author | wenzelm |
Sat, 17 Oct 2009 14:43:18 +0200 | |
changeset 32960 | 69916a850301 |
parent 16417 | 9bc16273c2d4 |
child 32989 | c28279b29ff1 |
permissions | -rw-r--r-- |
6297 | 1 |
(* Title: HOL/UNITY/Extend.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
Copyright 1998 University of Cambridge |
|
4 |
||
13798 | 5 |
Extending of state setsExtending of state sets |
6297 | 6 |
function f (forget) maps the extended state to the original state |
7 |
function g (forgotten) maps the extended state to the "extending part" |
|
8 |
*) |
|
9 |
||
13798 | 10 |
header{*Extending State Sets*} |
11 |
||
16417 | 12 |
theory Extend imports Guar begin |
6297 | 13 |
|
14 |
constdefs |
|
15 |
||
8948
b797cfa3548d
restructuring: LessThan.ML mostly moved to HOL/SetInterval.ML
paulson
parents:
8703
diff
changeset
|
16 |
(*MOVE to Relation.thy?*) |
b797cfa3548d
restructuring: LessThan.ML mostly moved to HOL/SetInterval.ML
paulson
parents:
8703
diff
changeset
|
17 |
Restrict :: "[ 'a set, ('a*'b) set] => ('a*'b) set" |
13805 | 18 |
"Restrict A r == r \<inter> (A <*> UNIV)" |
8948
b797cfa3548d
restructuring: LessThan.ML mostly moved to HOL/SetInterval.ML
paulson
parents:
8703
diff
changeset
|
19 |
|
7482 | 20 |
good_map :: "['a*'b => 'c] => bool" |
13805 | 21 |
"good_map h == surj h & (\<forall>x y. fst (inv h (h (x,y))) = x)" |
7482 | 22 |
(*Using the locale constant "f", this is f (h (x,y))) = x*) |
23 |
||
6297 | 24 |
extend_set :: "['a*'b => 'c, 'a set] => 'c set" |
10834 | 25 |
"extend_set h A == h ` (A <*> UNIV)" |
6297 | 26 |
|
7342 | 27 |
project_set :: "['a*'b => 'c, 'c set] => 'a set" |
13805 | 28 |
"project_set h C == {x. \<exists>y. h(x,y) \<in> C}" |
7342 | 29 |
|
30 |
extend_act :: "['a*'b => 'c, ('a*'a) set] => ('c*'c) set" |
|
13805 | 31 |
"extend_act h == %act. \<Union>(s,s') \<in> act. \<Union>y. {(h(s,y), h(s',y))}" |
6297 | 32 |
|
7878
43b03d412b82
working version with localTo[C] instead of localTo
paulson
parents:
7826
diff
changeset
|
33 |
project_act :: "['a*'b => 'c, ('c*'c) set] => ('a*'a) set" |
13805 | 34 |
"project_act h act == {(x,x'). \<exists>y y'. (h(x,y), h(x',y')) \<in> act}" |
7342 | 35 |
|
6297 | 36 |
extend :: "['a*'b => 'c, 'a program] => 'c program" |
37 |
"extend h F == mk_program (extend_set h (Init F), |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
38 |
extend_act h ` Acts F, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
39 |
project_act h -` AllowedActs F)" |
6297 | 40 |
|
7878
43b03d412b82
working version with localTo[C] instead of localTo
paulson
parents:
7826
diff
changeset
|
41 |
(*Argument C allows weak safety laws to be projected*) |
7880
62fb24e28e5e
exchanged the first two args of "project" and "drop_prog"
paulson
parents:
7878
diff
changeset
|
42 |
project :: "['a*'b => 'c, 'c set, 'c program] => 'a program" |
10064
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
paulson
parents:
8948
diff
changeset
|
43 |
"project h C F == |
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
paulson
parents:
8948
diff
changeset
|
44 |
mk_program (project_set h (Init F), |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
45 |
project_act h ` Restrict C ` Acts F, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
46 |
{act. Restrict (project_set h C) act : |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
47 |
project_act h ` Restrict C ` AllowedActs F})" |
7342 | 48 |
|
6297 | 49 |
locale Extend = |
13790 | 50 |
fixes f :: "'c => 'a" |
51 |
and g :: "'c => 'b" |
|
52 |
and h :: "'a*'b => 'c" (*isomorphism between 'a * 'b and 'c *) |
|
53 |
and slice :: "['c set, 'b] => 'a set" |
|
54 |
assumes |
|
55 |
good_h: "good_map h" |
|
56 |
defines f_def: "f z == fst (inv h z)" |
|
57 |
and g_def: "g z == snd (inv h z)" |
|
13805 | 58 |
and slice_def: "slice Z y == {x. h(x,y) \<in> Z}" |
13790 | 59 |
|
60 |
||
61 |
(** These we prove OUTSIDE the locale. **) |
|
62 |
||
63 |
||
13798 | 64 |
subsection{*Restrict*} |
65 |
(*MOVE to Relation.thy?*) |
|
13790 | 66 |
|
13805 | 67 |
lemma Restrict_iff [iff]: "((x,y): Restrict A r) = ((x,y): r & x \<in> A)" |
13790 | 68 |
by (unfold Restrict_def, blast) |
69 |
||
70 |
lemma Restrict_UNIV [simp]: "Restrict UNIV = id" |
