src/HOL/Lattices_Big.thy
author traytel
Thu, 24 Sep 2015 12:21:19 +0200
changeset 61241 69a97fc33f7a
parent 61169 4de9ff3ea29a
child 61566 c3d6e570ccef
permissions -rw-r--r--
conceal only the definitional theorems of map, set, rel (and not the actual constants)
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
     1
(*  Title:      HOL/Lattices_Big.thy
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
     2
    Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
     3
                with contributions by Jeremy Avigad
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
     4
*)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
     5
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
     6
section \<open>Big infimum (minimum) and supremum (maximum) over finite (non-empty) sets\<close>
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
     7
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
     8
theory Lattices_Big
55089
181751ad852f swapped dependencies of 'Finite_Set' and 'Option' (to move BNF up)
blanchet
parents: 54868
diff changeset
     9
imports Finite_Set Option
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    10
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    11
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
    12
subsection \<open>Generic lattice operations over a set\<close>
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    13
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    14
no_notation times (infixl "*" 70)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    15
no_notation Groups.one ("1")
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    16
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    17
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
    18
subsubsection \<open>Without neutral element\<close>
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    19
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    20
locale semilattice_set = semilattice
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    21
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    22
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    23
interpretation comp_fun_idem f
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60758
diff changeset
    24
  by standard (simp_all add: fun_eq_iff left_commute)
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    25
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    26
definition F :: "'a set \<Rightarrow> 'a"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    27
where
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    28
  eq_fold': "F A = the (Finite_Set.fold (\<lambda>x y. Some (case y of None \<Rightarrow> x | Some z \<Rightarrow> f x z)) None A)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    29
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    30
lemma eq_fold:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    31
  assumes "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    32
  shows "F (insert x A) = Finite_Set.fold f x A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    33
proof (rule sym)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    34
  let ?f = "\<lambda>x y. Some (case y of None \<Rightarrow> x | Some z \<Rightarrow> f x z)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    35
  interpret comp_fun_idem "?f"
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60758
diff changeset
    36
    by standard (simp_all add: fun_eq_iff commute left_commute split: option.split)
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    37
  from assms show "Finite_Set.fold f x A = F (insert x A)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    38
  proof induct
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    39
    case empty then show ?case by (simp add: eq_fold')
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    40
  next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    41
    case (insert y B) then show ?case by (simp add: insert_commute [of x] eq_fold')
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    42
  qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    43
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    44
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    45
lemma singleton [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    46
  "F {x} = x"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    47
  by (simp add: eq_fold)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    48
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    49
lemma insert_not_elem:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    50
  assumes "finite A" and "x \<notin> A" and "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    51
  shows "F (insert x A) = x * F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    52
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
    53
  from \<open>A \<noteq> {}\<close> obtain b where "b \<in> A" by blast
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    54
  then obtain B where *: "A = insert b B" "b \<notin> B" by (blast dest: mk_disjoint_insert)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
    55
  with \<open>finite A\<close> and \<open>x \<notin> A\<close>
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    56
    have "finite (insert x B)" and "b \<notin> insert x B" by auto
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    57
  then have "F (insert b (insert x B)) = x * F (insert b B)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    58
    by (simp add: eq_fold)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    59
  then show ?thesis by (simp add: * insert_commute)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    60
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    61
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    62
lemma in_idem:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    63
  assumes "finite A" and "x \<in> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    64
  shows "x * F A = F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    65
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    66
  from assms have "A \<noteq> {}" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
    67
  with \<open>finite A\<close> show ?thesis using \<open>x \<in> A\<close>
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    68
    by (induct A rule: finite_ne_induct) (auto simp add: ac_simps insert_not_elem)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    69
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    70
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    71
lemma insert [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    72
  assumes "finite A" and "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    73
  shows "F (insert x A) = x * F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    74
  using assms by (cases "x \<in> A") (simp_all add: insert_absorb in_idem insert_not_elem)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    75
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    76
lemma union:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    77
  assumes "finite A" "A \<noteq> {}" and "finite B" "B \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    78
  shows "F (A \<union> B) = F A * F B"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    79
  using assms by (induct A rule: finite_ne_induct) (simp_all add: ac_simps)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    80
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    81
lemma remove:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    82
  assumes "finite A" and "x \<in> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    83
  shows "F A = (if A - {x} = {} then x else x * F (A - {x}))"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    84
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    85
  from assms obtain B where "A = insert x B" and "x \<notin> B" by (blast dest: mk_disjoint_insert)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    86
  with assms show ?thesis by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    87
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    88
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    89
lemma insert_remove:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    90
  assumes "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    91
  shows "F (insert x A) = (if A - {x} = {} then x else x * F (A - {x}))"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    92
  using assms by (cases "x \<in> A") (simp_all add: insert_absorb remove)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    93
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    94
lemma subset:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    95
  assumes "finite A" "B \<noteq> {}" and "B \<subseteq> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    96
  shows "F B * F A = F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    97
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    98
  from assms have "A \<noteq> {}" and "finite B" by (auto dest: finite_subset)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
    99
  with assms show ?thesis by (simp add: union [symmetric] Un_absorb1)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   100
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   101
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   102
lemma closed:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   103
  assumes "finite A" "A \<noteq> {}" and elem: "\<And>x y. x * y \<in> {x, y}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   104
  shows "F A \<in> A"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   105
using \<open>finite A\<close> \<open>A \<noteq> {}\<close> proof (induct rule: finite_ne_induct)
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   106
  case singleton then show ?case by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   107
next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   108
  case insert with elem show ?case by force
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   109
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   110
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   111
lemma hom_commute:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   112
  assumes hom: "\<And>x y. h (x * y) = h x * h y"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   113
  and N: "finite N" "N \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   114
  shows "h (F N) = F (h ` N)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   115
using N proof (induct rule: finite_ne_induct)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   116
  case singleton thus ?case by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   117
next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   118
  case (insert n N)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   119
  then have "h (F (insert n N)) = h (n * F N)" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   120
  also have "\<dots> = h n * h (F N)" by (rule hom)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   121
  also have "h (F N) = F (h ` N)" by (rule insert)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   122
  also have "h n * \<dots> = F (insert (h n) (h ` N))"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   123
    using insert by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   124
  also have "insert (h n) (h ` N) = h ` insert n N" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   125
  finally show ?case .
