| author | wenzelm | 
| Tue, 10 Mar 2009 22:49:56 +0100 | |
| changeset 30424 | 692279df7cc2 | 
| parent 29237 | e90d9d51106b | 
| child 31727 | 2621a957d417 | 
| permissions | -rw-r--r-- | 
| 14706 | 1 | (* Title: HOL/Algebra/FiniteProduct.thy | 
| 13936 | 2 | Author: Clemens Ballarin, started 19 November 2002 | 
| 3 | ||
| 4 | This file is largely based on HOL/Finite_Set.thy. | |
| 5 | *) | |
| 6 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 7 | theory FiniteProduct imports Group begin | 
| 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 8 | |
| 13936 | 9 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27699diff
changeset | 10 | subsection {* Product Operator for Commutative Monoids *}
 | 
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 11 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27699diff
changeset | 12 | subsubsection {* Inductive Definition of a Relation for Products over Sets *}
 | 
| 13936 | 13 | |
| 14750 | 14 | text {* Instantiation of locale @{text LC} of theory @{text Finite_Set} is not
 | 
| 15 | possible, because here we have explicit typing rules like | |
| 16 |   @{text "x \<in> carrier G"}.  We introduce an explicit argument for the domain
 | |
| 14651 | 17 |   @{text D}. *}
 | 
| 13936 | 18 | |
| 23746 | 19 | inductive_set | 
| 13936 | 20 |   foldSetD :: "['a set, 'b => 'a => 'a, 'a] => ('b set * 'a) set"
 | 
| 23746 | 21 | for D :: "'a set" and f :: "'b => 'a => 'a" and e :: 'a | 
| 22 | where | |
| 14750 | 23 |     emptyI [intro]: "e \<in> D ==> ({}, e) \<in> foldSetD D f e"
 | 
| 23746 | 24 | | insertI [intro]: "[| x ~: A; f x y \<in> D; (A, y) \<in> foldSetD D f e |] ==> | 
| 14750 | 25 | (insert x A, f x y) \<in> foldSetD D f e" | 
| 13936 | 26 | |
| 14750 | 27 | inductive_cases empty_foldSetDE [elim!]: "({}, x) \<in> foldSetD D f e"
 | 
| 13936 | 28 | |
| 29 | constdefs | |
| 30 | foldD :: "['a set, 'b => 'a => 'a, 'a, 'b set] => 'a" | |
| 14750 | 31 | "foldD D f e A == THE x. (A, x) \<in> foldSetD D f e" | 
| 13936 | 32 | |
| 33 | lemma foldSetD_closed: | |
| 14750 | 34 | "[| (A, z) \<in> foldSetD D f e ; e \<in> D; !!x y. [| x \<in> A; y \<in> D |] ==> f x y \<in> D | 
| 35 | |] ==> z \<in> D"; | |
| 23746 | 36 | by (erule foldSetD.cases) auto | 
| 13936 | 37 | |
| 38 | lemma Diff1_foldSetD: | |
| 14750 | 39 |   "[| (A - {x}, y) \<in> foldSetD D f e; x \<in> A; f x y \<in> D |] ==>
 | 
| 40 | (A, f x y) \<in> foldSetD D f e" | |
| 13936 | 41 | apply (erule insert_Diff [THEN subst], rule foldSetD.intros) | 
| 42 | apply auto | |
| 43 | done | |
| 44 | ||
| 14750 | 45 | lemma foldSetD_imp_finite [simp]: "(A, x) \<in> foldSetD D f e ==> finite A" | 
| 13936 | 46 | by (induct set: foldSetD) auto | 
| 47 | ||
| 48 | lemma finite_imp_foldSetD: | |
| 14750 | 49 | "[| finite A; e \<in> D; !!x y. [| x \<in> A; y \<in> D |] ==> f x y \<in> D |] ==> | 
| 50 | EX x. (A, x) \<in> foldSetD D f e" | |
| 22265 | 51 | proof (induct set: finite) | 
| 13936 | 52 | case empty then show ?case by auto | 
| 53 | next | |
| 15328 | 54 | case (insert x F) | 
| 14750 | 55 | then obtain y where y: "(F, y) \<in> foldSetD D f e" by auto | 
| 56 | with insert have "y \<in> D" by (auto dest: foldSetD_closed) | |