|
71 |
apply (rule ext) |
|
72 |
apply (auto simp add: Restrict_def) |
|
73 |
done |
|
74 |
||
75 |
lemma Restrict_empty [simp]: "Restrict {} r = {}" |
|
76 |
by (auto simp add: Restrict_def) |
|
77 |
||
13805 | 78 |
lemma Restrict_Int [simp]: "Restrict A (Restrict B r) = Restrict (A \<inter> B) r" |
13790 | 79 |
by (unfold Restrict_def, blast) |
80 |
||
13805 | 81 |
lemma Restrict_triv: "Domain r \<subseteq> A ==> Restrict A r = r" |
13790 | 82 |
by (unfold Restrict_def, auto) |
83 |
||
13805 | 84 |
lemma Restrict_subset: "Restrict A r \<subseteq> r" |
13790 | 85 |
by (unfold Restrict_def, auto) |
86 |
||
87 |
lemma Restrict_eq_mono: |
|
13805 | 88 |
"[| A \<subseteq> B; Restrict B r = Restrict B s |] |
13790 | 89 |
==> Restrict A r = Restrict A s" |
90 |
by (unfold Restrict_def, blast) |
|
91 |
||
92 |
lemma Restrict_imageI: |
|
13805 | 93 |
"[| s \<in> RR; Restrict A r = Restrict A s |] |
94 |
==> Restrict A r \<in> Restrict A ` RR" |
|
13790 | 95 |
by (unfold Restrict_def image_def, auto) |
96 |
||
13805 | 97 |
lemma Domain_Restrict [simp]: "Domain (Restrict A r) = A \<inter> Domain r" |
13790 | 98 |
by blast |
99 |
||
13805 | 100 |
lemma Image_Restrict [simp]: "(Restrict A r) `` B = r `` (A \<inter> B)" |
13790 | 101 |
by blast |
102 |
||
103 |
(*Possibly easier than reasoning about "inv h"*) |
|
104 |
lemma good_mapI: |
|
105 |
assumes surj_h: "surj h" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
106 |
and prem: "!! x x' y y'. h(x,y) = h(x',y') ==> x=x'" |
13790 | 107 |
shows "good_map h" |
108 |
apply (simp add: good_map_def) |
|
109 |
apply (safe intro!: surj_h) |
|
110 |
apply (rule prem) |
|
111 |
apply (subst surjective_pairing [symmetric]) |
|
112 |
apply (subst surj_h [THEN surj_f_inv_f]) |
|
113 |
apply (rule refl) |
|
114 |
done |
|
115 |
||
116 |
lemma good_map_is_surj: "good_map h ==> surj h" |
|
117 |
by (unfold good_map_def, auto) |
|
118 |
||
119 |
(*A convenient way of finding a closed form for inv h*) |
|
120 |
lemma fst_inv_equalityI: |
|
121 |
assumes surj_h: "surj h" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
16417
diff
changeset
|
122 |
and prem: "!! x y. g (h(x,y)) = x" |
13790 | 123 |
shows "fst (inv h z) = g z" |
124 |
apply (unfold inv_def) |
|
125 |
apply (rule_tac y1 = z in surj_h [THEN surjD, THEN exE]) |
|
126 |
apply (rule someI2) |
|
127 |
apply (drule_tac [2] f = g in arg_cong) |
|
128 |
apply (auto simp add: prem) |
|
129 |
done |
|
130 |
||
131 |
||
13798 | 132 |
subsection{*Trivial properties of f, g, h*} |
13790 | 133 |
|
134 |
lemma (in Extend) f_h_eq [simp]: "f(h(x,y)) = x" |
|
135 |
by (simp add: f_def good_h [unfolded good_map_def, THEN conjunct2]) |
|
136 |
||
137 |
lemma (in Extend) h_inject1 [dest]: "h(x,y) = h(x',y') ==> x=x'" |
|
138 |
apply (drule_tac f = f in arg_cong) |
|
139 |
apply (simp add: f_def good_h [unfolded good_map_def, THEN conjunct2]) |
|
140 |
done |
|
141 |
||
142 |
lemma (in Extend) h_f_g_equiv: "h(f z, g z) == z" |
|
143 |
by (simp add: f_def g_def |
|
144 |
good_h [unfolded good_map_def, THEN conjunct1, THEN surj_f_inv_f]) |
|
145 |
||
146 |
lemma (in Extend) h_f_g_eq: "h(f z, g z) = z" |
|
147 |
by (simp add: h_f_g_equiv) |
|
148 |
||
149 |
||
150 |
lemma (in Extend) split_extended_all: |
|
151 |
"(!!z. PROP P z) == (!!u y. PROP P (h (u, y)))" |
|
152 |
proof |
|
153 |
assume allP: "\<And>z. PROP P z" |
|
154 |
fix u y |
|
155 |
show "PROP P (h (u, y))" by (rule allP) |
|
156 |
next |
|
157 |
assume allPh: "\<And>u y. PROP P (h(u,y))" |
|
158 |
fix z |
|
159 |
have Phfgz: "PROP P (h (f z, g z))" by (rule allPh) |
|
160 |
show "PROP P z" by (rule Phfgz [unfolded h_f_g_equiv]) |
|
161 |
qed |
|
162 |
||
163 |
||
164 |
||
13798 | 165 |
subsection{*@{term extend_set}: basic properties*} |
13790 | 166 |
|
167 |
lemma project_set_iff [iff]: |
|
13805 | 168 |
"(x \<in> project_set h C) = (\<exists>y. h(x,y) \<in> C)" |
13790 | 169 |
by (simp add: project_set_def) |
170 |
||
13805 | 171 |
lemma extend_set_mono: "A \<subseteq> B ==> extend_set h A \<subseteq> extend_set h B" |
13790 | 172 |
by (unfold extend_set_def, blast) |
173 |
||
13805 | 174 |
lemma (in Extend) mem_extend_set_iff [iff]: "z \<in> extend_set h A = (f z \<in> A)" |