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   126
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   127
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56140
diff changeset
   128
lemma infinite: "\<not> finite A \<Longrightarrow> F A = the None"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56140
diff changeset
   129
  unfolding eq_fold' by (cases "finite (UNIV::'a set)") (auto intro: finite_subset fold_infinite)
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56140
diff changeset
   130
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   131
end
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   132
54745
46e441e61ff5 disambiguation of interpretation prefixes
haftmann
parents: 54744
diff changeset
   133
locale semilattice_order_set = binary?: semilattice_order + semilattice_set
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   134
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   135
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   136
lemma bounded_iff:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   137
  assumes "finite A" and "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   138
  shows "x \<preceq> F A \<longleftrightarrow> (\<forall>a\<in>A. x \<preceq> a)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   139
  using assms by (induct rule: finite_ne_induct) (simp_all add: bounded_iff)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   140
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   141
lemma boundedI:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   142
  assumes "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   143
  assumes "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   144
  assumes "\<And>a. a \<in> A \<Longrightarrow> x \<preceq> a"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   145
  shows "x \<preceq> F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   146
  using assms by (simp add: bounded_iff)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   147
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   148
lemma boundedE:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   149
  assumes "finite A" and "A \<noteq> {}" and "x \<preceq> F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   150
  obtains "\<And>a. a \<in> A \<Longrightarrow> x \<preceq> a"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   151
  using assms by (simp add: bounded_iff)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   152
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   153
lemma coboundedI:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   154
  assumes "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   155
    and "a \<in> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   156
  shows "F A \<preceq> a"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   157
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   158
  from assms have "A \<noteq> {}" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   159
  from \<open>finite A\<close> \<open>A \<noteq> {}\<close> \<open>a \<in> A\<close> show ?thesis
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   160
  proof (induct rule: finite_ne_induct)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   161
    case singleton thus ?case by (simp add: refl)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   162
  next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   163
    case (insert x B)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   164
    from insert have "a = x \<or> a \<in> B" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   165
    then show ?case using insert by (auto intro: coboundedI2)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   166
  qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   167
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   168
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   169
lemma antimono:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   170
  assumes "A \<subseteq> B" and "A \<noteq> {}" and "finite B"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   171
  shows "F B \<preceq> F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   172
proof (cases "A = B")
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   173
  case True then show ?thesis by (simp add: refl)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   174
next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   175
  case False
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   176
  have B: "B = A \<union> (B - A)" using \<open>A \<subseteq> B\<close> by blast
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   177
  then have "F B = F (A \<union> (B - A))" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   178
  also have "\<dots> = F A * F (B - A)" using False assms by (subst union) (auto intro: finite_subset)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   179
  also have "\<dots> \<preceq> F A" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   180
  finally show ?thesis .