| 57 | with y and insert have "(insert x F, f x y) \<in> foldSetD D f e" | |
| 13936 | 58 | by (intro foldSetD.intros) auto | 
| 59 | then show ?case .. | |
| 60 | qed | |
| 61 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 62 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27699diff
changeset | 63 | text {* Left-Commutative Operations *}
 | 
| 13936 | 64 | |
| 65 | locale LCD = | |
| 66 | fixes B :: "'b set" | |
| 67 | and D :: "'a set" | |
| 68 | and f :: "'b => 'a => 'a" (infixl "\<cdot>" 70) | |
| 69 | assumes left_commute: | |
| 14750 | 70 | "[| x \<in> B; y \<in> B; z \<in> D |] ==> x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)" | 
| 71 | and f_closed [simp, intro!]: "!!x y. [| x \<in> B; y \<in> D |] ==> f x y \<in> D" | |
| 13936 | 72 | |
| 73 | lemma (in LCD) foldSetD_closed [dest]: | |
| 14750 | 74 | "(A, z) \<in> foldSetD D f e ==> z \<in> D"; | 
| 23746 | 75 | by (erule foldSetD.cases) auto | 
| 13936 | 76 | |
| 77 | lemma (in LCD) Diff1_foldSetD: | |
| 14750 | 78 |   "[| (A - {x}, y) \<in> foldSetD D f e; x \<in> A; A \<subseteq> B |] ==>
 | 
| 79 | (A, f x y) \<in> foldSetD D f e" | |
| 80 | apply (subgoal_tac "x \<in> B") | |
| 13936 | 81 | prefer 2 apply fast | 
| 82 | apply (erule insert_Diff [THEN subst], rule foldSetD.intros) | |
| 83 | apply auto | |
| 84 | done | |
| 85 | ||
| 86 | lemma (in LCD) foldSetD_imp_finite [simp]: | |
| 14750 | 87 | "(A, x) \<in> foldSetD D f e ==> finite A" | 
| 13936 | 88 | by (induct set: foldSetD) auto | 
| 89 | ||
| 90 | lemma (in LCD) finite_imp_foldSetD: | |
| 14750 | 91 | "[| finite A; A \<subseteq> B; e \<in> D |] ==> EX x. (A, x) \<in> foldSetD D f e" | 
| 22265 | 92 | proof (induct set: finite) | 
| 13936 | 93 | case empty then show ?case by auto | 
| 94 | next | |
| 15328 | 95 | case (insert x F) | 
| 14750 | 96 | then obtain y where y: "(F, y) \<in> foldSetD D f e" by auto | 
| 97 | with insert have "y \<in> D" by auto | |
| 98 | with y and insert have "(insert x F, f x y) \<in> foldSetD D f e" | |
| 13936 | 99 | by (intro foldSetD.intros) auto | 
| 100 | then show ?case .. | |
| 101 | qed | |
| 102 | ||
| 103 | lemma (in LCD) foldSetD_determ_aux: | |
| 14750 | 104 | "e \<in> D ==> \<forall>A x. A \<subseteq> B & card A < n --> (A, x) \<in> foldSetD D f e --> | 
| 105 | (\<forall>y. (A, y) \<in> foldSetD D f e --> y = x)" | |
| 13936 | 106 | apply (induct n) | 
| 107 | apply (auto simp add: less_Suc_eq) (* slow *) | |
| 108 | apply (erule foldSetD.cases) | |
| 109 | apply blast | |
| 110 | apply (erule foldSetD.cases) | |
| 111 | apply blast | |
| 112 | apply clarify | |
| 113 |   txt {* force simplification of @{text "card A < card (insert ...)"}. *}
 | |
| 114 | apply (erule rev_mp) | |
| 115 | apply (simp add: less_Suc_eq_le) | |
| 116 | apply (rule impI) | |
| 23746 | 117 | apply (rename_tac xa Aa ya xb Ab yb, case_tac "xa = xb") | 
| 13936 | 118 | apply (subgoal_tac "Aa = Ab") | 
| 119 | prefer 2 apply (blast elim!: equalityE) | |
| 120 | apply blast | |
| 121 |   txt {* case @{prop "xa \<notin> xb"}. *}
 | |
| 14750 | 122 |   apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb \<in> Aa & xa \<in> Ab")
 | 
| 13936 | 123 | prefer 2 apply (blast elim!: equalityE) | 