13790 | 175 |
apply (unfold extend_set_def) |
176 |
apply (force intro: h_f_g_eq [symmetric]) |
|
177 |
done |
|
178 |
||
179 |
lemma (in Extend) extend_set_strict_mono [iff]: |
|
13805 | 180 |
"(extend_set h A \<subseteq> extend_set h B) = (A \<subseteq> B)" |
13790 | 181 |
by (unfold extend_set_def, force) |
182 |
||
183 |
lemma extend_set_empty [simp]: "extend_set h {} = {}" |
|
184 |
by (unfold extend_set_def, auto) |
|
185 |
||
186 |
lemma (in Extend) extend_set_eq_Collect: "extend_set h {s. P s} = {s. P(f s)}" |
|
187 |
by auto |
|
188 |
||
189 |
lemma (in Extend) extend_set_sing: "extend_set h {x} = {s. f s = x}" |
|
190 |
by auto |
|
191 |
||
192 |
lemma (in Extend) extend_set_inverse [simp]: |
|
193 |
"project_set h (extend_set h C) = C" |
|
194 |
by (unfold extend_set_def, auto) |
|
195 |
||
196 |
lemma (in Extend) extend_set_project_set: |
|
13805 | 197 |
"C \<subseteq> extend_set h (project_set h C)" |
13790 | 198 |
apply (unfold extend_set_def) |
199 |
apply (auto simp add: split_extended_all, blast) |
|
200 |
done |
|
201 |
||
202 |
lemma (in Extend) inj_extend_set: "inj (extend_set h)" |
|
203 |
apply (rule inj_on_inverseI) |
|
204 |
apply (rule extend_set_inverse) |
|
205 |
done |
|
206 |
||
207 |
lemma (in Extend) extend_set_UNIV_eq [simp]: "extend_set h UNIV = UNIV" |
|
208 |
apply (unfold extend_set_def) |
|
209 |
apply (auto simp add: split_extended_all) |
|
210 |
done |
|
211 |
||
13798 | 212 |
subsection{*@{term project_set}: basic properties*} |
13790 | 213 |
|
214 |
(*project_set is simply image!*) |
|
215 |
lemma (in Extend) project_set_eq: "project_set h C = f ` C" |
|
216 |
by (auto intro: f_h_eq [symmetric] simp add: split_extended_all) |
|
217 |
||
218 |
(*Converse appears to fail*) |
|
13805 | 219 |
lemma (in Extend) project_set_I: "!!z. z \<in> C ==> f z \<in> project_set h C" |
13790 | 220 |
by (auto simp add: split_extended_all) |
221 |
||
222 |
||
13798 | 223 |
subsection{*More laws*} |
13790 | 224 |
|
225 |
(*Because A and B could differ on the "other" part of the state, |
|
226 |
cannot generalize to |
|
13805 | 227 |
project_set h (A \<inter> B) = project_set h A \<inter> project_set h B |
13790 | 228 |
*) |
229 |
lemma (in Extend) project_set_extend_set_Int: |
|
13805 | 230 |
"project_set h ((extend_set h A) \<inter> B) = A \<inter> (project_set h B)" |
13790 | 231 |
by auto |
232 |
||
233 |
(*Unused, but interesting?*) |
|
234 |
lemma (in Extend) project_set_extend_set_Un: |
|
13805 | 235 |
"project_set h ((extend_set h A) \<union> B) = A \<union> (project_set h B)" |
13790 | 236 |
by auto |
237 |
||
238 |
lemma project_set_Int_subset: |
|
13805 | 239 |
"project_set h (A \<inter> B) \<subseteq> (project_set h A) \<inter> (project_set h B)" |
13790 | 240 |
by auto |
241 |
||
242 |
lemma (in Extend) extend_set_Un_distrib: |
|
13805 | 243 |
"extend_set h (A \<union> B) = extend_set h A \<union> extend_set h B" |
13790 | 244 |
by auto |
245 |
||
246 |
lemma (in Extend) extend_set_Int_distrib: |
|
13805 | 247 |
"extend_set h (A \<inter> B) = extend_set h A \<inter> extend_set h B" |
13790 | 248 |
by auto |
249 |
||
250 |
lemma (in Extend) extend_set_INT_distrib: |
|
13805 | 251 |
"extend_set h (INTER A B) = (\<Inter>x \<in> A. extend_set h (B x))" |
13790 | 252 |
by auto |
253 |
||
254 |
lemma (in Extend) extend_set_Diff_distrib: |
|
255 |
"extend_set h (A - B) = extend_set h A - extend_set h B" |
|
256 |
by auto |
|
257 |
||
258 |
lemma (in Extend) extend_set_Union: |
|
13805 | 259 |
"extend_set h (Union A) = (\<Union>X \<in> A. extend_set h X)" |
13790 | 260 |
by blast |
261 |
||
262 |
lemma (in Extend) extend_set_subset_Compl_eq: |
|
13805 | 263 |
"(extend_set h A \<subseteq> - extend_set h B) = (A \<subseteq> - B)" |
13790 | 264 |
by (unfold extend_set_def, auto) |
265 |
||
266 |
||
13798 | 267 |
subsection{*@{term extend_act}*} |
13790 | 268 |
|
269 |
(*Can't strengthen it to |
|
13805 | 270 |
((h(s,y), h(s',y')) \<in> extend_act h act) = ((s, s') \<in> act & y=y') |
13790 | 271 |
because h doesn't have to be injective in the 2nd argument*) |
272 |
lemma (in Extend) mem_extend_act_iff [iff]: |
|
13805 | 273 |
