 2 *\<^sub>R t - 1)) 1" | |
| 2239 | using h' \<open>pathfinish q' = pathfinish q\<close> pafiq | |
| 2240 | by (simp add: pathstart_def pathfinish_def reversepath_def) | |
| 2241 |         show "continuous_on {1/2<..1} (f \<circ> reversepath g' \<circ> (\<lambda>t. 2 *\<^sub>R t - 1))"
 | |
| 2242 | apply (intro continuous_intros continuous_on_compose continuous_on_path \<open>path g'\<close> continuous_on_subset [OF contf]) | |
| 2243 | using g' apply simp_all | |
| 2244 | by (auto simp: path_image_def reversepath_def) | |
| 2245 |         show "(f \<circ> reversepath g' \<circ> (\<lambda>t. 2 *\<^sub>R t - 1)) ` {1/2<..1} \<subseteq> S"
 | |
| 2246 | using g'(2) path_image_def fim by (auto simp: image_subset_iff path_image_def reversepath_def) | |
| 2247 |         show "q' ` {1/2<..1} \<subseteq> C"
 | |
| 2248 | using \<open>path_image q' \<subseteq> C\<close> path_image_def by fastforce | |
| 2249 |         show "(reversepath h' \<circ> (\<lambda>t. 2 *\<^sub>R t - 1)) ` {1/2<..1} \<subseteq> C"
 | |
| 2250 | using h' by (simp add: path_image_def reversepath_def subset_eq) | |
| 2251 |         show "\<And>x. x \<in> {1/2<..1} \<Longrightarrow> (f \<circ> reversepath g' \<circ> (\<lambda>t. 2 *\<^sub>R t - 1)) x = p (q' x)"
 | |
| 2252 | by (auto simp: joinpaths_def pq'_eq) | |
| 2253 |         show "\<And>x. x \<in> {1/2<..1} \<Longrightarrow>
 | |
| 2254 | (f \<circ> reversepath g' \<circ> (\<lambda>t. 2 *\<^sub>R t - 1)) x = p ((reversepath h' \<circ> (\<lambda>t. 2 *\<^sub>R t - 1)) x)" | |
| 2255 | by (simp add: phg' reversepath_def) | |
| 2256 |         show "continuous_on {1/2<..1} q'"
 | |
| 2257 | by (auto intro: continuous_on_path [OF \<open>path q'\<close>]) | |
| 2258 |         show "continuous_on {1/2<..1} (reversepath h' \<circ> (\<lambda>t. 2 *\<^sub>R t - 1))"
 | |
| 2259 | apply (intro continuous_intros continuous_on_compose continuous_on_path \<open>path h'\<close>) | |
| 2260 | using h' apply auto | |
| 2261 | done | |
| 2262 | qed (use that in auto) | |
| 2263 | ultimately have "q' t = (h +++ reversepath h') t" if "0 \<le> t" "t \<le> 1" for t | |
| 2264 | using that by (simp add: joinpaths_def) | |
| 2265 | then have "path(h +++ reversepath h')" | |
| 2266 | by (auto intro: path_eq [OF \<open>path q'\<close>]) | |
| 2267 | then show ?thesis | |
| 2268 | by (auto simp: \<open>path h\<close> \<open>path h'\<close>) | |
| 2269 | qed | |
| 2270 | then show ?thesis by metis | |
| 2271 | qed | |
| 2272 | then obtain l :: "'c \<Rightarrow> 'a" | |
| 2273 | where l: "\<And>y g h. \<lbrakk>path g; path_image g \<subseteq> U; pathstart g = z; pathfinish g = y; | |
| 2274 | path h; path_image h \<subseteq> C; pathstart h = a; | |
| 2275 |                              \<And>t. t \<in> {0..1} \<Longrightarrow> p(h t) = f(g t)\<rbrakk> \<Longrightarrow> pathfinish h = l y"
 | |
| 2276 | by metis | |
| 2277 | show ?thesis | |
| 2278 | proof | |
| 2279 | show pleq: "p (l y) = f y" if "y \<in> U" for y | |
| 2280 | using*[OF \<open>y \<in> U\<close>] by (metis l atLeastAtMost_iff order_refl pathfinish_def zero_le_one) | |
| 2281 | show "l z = a" | |
| 2282 | using l [of "linepath z z" z "linepath a a"] by (auto simp: assms) | |
| 2283 | show LC: "l ` U \<subseteq> C" | |