| 124 | apply clarify | |
| 125 |   apply (subgoal_tac "Aa = insert xb Ab - {xa}")
 | |
| 126 | prefer 2 apply blast | |
| 14750 | 127 | apply (subgoal_tac "card Aa \<le> card Ab") | 
| 13936 | 128 | prefer 2 | 
| 129 | apply (rule Suc_le_mono [THEN subst]) | |
| 130 | apply (simp add: card_Suc_Diff1) | |
| 131 |   apply (rule_tac A1 = "Aa - {xb}" in finite_imp_foldSetD [THEN exE])
 | |
| 132 | apply (blast intro: foldSetD_imp_finite finite_Diff) | |
| 133 | apply best | |
| 134 | apply assumption | |
| 135 | apply (frule (1) Diff1_foldSetD) | |
| 136 | apply best | |
| 137 | apply (subgoal_tac "ya = f xb x") | |
| 138 | prefer 2 | |
| 14750 | 139 | apply (subgoal_tac "Aa \<subseteq> B") | 
| 13936 | 140 | prefer 2 apply best (* slow *) | 
| 141 | apply (blast del: equalityCE) | |
| 14750 | 142 |   apply (subgoal_tac "(Ab - {xa}, x) \<in> foldSetD D f e")
 | 
| 13936 | 143 | prefer 2 apply simp | 
| 144 | apply (subgoal_tac "yb = f xa x") | |
| 145 | prefer 2 | |
| 146 | apply (blast del: equalityCE dest: Diff1_foldSetD) | |
| 147 | apply (simp (no_asm_simp)) | |
| 148 | apply (rule left_commute) | |
| 149 | apply assumption | |
| 150 | apply best (* slow *) | |
| 151 | apply best | |
| 152 | done | |
| 153 | ||
| 154 | lemma (in LCD) foldSetD_determ: | |
| 14750 | 155 | "[| (A, x) \<in> foldSetD D f e; (A, y) \<in> foldSetD D f e; e \<in> D; A \<subseteq> B |] | 
| 13936 | 156 | ==> y = x" | 
| 157 | by (blast intro: foldSetD_determ_aux [rule_format]) | |
| 158 | ||
| 159 | lemma (in LCD) foldD_equality: | |
| 14750 | 160 | "[| (A, y) \<in> foldSetD D f e; e \<in> D; A \<subseteq> B |] ==> foldD D f e A = y" | 
| 13936 | 161 | by (unfold foldD_def) (blast intro: foldSetD_determ) | 
| 162 | ||
| 163 | lemma foldD_empty [simp]: | |
| 14750 | 164 |   "e \<in> D ==> foldD D f e {} = e"
 | 
| 13936 | 165 | by (unfold foldD_def) blast | 
| 166 | ||
| 167 | lemma (in LCD) foldD_insert_aux: | |
| 14750 | 168 | "[| x ~: A; x \<in> B; e \<in> D; A \<subseteq> B |] ==> | 
| 169 | ((insert x A, v) \<in> foldSetD D f e) = | |
| 170 | (EX y. (A, y) \<in> foldSetD D f e & v = f x y)" | |
| 13936 | 171 | apply auto | 
| 172 | apply (rule_tac A1 = A in finite_imp_foldSetD [THEN exE]) | |
| 173 | apply (fastsimp dest: foldSetD_imp_finite) | |
| 174 | apply assumption | |
| 175 | apply assumption | |
| 176 | apply (blast intro: foldSetD_determ) | |
| 177 | done | |
| 178 | ||
| 179 | lemma (in LCD) foldD_insert: | |
| 14750 | 180 | "[| finite A; x ~: A; x \<in> B; e \<in> D; A \<subseteq> B |] ==> | 
| 13936 | 181 | foldD D f e (insert x A) = f x (foldD D f e A)" | 
| 182 | apply (unfold foldD_def) | |
| 183 | apply (simp add: foldD_insert_aux) | |
| 184 | apply (rule the_equality) | |
| 185 | apply (auto intro: finite_imp_foldSetD | |
| 186 | cong add: conj_cong simp add: foldD_def [symmetric] foldD_equality) | |
| 187 | done | |
| 188 | ||
| 189 | lemma (in LCD) foldD_closed [simp]: | |
| 14750 | 190 | "[| finite A; e \<in> D; A \<subseteq> B |] ==> foldD D f e A \<in> D" | 
| 22265 | 191 | proof (induct set: finite) | 
| 13936 | 192 | case empty then show ?case by (simp add: foldD_empty) | 
| 193 | next | |
| 194 | case insert then show ?case by (simp add: foldD_insert) | |
| 195 | qed | |