"((h(s,y), h(s',y)) \<in> extend_act h act) = ((s, s') \<in> act)" |
13790 | 274 |
by (unfold extend_act_def, auto) |
275 |
||
276 |
(*Converse fails: (z,z') would include actions that changed the g-part*) |
|
277 |
lemma (in Extend) extend_act_D: |
|
13805 | 278 |
"(z, z') \<in> extend_act h act ==> (f z, f z') \<in> act" |
13790 | 279 |
by (unfold extend_act_def, auto) |
280 |
||
281 |
lemma (in Extend) extend_act_inverse [simp]: |
|
282 |
"project_act h (extend_act h act) = act" |
|
283 |
by (unfold extend_act_def project_act_def, blast) |
|
284 |
||
285 |
lemma (in Extend) project_act_extend_act_restrict [simp]: |
|
286 |
"project_act h (Restrict C (extend_act h act)) = |
|
287 |
Restrict (project_set h C) act" |
|
288 |
by (unfold extend_act_def project_act_def, blast) |
|
289 |
||
290 |
lemma (in Extend) subset_extend_act_D: |
|
13805 | 291 |
"act' \<subseteq> extend_act h act ==> project_act h act' \<subseteq> act" |
13790 | 292 |
by (unfold extend_act_def project_act_def, force) |
293 |
||
294 |
lemma (in Extend) inj_extend_act: "inj (extend_act h)" |
|
295 |
apply (rule inj_on_inverseI) |
|
296 |
apply (rule extend_act_inverse) |
|
297 |
done |
|
298 |
||
299 |
lemma (in Extend) extend_act_Image [simp]: |
|
300 |
"extend_act h act `` (extend_set h A) = extend_set h (act `` A)" |
|
301 |
by (unfold extend_set_def extend_act_def, force) |
|
302 |
||
303 |
lemma (in Extend) extend_act_strict_mono [iff]: |
|
13805 | 304 |
"(extend_act h act' \<subseteq> extend_act h act) = (act'<=act)" |
13790 | 305 |
by (unfold extend_act_def, auto) |
306 |
||
307 |
declare (in Extend) inj_extend_act [THEN inj_eq, iff] |
|
308 |
(*This theorem is (extend_act h act' = extend_act h act) = (act'=act) *) |
|
309 |
||
310 |
lemma Domain_extend_act: |
|
311 |
"Domain (extend_act h act) = extend_set h (Domain act)" |
|
312 |
by (unfold extend_set_def extend_act_def, force) |
|
313 |
||
314 |
lemma (in Extend) extend_act_Id [simp]: |
|
315 |
"extend_act h Id = Id" |
|
316 |
apply (unfold extend_act_def) |
|
317 |
apply (force intro: h_f_g_eq [symmetric]) |
|
318 |
done |
|
319 |
||
320 |
lemma (in Extend) project_act_I: |
|
13805 | 321 |
"!!z z'. (z, z') \<in> act ==> (f z, f z') \<in> project_act h act" |
13790 | 322 |
apply (unfold project_act_def) |
323 |
apply (force simp add: split_extended_all) |
|
324 |
done |
|
325 |
||
326 |
lemma (in Extend) project_act_Id [simp]: "project_act h Id = Id" |
|
327 |
by (unfold project_act_def, force) |
|
328 |
||
329 |
lemma (in Extend) Domain_project_act: |
|
330 |
"Domain (project_act h act) = project_set h (Domain act)" |
|
331 |
apply (unfold project_act_def) |
|
332 |
apply (force simp add: split_extended_all) |
|
333 |
done |
|
334 |
||
335 |
||
336 |
||
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
337 |
subsection{*extend*} |
13790 | 338 |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
339 |
text{*Basic properties*} |
13790 | 340 |
|
341 |
lemma Init_extend [simp]: |
|
342 |
"Init (extend h F) = extend_set h (Init F)" |
|
343 |
by (unfold extend_def, auto) |
|
344 |
||
345 |
lemma Init_project [simp]: |
|
346 |
"Init (project h C F) = project_set h (Init F)" |
|
347 |
by (unfold project_def, auto) |
|
348 |
||
349 |
lemma (in Extend) Acts_extend [simp]: |
|
350 |
"Acts (extend h F) = (extend_act h ` Acts F)" |
|
351 |
by (simp add: extend_def insert_Id_image_Acts) |
|
352 |
||
353 |
lemma (in Extend) AllowedActs_extend [simp]: |
|
354 |
"AllowedActs (extend h F) = project_act h -` AllowedActs F" |
|
355 |
by (simp add: extend_def insert_absorb) |
|
356 |
||
357 |
lemma Acts_project [simp]: |
|
358 |
"Acts(project h C F) = insert Id (project_act h ` Restrict C ` Acts F)" |
|
359 |
by (auto simp add: project_def image_iff) |
|
360 |
||
361 |
lemma (in Extend) AllowedActs_project [simp]: |
|
362 |
"AllowedActs(project h C F) = |
|
363 |
{act. Restrict (project_set h C) act |
|
13805 | 364 |
\<in> project_act h ` Restrict C ` AllowedActs F}" |
13790 | 365 |
apply (simp (no_asm) add: project_def image_iff) |
366 |
apply (subst insert_absorb) |
|
367 |
apply (auto intro!: bexI [of _ Id] simp add: project_act_def) |
|
368 |
done |
|
369 |
||
370 |
lemma (in Extend) Allowed_extend: |