| 2284 | by (clarify dest!: *) (metis (full_types) l pathfinish_in_path_image subsetCE) | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2285 | have "\<exists>T. openin (subtopology euclidean U) T \<and> y \<in> T \<and> T \<subseteq> U \<inter> l -` X" | 
| 64792 | 2286 | if X: "openin (subtopology euclidean C) X" and "y \<in> U" "l y \<in> X" for X y | 
| 2287 | proof - | |
| 2288 | have "X \<subseteq> C" | |
| 2289 | using X openin_euclidean_subtopology_iff by blast | |
| 2290 | have "f y \<in> S" | |
| 2291 | using fim \<open>y \<in> U\<close> by blast | |
| 2292 | then obtain W \<V> | |
| 2293 | where WV: "f y \<in> W \<and> openin (subtopology euclidean S) W \<and> | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2294 | (\<Union>\<V> = C \<inter> p -` W \<and> | 
| 64792 | 2295 | (\<forall>U \<in> \<V>. openin (subtopology euclidean C) U) \<and> | 
| 2296 | pairwise disjnt \<V> \<and> | |
| 2297 | (\<forall>U \<in> \<V>. \<exists>q. homeomorphism U W p q))" | |
| 2298 | using cov by (force simp: covering_space_def) | |
| 2299 | then have "l y \<in> \<Union>\<V>" | |
| 2300 | using \<open>X \<subseteq> C\<close> pleq that by auto | |
| 2301 | then obtain W' where "l y \<in> W'" and "W' \<in> \<V>" | |
| 2302 | by blast | |
| 2303 | with WV obtain p' where opeCW': "openin (subtopology euclidean C) W'" | |
| 2304 | and homUW': "homeomorphism W' W p p'" | |
| 2305 | by blast | |
| 2306 | then have contp': "continuous_on W p'" and p'im: "p' ` W \<subseteq> W'" | |
| 2307 | using homUW' homeomorphism_image2 homeomorphism_cont2 by fastforce+ | |
| 2308 | obtain V where "y \<in> V" "y \<in> U" and fimW: "f ` V \<subseteq> W" "V \<subseteq> U" | |
| 2309 | and "path_connected V" and opeUV: "openin (subtopology euclidean U) V" | |
| 2310 | proof - | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2311 | have "openin (subtopology euclidean U) (U \<inter> f -` W)" | 
| 64792 | 2312 | using WV contf continuous_on_open_gen fim by auto | 
| 2313 | then show ?thesis | |
| 2314 | using U WV | |
| 2315 | apply (auto simp: locally_path_connected) | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2316 | apply (drule_tac x="U \<inter> f -` W" in spec) | 
| 64792 | 2317 | apply (drule_tac x=y in spec) | 
| 2318 | apply (auto simp: \<open>y \<in> U\<close> intro: that) | |
| 2319 | done | |
| 2320 | qed | |
| 2321 | have "W' \<subseteq> C" "W \<subseteq> S" | |
| 2322 | using opeCW' WV openin_imp_subset by auto | |
| 2323 | have p'im: "p' ` W \<subseteq> W'" | |
| 2324 | using homUW' homeomorphism_image2 by fastforce | |
| 2325 | show ?thesis | |
| 2326 | proof (intro exI conjI) | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2327 | have "openin (subtopology euclidean S) (W \<inter> p' -` (W' \<inter> X))" | 
| 64792 | 2328 | proof (rule openin_trans) | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2329 | show "openin (subtopology euclidean W) (W \<inter> p' -` (W' \<inter> X))" | 
| 64792 | 2330 | apply (rule continuous_openin_preimage [OF contp' p'im]) | 
| 2331 | using X \<open>W' \<subseteq> C\<close> apply (auto simp: openin_open) | |
| 2332 | done | |
| 2333 | show "openin (subtopology euclidean S) W" | |
| 2334 | using WV by blast | |
| 2335 | qed | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2336 | then show "openin (subtopology euclidean U) (V \<inter> (U \<inter> (f -` (W \<inter> (p' -` (W' \<inter> X))))))" | 