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   181
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   182
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   183
end
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   184
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   185
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   186
subsubsection \<open>With neutral element\<close>
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   187
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   188
locale semilattice_neutr_set = semilattice_neutr
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   189
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   190
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   191
interpretation comp_fun_idem f
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60758
diff changeset
   192
  by standard (simp_all add: fun_eq_iff left_commute)
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   193
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   194
definition F :: "'a set \<Rightarrow> 'a"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   195
where
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   196
  eq_fold: "F A = Finite_Set.fold f 1 A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   197
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   198
lemma infinite [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   199
  "\<not> finite A \<Longrightarrow> F A = 1"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   200
  by (simp add: eq_fold)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   201
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   202
lemma empty [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   203
  "F {} = 1"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   204
  by (simp add: eq_fold)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   205
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   206
lemma insert [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   207
  assumes "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   208
  shows "F (insert x A) = x * F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   209
  using assms by (simp add: eq_fold)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   210
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   211
lemma in_idem:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   212
  assumes "finite A" and "x \<in> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   213
  shows "x * F A = F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   214
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   215
  from assms have "A \<noteq> {}" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   216
  with \<open>finite A\<close> show ?thesis using \<open>x \<in> A\<close>
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   217
    by (induct A rule: finite_ne_induct) (auto simp add: ac_simps)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   218
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   219
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   220
lemma union:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   221
  assumes "finite A" and "finite B"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   222
  shows "F (A \<union> B) = F A * F B"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   223
  using assms by (induct A) (simp_all add: ac_simps)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   224
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   225
lemma remove:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   226
  assumes "finite A" and "x \<in> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   227
  shows "F A = x * F (A - {x})"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   228
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   229
  from assms obtain B where "A = insert x B" and "x \<notin> B" by (blast dest: mk_disjoint_insert)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   230
  with assms show ?thesis by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   231
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   232
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   233
lemma insert_remove:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   234
  assumes "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   235
  shows "F (insert x A) = x * F (A - {x})"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   236
  using assms by (cases "x \<in> A") (simp_all add: insert_absorb remove)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   237
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   238
lemma subset:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   239
  assumes "finite A" and "B \<subseteq> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   240
  shows "F B * F A = F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   241
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   242
  from assms have "finite B" by (auto dest: finite_subset)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   243
  with assms show ?thesis by (simp add: union [symmetric] Un_absorb1)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   244
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   245
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   246
lemma closed:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   247
  assumes "finite A" "A \<noteq> {}" and elem: "\<And>x y. x * y \<in> {x, y}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   248
  shows "F A \<in> A"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   249
using \<open>finite A\<close> \<open>A \<noteq> {}\<close> proof (induct rule: finite_ne_induct)
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   250
  case singleton then show ?case by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   251
next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   252
  case insert with elem show ?case by force
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   253
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   254
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   255
end
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   256
54745
46e441e61ff5 disambiguation of interpretation prefixes
haftmann
parents: 54744
diff changeset
   257
locale semilattice_order_neutr_set = binary?: semilattice_neutr_order + semilattice_neutr_set
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   258
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   259
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   260
lemma bounded_iff:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   261
  assumes "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   262
  shows "x \<preceq> F A \<longleftrightarrow> (\<forall>a\<in>A. x \<preceq> a)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   263
  using assms by (induct A) (simp_all add: bounded_iff)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   264
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   265
lemma boundedI:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   266
  assumes "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   267
  assumes "\<And>a. a \<in> A \<Longrightarrow> x \<preceq> a"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   268
  shows "x \<preceq> F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   269
  using assms by (simp add: bounded_iff)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   270
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   271
lemma boundedE:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   272
  assumes "finite A" and "x \<preceq> F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   273
  obtains "\<And>a. a \<in> A \<Longrightarrow> x \<preceq> a"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   274
  using assms by (simp add: bounded_iff)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   275
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   276
lemma coboundedI:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   277
  assumes "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   278
    and "a \<in> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   279
  shows "F A \<preceq> a"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   280
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   281
  from assms have "A \<noteq> {}" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   282
  from \<open>finite A\<close> \<open>A \<noteq> {}\<close> \<open>a \<in> A\<close> show ?thesis
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   283
  proof (induct rule: finite_ne_induct)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   284
    case singleton thus ?case by (simp add: refl)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   285
  next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   286
    case (insert x B)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   287
    from insert have "a = x \<or> a \<in> B" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   288
    then show ?case using insert by (auto intro: coboundedI2)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   289
  qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   290
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   291
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   292
lemma antimono:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   293
  assumes "A \<subseteq> B" and "finite B"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   294
  shows "F B \<preceq> F A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   295
proof (cases "A = B")
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   296
  case True then show ?thesis by (simp add: refl)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   297
next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   298
  case False
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   299
  have B: "B = A \<union> (B - A)" using \<open>A \<subseteq> B\<close> by blast
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   300
  then have "F B = F (A \<union> (B - A))" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   301
  also have "\<dots> = F A * F (B - A)" using False assms by (subst union) (auto intro: finite_subset)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   302
  also have "\<dots> \<preceq> F A" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   303
  finally show ?thesis .
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   304
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   305
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   306
end
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   307
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   308
notation times (infixl "*" 70)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   309
notation Groups.one ("1")
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   310
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   311
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   312
subsection \<open>Lattice operations on finite sets\<close>
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   313
54868
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   314
context semilattice_inf
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   315
begin
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   316
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   317
definition Inf_fin :: "'a set \<Rightarrow> 'a" ("\<Sqinter>\<^sub>f\<^sub>i\<^sub>n_" [900] 900)
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   318
where
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   319
  "Inf_fin = semilattice_set.F inf"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   320
54868
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   321
sublocale Inf_fin!: semilattice_order_set inf less_eq less
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   322
where
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   323
  "semilattice_set.F inf = Inf_fin"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   324
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   325
  show "semilattice_order_set inf less_eq less" ..
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   326
  then interpret Inf_fin!: semilattice_order_set inf less_eq less .
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   327
  from Inf_fin_def show "semilattice_set.F inf = Inf_fin" by rule
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   328
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   329
54868
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   330
end
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   331
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   332
context semilattice_sup
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   333
begin
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   334
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   335
definition Sup_fin :: "'a set \<Rightarrow> 'a" ("\<Squnion>\<^sub>f\<^sub>i\<^sub>n_" [900] 900)
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   336
where
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   337
  "Sup_fin = semilattice_set.F sup"
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   338
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   339
sublocale Sup_fin!: semilattice_order_set sup greater_eq greater
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   340
where
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   341
  "semilattice_set.F sup = Sup_fin"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   342
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   343
  show "semilattice_order_set sup greater_eq greater" ..