| 196 | ||
| 197 | lemma (in LCD) foldD_commute: | |
| 14750 | 198 | "[| finite A; x \<in> B; e \<in> D; A \<subseteq> B |] ==> | 
| 13936 | 199 | f x (foldD D f e A) = foldD D f (f x e) A" | 
| 22265 | 200 | apply (induct set: finite) | 
| 13936 | 201 | apply simp | 
| 202 | apply (auto simp add: left_commute foldD_insert) | |
| 203 | done | |
| 204 | ||
| 205 | lemma Int_mono2: | |
| 14750 | 206 | "[| A \<subseteq> C; B \<subseteq> C |] ==> A Int B \<subseteq> C" | 
| 13936 | 207 | by blast | 
| 208 | ||
| 209 | lemma (in LCD) foldD_nest_Un_Int: | |
| 14750 | 210 | "[| finite A; finite C; e \<in> D; A \<subseteq> B; C \<subseteq> B |] ==> | 
| 13936 | 211 | foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A Un C)" | 
| 22265 | 212 | apply (induct set: finite) | 
| 13936 | 213 | apply simp | 
| 214 | apply (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb | |
| 215 | Int_mono2 Un_subset_iff) | |
| 216 | done | |
| 217 | ||
| 218 | lemma (in LCD) foldD_nest_Un_disjoint: | |
| 14750 | 219 |   "[| finite A; finite B; A Int B = {}; e \<in> D; A \<subseteq> B; C \<subseteq> B |]
 | 
| 13936 | 220 | ==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A" | 
| 221 | by (simp add: foldD_nest_Un_Int) | |
| 222 | ||
| 223 | -- {* Delete rules to do with @{text foldSetD} relation. *}
 | |
| 224 | ||
| 225 | declare foldSetD_imp_finite [simp del] | |
| 226 | empty_foldSetDE [rule del] | |
| 227 | foldSetD.intros [rule del] | |
| 228 | declare (in LCD) | |
| 229 | foldSetD_closed [rule del] | |
| 230 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 231 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27699diff
changeset | 232 | text {* Commutative Monoids *}
 | 
| 13936 | 233 | |
| 234 | text {*
 | |
| 235 |   We enter a more restrictive context, with @{text "f :: 'a => 'a => 'a"}
 | |
| 236 |   instead of @{text "'b => 'a => 'a"}.
 | |
| 237 | *} | |
| 238 | ||
| 239 | locale ACeD = | |
| 240 | fixes D :: "'a set" | |
| 241 | and f :: "'a => 'a => 'a" (infixl "\<cdot>" 70) | |
| 242 | and e :: 'a | |
| 14750 | 243 | assumes ident [simp]: "x \<in> D ==> x \<cdot> e = x" | 
| 244 | and commute: "[| x \<in> D; y \<in> D |] ==> x \<cdot> y = y \<cdot> x" | |
| 245 | and assoc: "[| x \<in> D; y \<in> D; z \<in> D |] ==> (x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)" | |
| 246 | and e_closed [simp]: "e \<in> D" | |
| 247 | and f_closed [simp]: "[| x \<in> D; y \<in> D |] ==> x \<cdot> y \<in> D" | |
| 13936 | 248 | |
| 249 | lemma (in ACeD) left_commute: | |
| 14750 | 250 | "[| x \<in> D; y \<in> D; z \<in> D |] ==> x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)" | 
| 13936 | 251 | proof - | 
| 14750 | 252 | assume D: "x \<in> D" "y \<in> D" "z \<in> D" | 
| 13936 | 253 | then have "x \<cdot> (y \<cdot> z) = (y \<cdot> z) \<cdot> x" by (simp add: commute) | 
| 254 | also from D have "... = y \<cdot> (z \<cdot> x)" by (simp add: assoc) | |
| 255 | also from D have "z \<cdot> x = x \<cdot> z" by (simp add: commute) | |
| 256 | finally show ?thesis . | |
| 257 | qed | |
| 258 | ||
| 259 | lemmas (in ACeD) AC = assoc commute left_commute | |
| 260 | ||
| 14750 | 261 | lemma (in ACeD) left_ident [simp]: "x \<in> D ==> e \<cdot> x = x" | 