|
371 |
"Allowed (extend h F) = project h UNIV -` Allowed F" |
|
372 |
apply (simp (no_asm) add: AllowedActs_extend Allowed_def) |
|
373 |
apply blast |
|
374 |
done |
|
375 |
||
376 |
lemma (in Extend) extend_SKIP [simp]: "extend h SKIP = SKIP" |
|
377 |
apply (unfold SKIP_def) |
|
378 |
apply (rule program_equalityI, auto) |
|
379 |
done |
|
380 |
||
381 |
lemma project_set_UNIV [simp]: "project_set h UNIV = UNIV" |
|
382 |
by auto |
|
383 |
||
384 |
lemma project_set_Union: |
|
13805 | 385 |
"project_set h (Union A) = (\<Union>X \<in> A. project_set h X)" |
13790 | 386 |
by blast |
387 |
||
6297 | 388 |
|
13790 | 389 |
(*Converse FAILS: the extended state contributing to project_set h C |
390 |
may not coincide with the one contributing to project_act h act*) |
|
391 |
lemma (in Extend) project_act_Restrict_subset: |
|
13805 | 392 |
"project_act h (Restrict C act) \<subseteq> |
13790 | 393 |
Restrict (project_set h C) (project_act h act)" |
394 |
by (auto simp add: project_act_def) |
|
395 |
||
396 |
lemma (in Extend) project_act_Restrict_Id_eq: |
|
397 |
"project_act h (Restrict C Id) = Restrict (project_set h C) Id" |
|
398 |
by (auto simp add: project_act_def) |
|
399 |
||
400 |
lemma (in Extend) project_extend_eq: |
|
401 |
"project h C (extend h F) = |
|
402 |
mk_program (Init F, Restrict (project_set h C) ` Acts F, |
|
403 |
{act. Restrict (project_set h C) act |
|
13805 | 404 |
\<in> project_act h ` Restrict C ` |
13790 | 405 |
(project_act h -` AllowedActs F)})" |
406 |
apply (rule program_equalityI) |
|
407 |
apply simp |
|
408 |
apply (simp add: image_eq_UN) |
|
409 |
apply (simp add: project_def) |
|
410 |
done |
|
411 |
||
412 |
lemma (in Extend) extend_inverse [simp]: |
|
413 |
"project h UNIV (extend h F) = F" |
|
414 |
apply (simp (no_asm_simp) add: project_extend_eq image_eq_UN |
|
415 |
subset_UNIV [THEN subset_trans, THEN Restrict_triv]) |
|
416 |
apply (rule program_equalityI) |
|
417 |
apply (simp_all (no_asm)) |
|
418 |
apply (subst insert_absorb) |
|
419 |
apply (simp (no_asm) add: bexI [of _ Id]) |
|
420 |
apply auto |
|
421 |
apply (rename_tac "act") |
|
422 |
apply (rule_tac x = "extend_act h act" in bexI, auto) |
|
423 |
done |
|
424 |
||
425 |
lemma (in Extend) inj_extend: "inj (extend h)" |
|
426 |
apply (rule inj_on_inverseI) |
|
427 |
apply (rule extend_inverse) |
|
428 |
done |
|
429 |
||
430 |
lemma (in Extend) extend_Join [simp]: |
|
13819 | 431 |
"extend h (F\<squnion>G) = extend h F\<squnion>extend h G" |
13790 | 432 |
apply (rule program_equalityI) |
433 |
apply (simp (no_asm) add: extend_set_Int_distrib) |
|
434 |
apply (simp add: image_Un, auto) |
|
435 |
done |
|
436 |
||
437 |
lemma (in Extend) extend_JN [simp]: |
|
13805 | 438 |
"extend h (JOIN I F) = (\<Squnion>i \<in> I. extend h (F i))" |
13790 | 439 |
apply (rule program_equalityI) |
440 |
apply (simp (no_asm) add: extend_set_INT_distrib) |
|
441 |
apply (simp add: image_UN, auto) |
|
442 |
done |
|
443 |
||
444 |
(** These monotonicity results look natural but are UNUSED **) |
|
445 |
||
13805 | 446 |
lemma (in Extend) extend_mono: "F \<le> G ==> extend h F \<le> extend h G" |
13790 | 447 |
by (force simp add: component_eq_subset) |
448 |
||
13805 | 449 |
lemma (in Extend) project_mono: "F \<le> G ==> project h C F \<le> project h C G" |
13790 | 450 |
by (simp add: component_eq_subset, blast) |
451 |
||
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
452 |
lemma (in Extend) all_total_extend: "all_total F ==> all_total (extend h F)" |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
453 |
by (simp add: all_total_def Domain_extend_act) |
13790 | 454 |
|
13798 | 455 |
subsection{*Safety: co, stable*} |
13790 | 456 |
|
457 |
lemma (in Extend) extend_constrains: |
|
13805 | 458 |
"(extend h F \<in> (extend_set h A) co (extend_set h B)) = |
459 |
(F \<in> A co B)" |
|
13790 | 460 |
by (simp add: constrains_def) |
461 |
||
462 |
lemma (in Extend) extend_stable: |
|
13805 | 463 |
"(extend h F \<in> stable (extend_set h A)) = (F \<in> stable A)" |
13790 | 464 |
by (simp add: stable_def extend_constrains) |
465 |
||
466 |
lemma (in Extend) extend_invariant: |
|
13805 | 467 |