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   344
  then interpret Sup_fin!: semilattice_order_set sup greater_eq greater .
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   345
  from Sup_fin_def show "semilattice_set.F sup = Sup_fin" by rule
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   346
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   347
54868
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   348
end
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   349
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   350
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   351
subsection \<open>Infimum and Supremum over non-empty sets\<close>
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   352
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   353
context lattice
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   354
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   355
54745
46e441e61ff5 disambiguation of interpretation prefixes
haftmann
parents: 54744
diff changeset
   356
lemma Inf_fin_le_Sup_fin [simp]: 
46e441e61ff5 disambiguation of interpretation prefixes
haftmann
parents: 54744
diff changeset
   357
  assumes "finite A" and "A \<noteq> {}"
46e441e61ff5 disambiguation of interpretation prefixes
haftmann
parents: 54744
diff changeset
   358
  shows "\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA \<le> \<Squnion>\<^sub>f\<^sub>i\<^sub>nA"
46e441e61ff5 disambiguation of interpretation prefixes
haftmann
parents: 54744
diff changeset
   359
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   360
  from \<open>A \<noteq> {}\<close> obtain a where "a \<in> A" by blast
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   361
  with \<open>finite A\<close> have "\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA \<le> a" by (rule Inf_fin.coboundedI)
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   362
  moreover from \<open>finite A\<close> \<open>a \<in> A\<close> have "a \<le> \<Squnion>\<^sub>f\<^sub>i\<^sub>nA" by (rule Sup_fin.coboundedI)
54745
46e441e61ff5 disambiguation of interpretation prefixes
haftmann
parents: 54744
diff changeset
   363
  ultimately show ?thesis by (rule order_trans)
46e441e61ff5 disambiguation of interpretation prefixes
haftmann
parents: 54744
diff changeset
   364
qed
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   365
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   366
lemma sup_Inf_absorb [simp]:
54745
46e441e61ff5 disambiguation of interpretation prefixes
haftmann
parents: 54744
diff changeset
   367
  "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> \<Sqinter>\<^sub>f\<^sub>i\<^sub>nA \<squnion> a = a"
46e441e61ff5 disambiguation of interpretation prefixes
haftmann
parents: 54744
diff changeset
   368
  by (rule sup_absorb2) (rule Inf_fin.coboundedI)
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   369
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   370
lemma inf_Sup_absorb [simp]:
54745
46e441e61ff5 disambiguation of interpretation prefixes
haftmann
parents: 54744
diff changeset
   371
  "finite A \<Longrightarrow> a \<in> A \<Longrightarrow> a \<sqinter> \<Squnion>\<^sub>f\<^sub>i\<^sub>nA = a"
46e441e61ff5 disambiguation of interpretation prefixes
haftmann
parents: 54744
diff changeset
   372
  by (rule inf_absorb1) (rule Sup_fin.coboundedI)
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   373
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   374
end
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   375
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   376
context distrib_lattice
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   377
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   378
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   379
lemma sup_Inf1_distrib:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   380
  assumes "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   381
    and "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   382
  shows "sup x (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA) = \<Sqinter>\<^sub>f\<^sub>i\<^sub>n{sup x a|a. a \<in> A}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   383
using assms by (simp add: image_def Inf_fin.hom_commute [where h="sup x", OF sup_inf_distrib1])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   384
  (rule arg_cong [where f="Inf_fin"], blast)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   385
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   386
lemma sup_Inf2_distrib:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   387
  assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   388
  shows "sup (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA) (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nB) = \<Sqinter>\<^sub>f\<^sub>i\<^sub>n{sup a b|a b. a \<in> A \<and> b \<in> B}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   389
using A proof (induct rule: finite_ne_induct)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   390
  case singleton then show ?case
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   391
    by (simp add: sup_Inf1_distrib [OF B])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   392
next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   393
  case (insert x A)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   394
  have finB: "finite {sup x b |b. b \<in> B}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   395
    by (rule finite_surj [where f = "sup x", OF B(1)], auto)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   396
  have finAB: "finite {sup a b |a b. a \<in> A \<and> b \<in> B}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   397
  proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   398
    have "{sup a b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {sup a b})"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   399
      by blast
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   400
    thus ?thesis by(simp add: insert(1) B(1))
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   401
  qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   402
  have ne: "{sup a b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   403
  have "sup (\<Sqinter>\<^sub>f\<^sub>i\<^sub>n(insert x A)) (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nB) = sup (inf x (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA)) (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nB)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   404
    using insert by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   405
  also have "\<dots> = inf (sup x (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nB)) (sup (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA) (\<Sqinter>\<^sub>f\<^sub>i\<^sub>nB))" by(rule sup_inf_distrib2)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   406
  also have "\<dots> = inf (\<Sqinter>\<^sub>f\<^sub>i\<^sub>n{sup x b|b. b \<in> B}) (\<Sqinter>\<^sub>f\<^sub>i\<^sub>n{sup a b|a b. a \<in> A \<and> b \<in> B})"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   407
    using insert by(simp add:sup_Inf1_distrib[OF B])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   408
  also have "\<dots> = \<Sqinter>\<^sub>f\<^sub>i\<^sub>n({sup x b |b. b \<in> B} \<union> {sup a b |a b. a \<in> A \<and> b \<in> B})"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   409
    (is "_ = \<Sqinter>\<^sub>f\<^sub>i\<^sub>n?M")
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   410
    using B insert
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   411
    by (simp add: Inf_fin.union [OF finB _ finAB ne])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   412
  also have "?M = {sup a b |a b. a \<in> insert x A \<and> b \<in> B}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   413
    by blast
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   414
  finally show ?case .