| 13936 | 262 | proof - | 
| 23350 | 263 | assume "x \<in> D" | 
| 264 | then have "x \<cdot> e = x" by (rule ident) | |
| 265 | with `x \<in> D` show ?thesis by (simp add: commute) | |
| 13936 | 266 | qed | 
| 267 | ||
| 268 | lemma (in ACeD) foldD_Un_Int: | |
| 14750 | 269 | "[| finite A; finite B; A \<subseteq> D; B \<subseteq> D |] ==> | 
| 13936 | 270 | foldD D f e A \<cdot> foldD D f e B = | 
| 271 | foldD D f e (A Un B) \<cdot> foldD D f e (A Int B)" | |
| 22265 | 272 | apply (induct set: finite) | 
| 13936 | 273 | apply (simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]]) | 
| 274 | apply (simp add: AC insert_absorb Int_insert_left | |
| 275 | LCD.foldD_insert [OF LCD.intro [of D]] | |
| 276 | LCD.foldD_closed [OF LCD.intro [of D]] | |
| 277 | Int_mono2 Un_subset_iff) | |
| 278 | done | |
| 279 | ||
| 280 | lemma (in ACeD) foldD_Un_disjoint: | |
| 14750 | 281 |   "[| finite A; finite B; A Int B = {}; A \<subseteq> D; B \<subseteq> D |] ==>
 | 
| 13936 | 282 | foldD D f e (A Un B) = foldD D f e A \<cdot> foldD D f e B" | 
| 283 | by (simp add: foldD_Un_Int | |
| 284 | left_commute LCD.foldD_closed [OF LCD.intro [of D]] Un_subset_iff) | |
| 285 | ||
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
16638diff
changeset | 286 | |
| 27717 
21bbd410ba04
Generalised polynomial lemmas from cring to ring.
 ballarin parents: 
27699diff
changeset | 287 | subsubsection {* Products over Finite Sets *}
 | 
| 13936 | 288 | |
| 14651 | 289 | constdefs (structure G) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 290 |   finprod :: "[('b, 'm) monoid_scheme, 'a => 'b, 'a set] => 'b"
 | 
| 13936 | 291 | "finprod G f A == if finite A | 
| 14651 | 292 | then foldD (carrier G) (mult G o f) \<one> A | 
| 28524 | 293 | else undefined" | 
| 13936 | 294 | |
| 14651 | 295 | syntax | 
| 296 | "_finprod" :: "index => idt => 'a set => 'b => 'b" | |
| 14666 | 297 |       ("(3\<Otimes>__:_. _)" [1000, 0, 51, 10] 10)
 | 
| 14651 | 298 | syntax (xsymbols) | 
| 299 | "_finprod" :: "index => idt => 'a set => 'b => 'b" | |
| 14666 | 300 |       ("(3\<Otimes>__\<in>_. _)" [1000, 0, 51, 10] 10)
 | 
| 14651 | 301 | syntax (HTML output) | 
| 302 | "_finprod" :: "index => idt => 'a set => 'b => 'b" | |
| 14666 | 303 |       ("(3\<Otimes>__\<in>_. _)" [1000, 0, 51, 10] 10)
 | 
| 14651 | 304 | translations | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 305 | "\<Otimes>\<index>i:A. b" == "finprod \<struct>\<index> (%i. b) A" | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 306 |   -- {* Beware of argument permutation! *}
 | 
| 13936 | 307 | |
| 308 | lemma (in comm_monoid) finprod_empty [simp]: | |
| 309 |   "finprod G f {} = \<one>"
 | |
| 310 | by (simp add: finprod_def) | |
| 311 | ||
| 312 | declare funcsetI [intro] | |
| 313 | funcset_mem [dest] | |
| 314 | ||
| 27933 | 315 | context comm_monoid begin | 
| 316 | ||
| 317 | lemma finprod_insert [simp]: | |
| 13936 | 318 | "[| finite F; a \<notin> F; f \<in> F -> carrier G; f a \<in> carrier G |] ==> | 
| 319 | finprod G f (insert a F) = f a \<otimes> finprod G f F" | |
| 320 | apply (rule trans) | |
| 321 | apply (simp add: finprod_def) | |
| 322 | apply (rule trans) | |