| 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2337 | by (blast intro: opeUV openin_subtopology_self continuous_openin_preimage [OF contf fim]) | 
| 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2338 | have "p' (f y) \<in> X" | 
| 64792 | 2339 | using \<open>l y \<in> W'\<close> homeomorphism_apply1 [OF homUW'] pleq \<open>y \<in> U\<close> \<open>l y \<in> X\<close> by fastforce | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2340 | then show "y \<in> V \<inter> (U \<inter> f -` (W \<inter> p' -` (W' \<inter> X)))" | 
| 64792 | 2341 | using \<open>y \<in> U\<close> \<open>y \<in> V\<close> WV p'im by auto | 
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2342 | show "V \<inter> (U \<inter> f -` (W \<inter> p' -` (W' \<inter> X))) \<subseteq> U \<inter> l -` X" | 
| 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2343 | proof (intro subsetI IntI; clarify) | 
| 64792 | 2344 | fix y' | 
| 2345 | assume y': "y' \<in> V" "y' \<in> U" "f y' \<in> W" "p' (f y') \<in> W'" "p' (f y') \<in> X" | |
| 2346 | then obtain \<gamma> where "path \<gamma>" "path_image \<gamma> \<subseteq> V" "pathstart \<gamma> = y" "pathfinish \<gamma> = y'" | |
| 2347 | by (meson \<open>path_connected V\<close> \<open>y \<in> V\<close> path_connected_def) | |
| 2348 | obtain pp qq where "path pp" "path_image pp \<subseteq> U" | |
| 2349 | "pathstart pp = z" "pathfinish pp = y" | |
| 2350 | "path qq" "path_image qq \<subseteq> C" "pathstart qq = a" | |
| 2351 |                          and pqqeq: "\<And>t. t \<in> {0..1} \<Longrightarrow> p(qq t) = f(pp t)"
 | |
| 2352 | using*[OF \<open>y \<in> U\<close>] by blast | |
| 2353 | have finW: "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> f (\<gamma> x) \<in> W" | |
| 2354 | using \<open>path_image \<gamma> \<subseteq> V\<close> by (auto simp: image_subset_iff path_image_def fimW [THEN subsetD]) | |
| 2355 | have "pathfinish (qq +++ (p' \<circ> f \<circ> \<gamma>)) = l y'" | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2356 | proof (rule l [of "pp +++ \<gamma>" y' "qq +++ (p' \<circ> f \<circ> \<gamma>)"]) | 
| 64792 | 2357 | show "path (pp +++ \<gamma>)" | 
| 2358 | by (simp add: \<open>path \<gamma>\<close> \<open>path pp\<close> \<open>pathfinish pp = y\<close> \<open>pathstart \<gamma> = y\<close>) | |
| 2359 | show "path_image (pp +++ \<gamma>) \<subseteq> U" | |
| 2360 | using \<open>V \<subseteq> U\<close> \<open>path_image \<gamma> \<subseteq> V\<close> \<open>path_image pp \<subseteq> U\<close> not_in_path_image_join by blast | |
| 2361 | show "pathstart (pp +++ \<gamma>) = z" | |
| 2362 | by (simp add: \<open>pathstart pp = z\<close>) | |
| 2363 | show "pathfinish (pp +++ \<gamma>) = y'" | |
| 2364 | by (simp add: \<open>pathfinish \<gamma> = y'\<close>) | |
| 2365 | have paqq: "pathfinish qq = pathstart (p' \<circ> f \<circ> \<gamma>)" | |
| 2366 | apply (simp add: \<open>pathstart \<gamma> = y\<close> pathstart_compose) | |
| 2367 | apply (metis (mono_tags, lifting) \<open>l y \<in> W'\<close> \<open>path pp\<close> \<open>path qq\<close> \<open>path_image pp \<subseteq> U\<close> \<open>path_image qq \<subseteq> C\<close> | |
| 2368 | \<open>pathfinish pp = y\<close> \<open>pathstart pp = z\<close> \<open>pathstart qq = a\<close> | |
| 2369 | homeomorphism_apply1 [OF homUW'] l pleq pqqeq \<open>y \<in> U\<close>) | |