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   415
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   416
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   417
lemma inf_Sup1_distrib:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   418
  assumes "finite A" and "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   419
  shows "inf x (\<Squnion>\<^sub>f\<^sub>i\<^sub>nA) = \<Squnion>\<^sub>f\<^sub>i\<^sub>n{inf x a|a. a \<in> A}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   420
using assms by (simp add: image_def Sup_fin.hom_commute [where h="inf x", OF inf_sup_distrib1])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   421
  (rule arg_cong [where f="Sup_fin"], blast)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   422
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   423
lemma inf_Sup2_distrib:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   424
  assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   425
  shows "inf (\<Squnion>\<^sub>f\<^sub>i\<^sub>nA) (\<Squnion>\<^sub>f\<^sub>i\<^sub>nB) = \<Squnion>\<^sub>f\<^sub>i\<^sub>n{inf a b|a b. a \<in> A \<and> b \<in> B}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   426
using A proof (induct rule: finite_ne_induct)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   427
  case singleton thus ?case
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   428
    by(simp add: inf_Sup1_distrib [OF B])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   429
next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   430
  case (insert x A)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   431
  have finB: "finite {inf x b |b. b \<in> B}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   432
    by(rule finite_surj[where f = "%b. inf x b", OF B(1)], auto)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   433
  have finAB: "finite {inf a b |a b. a \<in> A \<and> b \<in> B}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   434
  proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   435
    have "{inf a b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {inf a b})"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   436
      by blast
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   437
    thus ?thesis by(simp add: insert(1) B(1))
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   438
  qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   439
  have ne: "{inf a b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   440
  have "inf (\<Squnion>\<^sub>f\<^sub>i\<^sub>n(insert x A)) (\<Squnion>\<^sub>f\<^sub>i\<^sub>nB) = inf (sup x (\<Squnion>\<^sub>f\<^sub>i\<^sub>nA)) (\<Squnion>\<^sub>f\<^sub>i\<^sub>nB)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   441
    using insert by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   442
  also have "\<dots> = sup (inf x (\<Squnion>\<^sub>f\<^sub>i\<^sub>nB)) (inf (\<Squnion>\<^sub>f\<^sub>i\<^sub>nA) (\<Squnion>\<^sub>f\<^sub>i\<^sub>nB))" by(rule inf_sup_distrib2)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   443
  also have "\<dots> = sup (\<Squnion>\<^sub>f\<^sub>i\<^sub>n{inf x b|b. b \<in> B}) (\<Squnion>\<^sub>f\<^sub>i\<^sub>n{inf a b|a b. a \<in> A \<and> b \<in> B})"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   444
    using insert by(simp add:inf_Sup1_distrib[OF B])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   445
  also have "\<dots> = \<Squnion>\<^sub>f\<^sub>i\<^sub>n({inf x b |b. b \<in> B} \<union> {inf a b |a b. a \<in> A \<and> b \<in> B})"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   446
    (is "_ = \<Squnion>\<^sub>f\<^sub>i\<^sub>n?M")
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   447
    using B insert
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   448
    by (simp add: Sup_fin.union [OF finB _ finAB ne])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   449
  also have "?M = {inf a b |a b. a \<in> insert x A \<and> b \<in> B}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   450
    by blast
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   451
  finally show ?case .
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   452
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   453
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   454
end
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   455
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   456
context complete_lattice
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   457
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   458
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   459
lemma Inf_fin_Inf:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   460
  assumes "finite A" and "A \<noteq> {}"
54868
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   461
  shows "\<Sqinter>\<^sub>f\<^sub>i\<^sub>nA = \<Sqinter>A"
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   462
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   463
  from assms obtain b B where "A = insert b B" and "finite B" by auto
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   464
  then show ?thesis
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   465
    by (simp add: Inf_fin.eq_fold inf_Inf_fold_inf inf.commute [of b])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   466
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   467
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   468
lemma Sup_fin_Sup:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   469
  assumes "finite A" and "A \<noteq> {}"
54868
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54864
diff changeset
   470
  shows "\<Squnion>\<^sub>f\<^sub>i\<^sub>nA = \<Squnion>A"
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   471
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   472
  from assms obtain b B where "A = insert b B" and "finite B" by auto
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   473
  then show ?thesis
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   474
    by (simp add: Sup_fin.eq_fold sup_Sup_fold_sup sup.commute [of b])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   475
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   476
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   477
end
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   478
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   479
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   480
subsection \<open>Minimum and Maximum over non-empty sets\<close>
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   481
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   482
context linorder
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   483
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   484
54864
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   485
definition Min :: "'a set \<Rightarrow> 'a"
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   486
where
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   487
  "Min = semilattice_set.F min"
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   488
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   489
definition Max :: "'a set \<Rightarrow> 'a"
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   490
where
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   491
  "Max = semilattice_set.F max"
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   492
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   493
sublocale Min!: semilattice_order_set min less_eq less
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   494
  + Max!: semilattice_order_set max greater_eq greater
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   495
where
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   496
  "semilattice_set.F min = Min"
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   497
  and "semilattice_set.F max = Max"
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   498
proof -
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60758
diff changeset
   499
  show "semilattice_order_set min less_eq less" by standard (auto simp add: min_def)
54864
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   500
  then interpret Min!: semilattice_order_set min less_eq less .