| 323 | apply (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]]) | |
| 324 | apply simp | |
| 325 | apply (rule m_lcomm) | |
| 326 | apply fast | |
| 327 | apply fast | |
| 328 | apply assumption | |
| 329 | apply (fastsimp intro: m_closed) | |
| 330 | apply simp+ | |
| 331 | apply fast | |
| 332 | apply (auto simp add: finprod_def) | |
| 333 | done | |
| 334 | ||
| 27933 | 335 | lemma finprod_one [simp]: | 
| 14651 | 336 | "finite A ==> (\<Otimes>i:A. \<one>) = \<one>" | 
| 22265 | 337 | proof (induct set: finite) | 
| 13936 | 338 | case empty show ?case by simp | 
| 339 | next | |
| 15328 | 340 | case (insert a A) | 
| 13936 | 341 | have "(%i. \<one>) \<in> A -> carrier G" by auto | 
| 342 | with insert show ?case by simp | |
| 343 | qed | |
| 344 | ||
| 27933 | 345 | lemma finprod_closed [simp]: | 
| 13936 | 346 | fixes A | 
| 347 | assumes fin: "finite A" and f: "f \<in> A -> carrier G" | |
| 348 | shows "finprod G f A \<in> carrier G" | |
| 349 | using fin f | |
| 350 | proof induct | |
| 351 | case empty show ?case by simp | |
| 352 | next | |
| 15328 | 353 | case (insert a A) | 
| 13936 | 354 | then have a: "f a \<in> carrier G" by fast | 
| 355 | from insert have A: "f \<in> A -> carrier G" by fast | |
| 356 | from insert A a show ?case by simp | |
| 357 | qed | |
| 358 | ||
| 359 | lemma funcset_Int_left [simp, intro]: | |
| 360 | "[| f \<in> A -> C; f \<in> B -> C |] ==> f \<in> A Int B -> C" | |
| 361 | by fast | |
| 362 | ||
| 363 | lemma funcset_Un_left [iff]: | |
| 364 | "(f \<in> A Un B -> C) = (f \<in> A -> C & f \<in> B -> C)" | |
| 365 | by fast | |
| 366 | ||
| 27933 | 367 | lemma finprod_Un_Int: | 
| 13936 | 368 | "[| finite A; finite B; g \<in> A -> carrier G; g \<in> B -> carrier G |] ==> | 
| 369 | finprod G g (A Un B) \<otimes> finprod G g (A Int B) = | |
| 370 | finprod G g A \<otimes> finprod G g B" | |
| 371 | -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
 | |
| 22265 | 372 | proof (induct set: finite) | 
| 13936 | 373 | case empty then show ?case by (simp add: finprod_closed) | 
| 374 | next | |
| 15328 | 375 | case (insert a A) | 
| 13936 | 376 | then have a: "g a \<in> carrier G" by fast | 
| 377 | from insert have A: "g \<in> A -> carrier G" by fast | |
| 378 | from insert A a show ?case | |
| 379 | by (simp add: m_ac Int_insert_left insert_absorb finprod_closed | |
| 380 | Int_mono2 Un_subset_iff) | |
| 381 | qed | |
| 382 | ||
| 27933 | 383 | lemma finprod_Un_disjoint: | 
| 13936 | 384 |   "[| finite A; finite B; A Int B = {};
 | 
| 385 | g \<in> A -> carrier G; g \<in> B -> carrier G |] | |
| 386 | ==> finprod G g (A Un B) = finprod G g A \<otimes> finprod G g B" | |
| 387 | apply (subst finprod_Un_Int [symmetric]) | |
| 388 | apply (auto simp add: finprod_closed) | |
| 389 | done | |
| 390 | ||
| 27933 | 391 | lemma finprod_multf: | 
| 13936 | 392 | "[| finite A; f \<in> A -> carrier G; g \<in> A -> carrier G |] ==> | 
| 393 | finprod G (%x. f x \<otimes> g x) A = (finprod G f A \<otimes> finprod G g A)" | |
| 22265 | 394 | proof (induct set: finite) | 
| 13936 | 395 | case empty show ?case by simp | 
| 396 | next | |
| 15328 | 397 | case (insert a A) then | 
| 14750 | 398 | have fA: "f \<in> A -> carrier G" by fast | 