| 2370 | done | |
| 2371 | have "continuous_on (path_image \<gamma>) (p' \<circ> f)" | |
| 2372 | proof (rule continuous_on_compose) | |
| 2373 | show "continuous_on (path_image \<gamma>) f" | |
| 2374 | using \<open>path_image \<gamma> \<subseteq> V\<close> \<open>V \<subseteq> U\<close> contf continuous_on_subset by blast | |
| 2375 | show "continuous_on (f ` path_image \<gamma>) p'" | |
| 2376 | apply (rule continuous_on_subset [OF contp']) | |
| 2377 | apply (auto simp: path_image_def pathfinish_def pathstart_def finW) | |
| 2378 | done | |
| 2379 | qed | |
| 2380 | then show "path (qq +++ (p' \<circ> f \<circ> \<gamma>))" | |
| 2381 | using \<open>path \<gamma>\<close> \<open>path qq\<close> paqq path_continuous_image path_join_imp by blast | |
| 2382 | show "path_image (qq +++ (p' \<circ> f \<circ> \<gamma>)) \<subseteq> C" | |
| 2383 | apply (rule subset_path_image_join) | |
| 2384 | apply (simp add: \<open>path_image qq \<subseteq> C\<close>) | |
| 2385 | by (metis \<open>W' \<subseteq> C\<close> \<open>path_image \<gamma> \<subseteq> V\<close> dual_order.trans fimW(1) image_comp image_mono p'im path_image_compose) | |
| 2386 | show "pathstart (qq +++ (p' \<circ> f \<circ> \<gamma>)) = a" | |
| 2387 | by (simp add: \<open>pathstart qq = a\<close>) | |
| 2388 |             show "p ((qq +++ (p' \<circ> f \<circ> \<gamma>)) \<xi>) = f ((pp +++ \<gamma>) \<xi>)" if \<xi>: "\<xi> \<in> {0..1}" for \<xi>
 | |
| 2389 | proof (simp add: joinpaths_def, safe) | |
| 2390 | show "p (qq (2*\<xi>)) = f (pp (2*\<xi>))" if "\<xi>*2 \<le> 1" | |
| 2391 |                 using \<open>\<xi> \<in> {0..1}\<close> pqqeq that by auto
 | |
| 2392 | show "p (p' (f (\<gamma> (2*\<xi> - 1)))) = f (\<gamma> (2*\<xi> - 1))" if "\<not> \<xi>*2 \<le> 1" | |
| 2393 | apply (rule homeomorphism_apply2 [OF homUW' finW]) | |
| 2394 | using that \<xi> by auto | |
| 2395 | qed | |
| 2396 | qed | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2397 | with \<open>pathfinish \<gamma> = y'\<close> \<open>p' (f y') \<in> X\<close> show "y' \<in> l -` X" | 
| 64792 | 2398 | unfolding pathfinish_join by (simp add: pathfinish_def) | 
| 2399 | qed | |
| 2400 | qed | |
| 2401 | qed | |
| 2402 | then show "continuous_on U l" | |
| 66884 
c2128ab11f61
Switching to inverse image and constant_on, plus some new material
 paulson <lp15@cam.ac.uk> parents: 
66827diff
changeset | 2403 | by (metis IntD1 IntD2 vimage_eq openin_subopen continuous_on_open_gen [OF LC]) | 
| 64792 | 2404 | qed | 
| 2405 | qed | |
| 2406 | ||
| 2407 | ||
| 2408 | corollary covering_space_lift_stronger: | |
| 2409 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 2410 | and f :: "'c::real_normed_vector \<Rightarrow> 'b" | |
| 2411 | assumes cov: "covering_space C p S" "a \<in> C" "z \<in> U" | |
| 2412 | and U: "path_connected U" "locally path_connected U" | |
| 2413 | and contf: "continuous_on U f" and fim: "f ` U \<subseteq> S" | |
| 2414 | and feq: "f z = p a" | |
| 2415 | and hom: "\<And>r. \<lbrakk>path r; path_image r \<subseteq> U; pathstart r = z; pathfinish r = z\<rbrakk> | |
| 2416 | \<Longrightarrow> \<exists>b. homotopic_paths S (f \<circ> r) (linepath b b)" | |
| 2417 | obtains g where "continuous_on U g" "g ` U \<subseteq> C" "g z = a" "\<And>y. y \<in> U \<Longrightarrow> p(g y) = f y" | |