"(extend h F \<in> invariant (extend_set h A)) = (F \<in> invariant A)" |
13790 | 468 |
by (simp add: invariant_def extend_stable) |
469 |
||
470 |
(*Projects the state predicates in the property satisfied by extend h F. |
|
471 |
Converse fails: A and B may differ in their extra variables*) |
|
472 |
lemma (in Extend) extend_constrains_project_set: |
|
13805 | 473 |
"extend h F \<in> A co B ==> F \<in> (project_set h A) co (project_set h B)" |
13790 | 474 |
by (auto simp add: constrains_def, force) |
475 |
||
476 |
lemma (in Extend) extend_stable_project_set: |
|
13805 | 477 |
"extend h F \<in> stable A ==> F \<in> stable (project_set h A)" |
13790 | 478 |
by (simp add: stable_def extend_constrains_project_set) |
479 |
||
480 |
||
13798 | 481 |
subsection{*Weak safety primitives: Co, Stable*} |
13790 | 482 |
|
483 |
lemma (in Extend) reachable_extend_f: |
|
13805 | 484 |
"p \<in> reachable (extend h F) ==> f p \<in> reachable F" |
13790 | 485 |
apply (erule reachable.induct) |
486 |
apply (auto intro: reachable.intros simp add: extend_act_def image_iff) |
|
487 |
done |
|
488 |
||
489 |
lemma (in Extend) h_reachable_extend: |
|
13805 | 490 |
"h(s,y) \<in> reachable (extend h F) ==> s \<in> reachable F" |
13790 | 491 |
by (force dest!: reachable_extend_f) |
492 |
||
493 |
lemma (in Extend) reachable_extend_eq: |
|
494 |
"reachable (extend h F) = extend_set h (reachable F)" |
|
495 |
apply (unfold extend_set_def) |
|
496 |
apply (rule equalityI) |
|
497 |
apply (force intro: h_f_g_eq [symmetric] dest!: reachable_extend_f, clarify) |
|
498 |
apply (erule reachable.induct) |
|
499 |
apply (force intro: reachable.intros)+ |
|
500 |
done |
|
501 |
||
502 |
lemma (in Extend) extend_Constrains: |
|
13805 | 503 |
"(extend h F \<in> (extend_set h A) Co (extend_set h B)) = |
504 |
(F \<in> A Co B)" |
|
13790 | 505 |
by (simp add: Constrains_def reachable_extend_eq extend_constrains |
506 |
extend_set_Int_distrib [symmetric]) |
|
507 |
||
508 |
lemma (in Extend) extend_Stable: |
|
13805 | 509 |
"(extend h F \<in> Stable (extend_set h A)) = (F \<in> Stable A)" |
13790 | 510 |
by (simp add: Stable_def extend_Constrains) |
511 |
||
512 |
lemma (in Extend) extend_Always: |
|
13805 | 513 |
"(extend h F \<in> Always (extend_set h A)) = (F \<in> Always A)" |
13790 | 514 |
by (simp (no_asm_simp) add: Always_def extend_Stable) |
515 |
||
516 |
||
517 |
(** Safety and "project" **) |
|
518 |
||
519 |
(** projection: monotonicity for safety **) |
|
520 |
||
521 |
lemma project_act_mono: |
|
13805 | 522 |
"D \<subseteq> C ==> |
523 |
project_act h (Restrict D act) \<subseteq> project_act h (Restrict C act)" |
|
13790 | 524 |
by (auto simp add: project_act_def) |
525 |
||
526 |
lemma (in Extend) project_constrains_mono: |
|
13805 | 527 |
"[| D \<subseteq> C; project h C F \<in> A co B |] ==> project h D F \<in> A co B" |
13790 | 528 |
apply (auto simp add: constrains_def) |
529 |
apply (drule project_act_mono, blast) |
|
530 |
done |
|
531 |
||
532 |
lemma (in Extend) project_stable_mono: |
|
13805 | 533 |
"[| D \<subseteq> C; project h C F \<in> stable A |] ==> project h D F \<in> stable A" |
13790 | 534 |
by (simp add: stable_def project_constrains_mono) |
535 |
||
536 |
(*Key lemma used in several proofs about project and co*) |
|
537 |
lemma (in Extend) project_constrains: |
|
13805 | 538 |
"(project h C F \<in> A co B) = |
539 |
(F \<in> (C \<inter> extend_set h A) co (extend_set h B) & A \<subseteq> B)" |
|
13790 | 540 |
apply (unfold constrains_def) |
541 |
apply (auto intro!: project_act_I simp add: ball_Un) |
|
542 |
apply (force intro!: project_act_I dest!: subsetD) |
|
543 |
(*the <== direction*) |
|
544 |
apply (unfold project_act_def) |
|
545 |
apply (force dest!: subsetD) |
|
546 |
done |
|
547 |
||
548 |
lemma (in Extend) project_stable: |
|
13805 | 549 |
"(project h UNIV F \<in> stable A) = (F \<in> stable (extend_set h A))" |
13790 | 550 |
apply (unfold stable_def) |
551 |
apply (simp (no_asm) add: project_constrains) |
|
552 |
done |
|
553 |
||
554 |
lemma (in Extend) project_stable_I: |
|
13805 | 555 |
"F \<in> stable (extend_set h A) ==> project h C F \<in> stable A" |
13790 | 556 |
apply (drule project_stable [THEN iffD2]) |