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60758
diff changeset
   501
  show "semilattice_order_set max greater_eq greater" by standard (auto simp add: max_def)
54864
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   502
  then interpret Max!: semilattice_order_set max greater_eq greater .
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   503
  from Min_def show "semilattice_set.F min = Min" by rule
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   504
  from Max_def show "semilattice_set.F max = Max" by rule
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   505
qed
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   506
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   507
end
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   508
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   509
text \<open>An aside: @{const Min}/@{const Max} on linear orders as special case of @{const Inf_fin}/@{const Sup_fin}\<close>
54864
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   510
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   511
lemma Inf_fin_Min:
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   512
  "Inf_fin = (Min :: 'a::{semilattice_inf, linorder} set \<Rightarrow> 'a)"
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   513
  by (simp add: Inf_fin_def Min_def inf_min)
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   514
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   515
lemma Sup_fin_Max:
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   516
  "Sup_fin = (Max :: 'a::{semilattice_sup, linorder} set \<Rightarrow> 'a)"
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   517
  by (simp add: Sup_fin_def Max_def sup_max)
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   518
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   519
context linorder
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   520
begin
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   521
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   522
lemma dual_min:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   523
  "ord.min greater_eq = max"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   524
  by (auto simp add: ord.min_def max_def fun_eq_iff)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   525
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   526
lemma dual_max:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   527
  "ord.max greater_eq = min"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   528
  by (auto simp add: ord.max_def min_def fun_eq_iff)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   529
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   530
lemma dual_Min:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   531
  "linorder.Min greater_eq = Max"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   532
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   533
  interpret dual!: linorder greater_eq greater by (fact dual_linorder)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   534
  show ?thesis by (simp add: dual.Min_def dual_min Max_def)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   535
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   536
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   537
lemma dual_Max:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   538
  "linorder.Max greater_eq = Min"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   539
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   540
  interpret dual!: linorder greater_eq greater by (fact dual_linorder)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   541
  show ?thesis by (simp add: dual.Max_def dual_max Min_def)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   542
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   543
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   544
lemmas Min_singleton = Min.singleton
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   545
lemmas Max_singleton = Max.singleton
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   546
lemmas Min_insert = Min.insert
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   547
lemmas Max_insert = Max.insert
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   548
lemmas Min_Un = Min.union
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   549
lemmas Max_Un = Max.union
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   550
lemmas hom_Min_commute = Min.hom_commute
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   551
lemmas hom_Max_commute = Max.hom_commute
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   552
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   553
lemma Min_in [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   554
  assumes "finite A" and "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   555
  shows "Min A \<in> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   556
  using assms by (auto simp add: min_def Min.closed)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   557
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   558
lemma Max_in [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   559
  assumes "finite A" and "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   560
  shows "Max A \<in> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   561
  using assms by (auto simp add: max_def Max.closed)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   562
58467
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   563
lemma Min_insert2:
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   564
  assumes "finite A" and min: "\<And>b. b \<in> A \<Longrightarrow> a \<le> b"
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   565
  shows "Min (insert a A) = a"
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   566
proof (cases "A = {}")
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   567
  case True then show ?thesis by simp
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   568
next
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   569
  case False with \<open>finite A\<close> have "Min (insert a A) = min a (Min A)"
58467
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   570
    by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   571
  moreover from \<open>finite A\<close> \<open>A \<noteq> {}\<close> min have "a \<le> Min A" by simp
58467
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   572
  ultimately show ?thesis by (simp add: min.absorb1)
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   573
qed
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   574
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   575
lemma Max_insert2:
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   576
  assumes "finite A" and max: "\<And>b. b \<in> A \<Longrightarrow> b \<le> a"
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   577
  shows "Max (insert a A) = a"
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   578
proof (cases "A = {}")
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   579
  case True then show ?thesis by simp
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   580
next
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   581
  case False with \<open>finite A\<close> have "Max (insert a A) = max a (Max A)"
58467
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   582
    by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   583
  moreover from \<open>finite A\<close> \<open>A \<noteq> {}\<close> max have "Max A \<le> a" by simp
58467
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   584
  ultimately show ?thesis by (simp add: max.absorb1)
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   585
qed
6a3da58f7233 moved to HOL and generalized
haftmann
parents: 57800
diff changeset
   586
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   587
lemma Min_le [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   588
  assumes "finite A" and "x \<in> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   589
  shows "Min A \<le> x"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   590
  using assms by (fact Min.coboundedI)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   591
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   592
lemma Max_ge [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   593
  assumes "finite A" and "x \<in> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   594
  shows "x \<le> Max A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   595
  using assms by (fact Max.coboundedI)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   596
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   597
lemma Min_eqI:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   598
  assumes "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   599