| 2418 | proof (rule covering_space_lift_general [OF cov U contf fim feq]) | |
| 2419 | fix r | |
| 2420 | assume "path r" "path_image r \<subseteq> U" "pathstart r = z" "pathfinish r = z" | |
| 2421 | then obtain b where b: "homotopic_paths S (f \<circ> r) (linepath b b)" | |
| 2422 | using hom by blast | |
| 2423 | then have "f (pathstart r) = b" | |
| 2424 | by (metis homotopic_paths_imp_pathstart pathstart_compose pathstart_linepath) | |
| 2425 | then have "homotopic_paths S (f \<circ> r) (linepath (f z) (f z))" | |
| 2426 | by (simp add: b \<open>pathstart r = z\<close>) | |
| 2427 | then have "homotopic_paths S (f \<circ> r) (p \<circ> linepath a a)" | |
| 2428 | by (simp add: o_def feq linepath_def) | |
| 2429 | then show "\<exists>q. path q \<and> | |
| 2430 | path_image q \<subseteq> C \<and> | |
| 2431 | pathstart q = a \<and> pathfinish q = a \<and> homotopic_paths S (f \<circ> r) (p \<circ> q)" | |
| 2432 | by (force simp: \<open>a \<in> C\<close>) | |
| 2433 | qed auto | |
| 2434 | ||
| 2435 | corollary covering_space_lift_strong: | |
| 2436 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 2437 | and f :: "'c::real_normed_vector \<Rightarrow> 'b" | |
| 2438 | assumes cov: "covering_space C p S" "a \<in> C" "z \<in> U" | |
| 2439 | and scU: "simply_connected U" and lpcU: "locally path_connected U" | |
| 2440 | and contf: "continuous_on U f" and fim: "f ` U \<subseteq> S" | |
| 2441 | and feq: "f z = p a" | |
| 2442 | obtains g where "continuous_on U g" "g ` U \<subseteq> C" "g z = a" "\<And>y. y \<in> U \<Longrightarrow> p(g y) = f y" | |
| 2443 | proof (rule covering_space_lift_stronger [OF cov _ lpcU contf fim feq]) | |
| 2444 | show "path_connected U" | |
| 2445 | using scU simply_connected_eq_contractible_loop_some by blast | |
| 2446 | fix r | |
| 2447 | assume r: "path r" "path_image r \<subseteq> U" "pathstart r = z" "pathfinish r = z" | |
| 2448 | have "linepath (f z) (f z) = f \<circ> linepath z z" | |
| 2449 | by (simp add: o_def linepath_def) | |
| 2450 | then have "homotopic_paths S (f \<circ> r) (linepath (f z) (f z))" | |
| 2451 | by (metis r contf fim homotopic_paths_continuous_image scU simply_connected_eq_contractible_path) | |
| 2452 | then show "\<exists>b. homotopic_paths S (f \<circ> r) (linepath b b)" | |
| 2453 | by blast | |
| 2454 | qed blast | |
| 2455 | ||
| 2456 | corollary covering_space_lift: | |
| 2457 | fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 2458 | and f :: "'c::real_normed_vector \<Rightarrow> 'b" | |
| 2459 | assumes cov: "covering_space C p S" | |
| 2460 | and U: "simply_connected U" "locally path_connected U" | |
| 2461 | and contf: "continuous_on U f" and fim: "f ` U \<subseteq> S" | |
| 2462 | obtains g where "continuous_on U g" "g ` U \<subseteq> C" "\<And>y. y \<in> U \<Longrightarrow> p(g y) = f y" | |
| 2463 | proof (cases "U = {}")
 | |
| 2464 | case True | |
| 2465 | with that show ?thesis by auto | |
| 2466 | next | |
| 2467 | case False | |
| 2468 | then obtain z where "z \<in> U" by blast | |
| 2469 | then obtain a where "a \<in> C" "f z = p a" | |
| 2470 | by (metis cov covering_space_imp_surjective fim image_iff image_subset_iff) | |
| 2471 | then show ?thesis | |
| 2472 | by (metis that covering_space_lift_strong [OF cov _ \<open>z \<in> U\<close> U contf fim]) | |
| 2473 | qed | |
| 2474 | ||
| 63130 | 2475 | end |