557 |
apply (blast intro: project_stable_mono) |
|
558 |
done |
|
559 |
||
560 |
lemma (in Extend) Int_extend_set_lemma: |
|
13805 | 561 |
"A \<inter> extend_set h ((project_set h A) \<inter> B) = A \<inter> extend_set h B" |
13790 | 562 |
by (auto simp add: split_extended_all) |
563 |
||
564 |
(*Strange (look at occurrences of C) but used in leadsETo proofs*) |
|
565 |
lemma project_constrains_project_set: |
|
13805 | 566 |
"G \<in> C co B ==> project h C G \<in> project_set h C co project_set h B" |
13790 | 567 |
by (simp add: constrains_def project_def project_act_def, blast) |
568 |
||
569 |
lemma project_stable_project_set: |
|
13805 | 570 |
"G \<in> stable C ==> project h C G \<in> stable (project_set h C)" |
13790 | 571 |
by (simp add: stable_def project_constrains_project_set) |
572 |
||
573 |
||
13798 | 574 |
subsection{*Progress: transient, ensures*} |
13790 | 575 |
|
576 |
lemma (in Extend) extend_transient: |
|
13805 | 577 |
"(extend h F \<in> transient (extend_set h A)) = (F \<in> transient A)" |
13790 | 578 |
by (auto simp add: transient_def extend_set_subset_Compl_eq Domain_extend_act) |
579 |
||
580 |
lemma (in Extend) extend_ensures: |
|
13805 | 581 |
"(extend h F \<in> (extend_set h A) ensures (extend_set h B)) = |
582 |
(F \<in> A ensures B)" |
|
13790 | 583 |
by (simp add: ensures_def extend_constrains extend_transient |
584 |
extend_set_Un_distrib [symmetric] extend_set_Diff_distrib [symmetric]) |
|
585 |
||
586 |
lemma (in Extend) leadsTo_imp_extend_leadsTo: |
|
13805 | 587 |
"F \<in> A leadsTo B |
588 |
==> extend h F \<in> (extend_set h A) leadsTo (extend_set h B)" |
|
13790 | 589 |
apply (erule leadsTo_induct) |
590 |
apply (simp add: leadsTo_Basis extend_ensures) |
|
591 |
apply (blast intro: leadsTo_Trans) |
|
592 |
apply (simp add: leadsTo_UN extend_set_Union) |
|
593 |
done |
|
594 |
||
13798 | 595 |
subsection{*Proving the converse takes some doing!*} |
13790 | 596 |
|
13805 | 597 |
lemma (in Extend) slice_iff [iff]: "(x \<in> slice C y) = (h(x,y) \<in> C)" |
13790 | 598 |
by (simp (no_asm) add: slice_def) |
599 |
||
13805 | 600 |
lemma (in Extend) slice_Union: "slice (Union S) y = (\<Union>x \<in> S. slice x y)" |
13790 | 601 |
by auto |
602 |
||
603 |
lemma (in Extend) slice_extend_set: "slice (extend_set h A) y = A" |
|
604 |
by auto |
|
605 |
||
606 |
lemma (in Extend) project_set_is_UN_slice: |
|
13805 | 607 |
"project_set h A = (\<Union>y. slice A y)" |
13790 | 608 |
by auto |
609 |
||
610 |
lemma (in Extend) extend_transient_slice: |
|
13805 | 611 |
"extend h F \<in> transient A ==> F \<in> transient (slice A y)" |
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
612 |
by (unfold transient_def, auto) |
13790 | 613 |
|
614 |
(*Converse?*) |
|
615 |
lemma (in Extend) extend_constrains_slice: |
|
13805 | 616 |
"extend h F \<in> A co B ==> F \<in> (slice A y) co (slice B y)" |
13790 | 617 |
by (auto simp add: constrains_def) |
618 |
||
619 |
lemma (in Extend) extend_ensures_slice: |
|
13805 | 620 |
"extend h F \<in> A ensures B ==> F \<in> (slice A y) ensures (project_set h B)" |
13790 | 621 |
apply (auto simp add: ensures_def extend_constrains extend_transient) |
622 |
apply (erule_tac [2] extend_transient_slice [THEN transient_strengthen]) |
|
623 |
apply (erule extend_constrains_slice [THEN constrains_weaken], auto) |
|
624 |
done |
|
625 |
||
626 |
lemma (in Extend) leadsTo_slice_project_set: |
|
13805 | 627 |
"\<forall>y. F \<in> (slice B y) leadsTo CU ==> F \<in> (project_set h B) leadsTo CU" |
13790 | 628 |
apply (simp (no_asm) add: project_set_is_UN_slice) |
629 |
apply (blast intro: leadsTo_UN) |
|
630 |
done |
|
631 |
||
13798 | 632 |
lemma (in Extend) extend_leadsTo_slice [rule_format]: |
13805 | 633 |
"extend h F \<in> AU leadsTo BU |
634 |
==> \<forall>y. F \<in> (slice AU y) leadsTo (project_set h BU)" |
|
13790 | 635 |
apply (erule leadsTo_induct) |
636 |
apply (blast intro: extend_ensures_slice leadsTo_Basis) |
|
637 |
apply (blast intro: leadsTo_slice_project_set leadsTo_Trans) |
|
638 |
apply (simp add: leadsTo_UN slice_Union) |
|
639 |
done |
|
640 |
||
641 |
lemma (in Extend) extend_leadsTo: |
|
13805 | 642 |