  assumes "\<And>y. y \<in> A \<Longrightarrow> y \<ge> x"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   600
    and "x \<in> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   601
  shows "Min A = x"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   602
proof (rule antisym)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   603
  from \<open>x \<in> A\<close> have "A \<noteq> {}" by auto
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   604
  with assms show "Min A \<ge> x" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   605
next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   606
  from assms show "x \<ge> Min A" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   607
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   608
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   609
lemma Max_eqI:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   610
  assumes "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   611
  assumes "\<And>y. y \<in> A \<Longrightarrow> y \<le> x"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   612
    and "x \<in> A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   613
  shows "Max A = x"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   614
proof (rule antisym)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   615
  from \<open>x \<in> A\<close> have "A \<noteq> {}" by auto
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   616
  with assms show "Max A \<le> x" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   617
next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   618
  from assms show "x \<le> Max A" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   619
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   620
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   621
context
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   622
  fixes A :: "'a set"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   623
  assumes fin_nonempty: "finite A" "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   624
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   625
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   626
lemma Min_ge_iff [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   627
  "x \<le> Min A \<longleftrightarrow> (\<forall>a\<in>A. x \<le> a)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   628
  using fin_nonempty by (fact Min.bounded_iff)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   629
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   630
lemma Max_le_iff [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   631
  "Max A \<le> x \<longleftrightarrow> (\<forall>a\<in>A. a \<le> x)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   632
  using fin_nonempty by (fact Max.bounded_iff)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   633
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   634
lemma Min_gr_iff [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   635
  "x < Min A \<longleftrightarrow> (\<forall>a\<in>A. x < a)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   636
  using fin_nonempty  by (induct rule: finite_ne_induct) simp_all
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   637
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   638
lemma Max_less_iff [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   639
  "Max A < x \<longleftrightarrow> (\<forall>a\<in>A. a < x)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   640
  using fin_nonempty by (induct rule: finite_ne_induct) simp_all
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   641
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   642
lemma Min_le_iff:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   643
  "Min A \<le> x \<longleftrightarrow> (\<exists>a\<in>A. a \<le> x)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   644
  using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: min_le_iff_disj)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   645
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   646
lemma Max_ge_iff:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   647
  "x \<le> Max A \<longleftrightarrow> (\<exists>a\<in>A. x \<le> a)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   648
  using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: le_max_iff_disj)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   649
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   650
lemma Min_less_iff:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   651
  "Min A < x \<longleftrightarrow> (\<exists>a\<in>A. a < x)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   652
  using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: min_less_iff_disj)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   653
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   654
lemma Max_gr_iff:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   655
  "x < Max A \<longleftrightarrow> (\<exists>a\<in>A. x < a)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   656
  using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: less_max_iff_disj)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   657
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   658
end
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   659
57800
84748234de9d added lemma
nipkow
parents: 56993
diff changeset
   660
lemma Max_eq_if:
84748234de9d added lemma
nipkow
parents: 56993
diff changeset
   661
  assumes "finite A"  "finite B"  "\<forall>a\<in>A. \<exists>b\<in>B. a \<le> b"  "\<forall>b\<in>B. \<exists>a\<in>A. b \<le> a"
84748234de9d added lemma
nipkow
parents: 56993
diff changeset
   662
  shows "Max A = Max B"
84748234de9d added lemma
nipkow
parents: 56993
diff changeset
   663
proof cases
84748234de9d added lemma
nipkow
parents: 56993
diff changeset
   664
  assume "A = {}" thus ?thesis using assms by simp
84748234de9d added lemma
nipkow
parents: 56993
diff changeset
   665
next
84748234de9d added lemma
nipkow
parents: 56993
diff changeset
   666
  assume "A \<noteq> {}" thus ?thesis using assms
84748234de9d added lemma
nipkow
parents: 56993
diff changeset
   667
    by(blast intro: antisym Max_in Max_ge_iff[THEN iffD2])
84748234de9d added lemma
nipkow
parents: 56993
diff changeset
   668
qed
84748234de9d added lemma
nipkow
parents: 56993
diff changeset
   669
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   670
lemma Min_antimono:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   671
  assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   672
  shows "Min N \<le> Min M"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   673
  using assms by (fact Min.antimono)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   674
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   675
lemma Max_mono:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   676
  assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   677
  shows "Max M \<le> Max N"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   678
  using assms by (fact Max.antimono)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   679
56140
ed92ce2ac88e just one cumulative Proof_Context.facts, with uniform retrieval (including PIDE markup, completion etc.);
wenzelm
parents: 55803
diff changeset
   680
end
ed92ce2ac88e just one cumulative Proof_Context.facts, with uniform retrieval (including PIDE markup, completion etc.);
wenzelm
parents: 55803
diff changeset
   681
ed92ce2ac88e just one cumulative Proof_Context.facts, with uniform retrieval (including PIDE markup, completion etc.);
wenzelm
parents: 55803
diff changeset
   682
context linorder  (* FIXME *)
ed92ce2ac88e just one cumulative Proof_Context.facts, with uniform retrieval (including PIDE markup, completion etc.);
wenzelm
parents: 55803
diff changeset
   683
begin
ed92ce2ac88e just one cumulative Proof_Context.facts, with uniform retrieval (including PIDE markup, completion etc.);
wenzelm
parents: 55803
diff changeset
   684
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   685
lemma mono_Min_commute:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   686
  assumes "mono f"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   687
  assumes "finite A" and "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   688
  shows "f (Min A) = Min (f ` A)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   689
proof (rule linorder_class.Min_eqI [symmetric])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   690
  from \<open>finite A\<close> show "finite (f ` A)" by simp
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   691
  from assms show "f (Min A) \<in> f ` A" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   692
  fix x
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   693
  assume "x \<in> f ` A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   694
  then obtain y where "y \<in> A" and "x = f y" ..