| 399 | from insert have fa: "f a \<in> carrier G" by fast | |
| 400 | from insert have gA: "g \<in> A -> carrier G" by fast | |
| 401 | from insert have ga: "g a \<in> carrier G" by fast | |
| 402 | from insert have fgA: "(%x. f x \<otimes> g x) \<in> A -> carrier G" | |
| 13936 | 403 | by (simp add: Pi_def) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 404 | show ?case | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
14750diff
changeset | 405 | by (simp add: insert fA fa gA ga fgA m_ac) | 
| 13936 | 406 | qed | 
| 407 | ||
| 27933 | 408 | lemma finprod_cong': | 
| 14750 | 409 | "[| A = B; g \<in> B -> carrier G; | 
| 410 | !!i. i \<in> B ==> f i = g i |] ==> finprod G f A = finprod G g B" | |
| 13936 | 411 | proof - | 
| 14750 | 412 | assume prems: "A = B" "g \<in> B -> carrier G" | 
| 413 | "!!i. i \<in> B ==> f i = g i" | |
| 13936 | 414 | show ?thesis | 
| 415 | proof (cases "finite B") | |
| 416 | case True | |
| 14750 | 417 | then have "!!A. [| A = B; g \<in> B -> carrier G; | 
| 418 | !!i. i \<in> B ==> f i = g i |] ==> finprod G f A = finprod G g B" | |
| 13936 | 419 | proof induct | 
| 420 | case empty thus ?case by simp | |
| 421 | next | |
| 15328 | 422 | case (insert x B) | 
| 13936 | 423 | then have "finprod G f A = finprod G f (insert x B)" by simp | 
| 424 | also from insert have "... = f x \<otimes> finprod G f B" | |
| 425 | proof (intro finprod_insert) | |
| 23350 | 426 | show "finite B" by fact | 
| 13936 | 427 | next | 
| 23350 | 428 | show "x ~: B" by fact | 
| 13936 | 429 | next | 
| 430 | assume "x ~: B" "!!i. i \<in> insert x B \<Longrightarrow> f i = g i" | |
| 431 | "g \<in> insert x B \<rightarrow> carrier G" | |
| 14750 | 432 | thus "f \<in> B -> carrier G" by fastsimp | 
| 13936 | 433 | next | 
| 434 | assume "x ~: B" "!!i. i \<in> insert x B \<Longrightarrow> f i = g i" | |
| 435 | "g \<in> insert x B \<rightarrow> carrier G" | |
| 436 | thus "f x \<in> carrier G" by fastsimp | |
| 437 | qed | |
| 438 | also from insert have "... = g x \<otimes> finprod G g B" by fastsimp | |
| 439 | also from insert have "... = finprod G g (insert x B)" | |
| 440 | by (intro finprod_insert [THEN sym]) auto | |
| 441 | finally show ?case . | |
| 442 | qed | |
| 443 | with prems show ?thesis by simp | |
| 444 | next | |
| 445 | case False with prems show ?thesis by (simp add: finprod_def) | |
| 446 | qed | |
| 447 | qed | |
| 448 | ||
| 27933 | 449 | lemma finprod_cong: | 
| 14750 | 450 | "[| A = B; f \<in> B -> carrier G = True; | 
| 451 | !!i. i \<in> B ==> f i = g i |] ==> finprod G f A = finprod G g B" | |
| 14213 
7bf882b0a51e
Changed order of prems in finprod_cong.  Slight speedup.
 ballarin parents: 
13936diff
changeset | 452 | (* This order of prems is slightly faster (3%) than the last two swapped. *) | 
| 
7bf882b0a51e
Changed order of prems in finprod_cong.  Slight speedup.
 ballarin parents: 
13936diff
changeset | 453 | by (rule finprod_cong') force+ | 
| 13936 | 454 | |
| 455 | text {*Usually, if this rule causes a failed congruence proof error,
 | |
| 14750 | 456 |   the reason is that the premise @{text "g \<in> B -> carrier G"} cannot be shown.
 | 
| 13936 | 457 |   Adding @{thm [source] Pi_def} to the simpset is often useful.