"(extend h F \<in> (extend_set h A) leadsTo (extend_set h B)) = |
643 |
(F \<in> A leadsTo B)" |
|
13790 | 644 |
apply safe |
645 |
apply (erule_tac [2] leadsTo_imp_extend_leadsTo) |
|
646 |
apply (drule extend_leadsTo_slice) |
|
647 |
apply (simp add: slice_extend_set) |
|
648 |
done |
|
649 |
||
650 |
lemma (in Extend) extend_LeadsTo: |
|
13805 | 651 |
"(extend h F \<in> (extend_set h A) LeadsTo (extend_set h B)) = |
652 |
(F \<in> A LeadsTo B)" |
|
13790 | 653 |
by (simp add: LeadsTo_def reachable_extend_eq extend_leadsTo |
654 |
extend_set_Int_distrib [symmetric]) |
|
655 |
||
656 |
||
13798 | 657 |
subsection{*preserves*} |
13790 | 658 |
|
659 |
lemma (in Extend) project_preserves_I: |
|
13805 | 660 |
"G \<in> preserves (v o f) ==> project h C G \<in> preserves v" |
13790 | 661 |
by (auto simp add: preserves_def project_stable_I extend_set_eq_Collect) |
662 |
||
663 |
(*to preserve f is to preserve the whole original state*) |
|
664 |
lemma (in Extend) project_preserves_id_I: |
|
13805 | 665 |
"G \<in> preserves f ==> project h C G \<in> preserves id" |
13790 | 666 |
by (simp add: project_preserves_I) |
667 |
||
668 |
lemma (in Extend) extend_preserves: |
|
13805 | 669 |
"(extend h G \<in> preserves (v o f)) = (G \<in> preserves v)" |
13790 | 670 |
by (auto simp add: preserves_def extend_stable [symmetric] |
671 |
extend_set_eq_Collect) |
|
672 |
||
13805 | 673 |
lemma (in Extend) inj_extend_preserves: "inj h ==> (extend h G \<in> preserves g)" |
13790 | 674 |
by (auto simp add: preserves_def extend_def extend_act_def stable_def |
675 |
constrains_def g_def) |
|
676 |
||
677 |
||
13798 | 678 |
subsection{*Guarantees*} |
13790 | 679 |
|
680 |
lemma (in Extend) project_extend_Join: |
|
13819 | 681 |
"project h UNIV ((extend h F)\<squnion>G) = F\<squnion>(project h UNIV G)" |
13790 | 682 |
apply (rule program_equalityI) |
683 |
apply (simp add: project_set_extend_set_Int) |
|
684 |
apply (simp add: image_eq_UN UN_Un, auto) |
|
685 |
done |
|
686 |
||
687 |
lemma (in Extend) extend_Join_eq_extend_D: |
|
13819 | 688 |
"(extend h F)\<squnion>G = extend h H ==> H = F\<squnion>(project h UNIV G)" |
13790 | 689 |
apply (drule_tac f = "project h UNIV" in arg_cong) |
690 |
apply (simp add: project_extend_Join) |
|
691 |
done |
|
692 |
||
693 |
(** Strong precondition and postcondition; only useful when |
|
694 |
the old and new state sets are in bijection **) |
|
695 |
||
696 |
||
697 |
lemma (in Extend) ok_extend_imp_ok_project: |
|
698 |
"extend h F ok G ==> F ok project h UNIV G" |
|
699 |
apply (auto simp add: ok_def) |
|
700 |
apply (drule subsetD) |
|
701 |
apply (auto intro!: rev_image_eqI) |
|
702 |
done |
|
703 |
||
704 |
lemma (in Extend) ok_extend_iff: "(extend h F ok extend h G) = (F ok G)" |
|
705 |
apply (simp add: ok_def, safe) |
|
706 |
apply (force+) |
|
707 |
done |
|
708 |
||
709 |
lemma (in Extend) OK_extend_iff: "OK I (%i. extend h (F i)) = (OK I F)" |
|
710 |
apply (unfold OK_def, safe) |
|
711 |
apply (drule_tac x = i in bspec) |
|
712 |
apply (drule_tac [2] x = j in bspec) |
|
713 |
apply (force+) |
|
714 |
done |
|
715 |
||
716 |
lemma (in Extend) guarantees_imp_extend_guarantees: |
|
13805 | 717 |
"F \<in> X guarantees Y ==> |
718 |
extend h F \<in> (extend h ` X) guarantees (extend h ` Y)" |
|
13790 | 719 |
apply (rule guaranteesI, clarify) |
720 |
apply (blast dest: ok_extend_imp_ok_project extend_Join_eq_extend_D |
|
721 |
guaranteesD) |
|
722 |
done |
|
723 |
||
724 |
lemma (in Extend) extend_guarantees_imp_guarantees: |
|
13805 | 725 |
"extend h F \<in> (extend h ` X) guarantees (extend h ` Y) |
726 |
==> F \<in> X guarantees Y" |
|
13790 | 727 |
apply (auto simp add: guar_def) |
728 |
apply (drule_tac x = "extend h G" in spec) |
|
729 |
apply (simp del: extend_Join |
|
730 |
add: extend_Join [symmetric] ok_extend_iff |
|
731 |
inj_extend [THEN inj_image_mem_iff]) |
|
732 |
done |
|
733 |
||
734 |
lemma (in Extend) extend_guarantees_eq: |
|
13805 | 735 |
"(extend h F \<in> (extend h ` X) guarantees (extend h ` Y)) = |
736 |
(F \<in> X guarantees Y)" |
|
13790 | 737 |
by (blast intro: guarantees_imp_extend_guarantees |
738 |
extend_guarantees_imp_guarantees) |
|
6297 | 739 |
|
740 |
end |