 | 
| 458 |   For this reason, @{thm [source] comm_monoid.finprod_cong}
 | |
| 459 | is not added to the simpset by default. | |
| 460 | *} | |
| 461 | ||
| 27933 | 462 | end | 
| 463 | ||
| 13936 | 464 | declare funcsetI [rule del] | 
| 465 | funcset_mem [rule del] | |
| 466 | ||
| 27933 | 467 | context comm_monoid begin | 
| 468 | ||
| 469 | lemma finprod_0 [simp]: | |
| 14750 | 470 |   "f \<in> {0::nat} -> carrier G ==> finprod G f {..0} = f 0"
 | 
| 13936 | 471 | by (simp add: Pi_def) | 
| 472 | ||
| 27933 | 473 | lemma finprod_Suc [simp]: | 
| 14750 | 474 |   "f \<in> {..Suc n} -> carrier G ==>
 | 
| 13936 | 475 |    finprod G f {..Suc n} = (f (Suc n) \<otimes> finprod G f {..n})"
 | 
| 476 | by (simp add: Pi_def atMost_Suc) | |
| 477 | ||
| 27933 | 478 | lemma finprod_Suc2: | 
| 14750 | 479 |   "f \<in> {..Suc n} -> carrier G ==>
 | 
| 13936 | 480 |    finprod G f {..Suc n} = (finprod G (%i. f (Suc i)) {..n} \<otimes> f 0)"
 | 
| 481 | proof (induct n) | |
| 482 | case 0 thus ?case by (simp add: Pi_def) | |
| 483 | next | |
| 484 | case Suc thus ?case by (simp add: m_assoc Pi_def) | |
| 485 | qed | |
| 486 | ||
| 27933 | 487 | lemma finprod_mult [simp]: | 
| 14750 | 488 |   "[| f \<in> {..n} -> carrier G; g \<in> {..n} -> carrier G |] ==>
 | 
| 13936 | 489 |      finprod G (%i. f i \<otimes> g i) {..n::nat} =
 | 
| 490 |      finprod G f {..n} \<otimes> finprod G g {..n}"
 | |
| 491 | by (induct n) (simp_all add: m_ac Pi_def) | |
| 492 | ||
| 27699 | 493 | (* The following two were contributed by Jeremy Avigad. *) | 
| 494 | ||
| 27933 | 495 | lemma finprod_reindex: | 
| 27699 | 496 | assumes fin: "finite A" | 
| 497 | shows "f : (h ` A) \<rightarrow> carrier G \<Longrightarrow> | |
| 498 | inj_on h A ==> finprod G f (h ` A) = finprod G (%x. f (h x)) A" | |
| 499 | using fin apply induct | |
| 500 | apply (auto simp add: finprod_insert Pi_def) | |
| 501 | done | |
| 502 | ||
| 27933 | 503 | lemma finprod_const: | 
| 27699 | 504 | assumes fin [simp]: "finite A" | 
| 505 | and a [simp]: "a : carrier G" | |
| 506 | shows "finprod G (%x. a) A = a (^) card A" | |
| 507 | using fin apply induct | |
| 508 | apply force | |
| 509 | apply (subst finprod_insert) | |
| 510 | apply auto | |
| 511 | apply (force simp add: Pi_def) | |
| 512 | apply (subst m_comm) | |
| 513 | apply auto | |
| 514 | done | |
| 515 | ||
| 27933 | 516 | (* The following lemma was contributed by Jesus Aransay. *) | 
| 517 | ||
| 518 | lemma finprod_singleton: | |
| 519 | assumes i_in_A: "i \<in> A" and fin_A: "finite A" and f_Pi: "f \<in> A \<rightarrow> carrier G" | |
| 520 | shows "(\<Otimes>j\<in>A. if i = j then f j else \<one>) = f i" | |
| 29237 | 521 |   using i_in_A finprod_insert [of "A - {i}" i "(\<lambda>j. if i = j then f j else \<one>)"]
 | 
| 522 |     fin_A f_Pi finprod_one [of "A - {i}"]
 | |
| 523 |     finprod_cong [of "A - {i}" "A - {i}" "(\<lambda>j. if i = j then f j else \<one>)" "(\<lambda>i. \<one>)"] 
 | |
| 27933 | 524 | unfolding Pi_def simp_implies_def by (force simp add: insert_absorb) | 
| 525 | ||
| 13936 | 526 | end | 
| 27933 | 527 | |
| 528 | end |