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   695
  with assms have "Min A \<le> y" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   696
  with \<open>mono f\<close> have "f (Min A) \<le> f y" by (rule monoE)
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   697
  with \<open>x = f y\<close> show "f (Min A) \<le> x" by simp
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   698
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   699
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   700
lemma mono_Max_commute:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   701
  assumes "mono f"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   702
  assumes "finite A" and "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   703
  shows "f (Max A) = Max (f ` A)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   704
proof (rule linorder_class.Max_eqI [symmetric])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   705
  from \<open>finite A\<close> show "finite (f ` A)" by simp
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   706
  from assms show "f (Max A) \<in> f ` A" by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   707
  fix x
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   708
  assume "x \<in> f ` A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   709
  then obtain y where "y \<in> A" and "x = f y" ..
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   710
  with assms have "y \<le> Max A" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   711
  with \<open>mono f\<close> have "f y \<le> f (Max A)" by (rule monoE)
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   712
  with \<open>x = f y\<close> show "x \<le> f (Max A)" by simp
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   713
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   714
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   715
lemma finite_linorder_max_induct [consumes 1, case_names empty insert]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   716
  assumes fin: "finite A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   717
  and empty: "P {}" 
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   718
  and insert: "\<And>b A. finite A \<Longrightarrow> \<forall>a\<in>A. a < b \<Longrightarrow> P A \<Longrightarrow> P (insert b A)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   719
  shows "P A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   720
using fin empty insert
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   721
proof (induct rule: finite_psubset_induct)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   722
  case (psubset A)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   723
  have IH: "\<And>B. \<lbrakk>B < A; P {}; (\<And>A b. \<lbrakk>finite A; \<forall>a\<in>A. a<b; P A\<rbrakk> \<Longrightarrow> P (insert b A))\<rbrakk> \<Longrightarrow> P B" by fact 
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   724
  have fin: "finite A" by fact 
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   725
  have empty: "P {}" by fact
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   726
  have step: "\<And>b A. \<lbrakk>finite A; \<forall>a\<in>A. a < b; P A\<rbrakk> \<Longrightarrow> P (insert b A)" by fact
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   727
  show "P A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   728
  proof (cases "A = {}")
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   729
    assume "A = {}" 
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   730
    then show "P A" using \<open>P {}\<close> by simp
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   731
  next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   732
    let ?B = "A - {Max A}" 
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   733
    let ?A = "insert (Max A) ?B"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   734
    have "finite ?B" using \<open>finite A\<close> by simp
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   735
    assume "A \<noteq> {}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   736
    with \<open>finite A\<close> have "Max A : A" by auto
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   737
    then have A: "?A = A" using insert_Diff_single insert_absorb by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   738
    then have "P ?B" using \<open>P {}\<close> step IH [of ?B] by blast
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   739
    moreover 
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   740
    have "\<forall>a\<in>?B. a < Max A" using Max_ge [OF \<open>finite A\<close>] by fastforce
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   741
    ultimately show "P A" using A insert_Diff_single step [OF \<open>finite ?B\<close>] by fastforce
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   742
  qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   743
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   745
lemma finite_linorder_min_induct [consumes 1, case_names empty insert]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   746
  "\<lbrakk>finite A; P {}; \<And>b A. \<lbrakk>finite A; \<forall>a\<in>A. b < a; P A\<rbrakk> \<Longrightarrow> P (insert b A)\<rbrakk> \<Longrightarrow> P A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   747
  by (rule linorder.finite_linorder_max_induct [OF dual_linorder])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   748
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   749
lemma Least_Min:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   750
  assumes "finite {a. P a}" and "\<exists>a. P a"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   751
  shows "(LEAST a. P a) = Min {a. P a}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   752
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   753
  { fix A :: "'a set"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   754
    assume A: "finite A" "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   755
    have "(LEAST a. a \<in> A) = Min A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   756
    using A proof (induct A rule: finite_ne_induct)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   757
      case singleton show ?case by (rule Least_equality) simp_all
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   758
    next
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   759
      case (insert a A)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   760
      have "(LEAST b. b = a \<or> b \<in> A) = min a (LEAST a. a \<in> A)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   761
        by (auto intro!: Least_equality simp add: min_def not_le Min_le_iff insert.hyps dest!: less_imp_le)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   762
      with insert show ?case by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   763
    qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   764
  } from this [of "{a. P a}"] assms show ?thesis by simp
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   765
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   766
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58889
diff changeset
   767
lemma infinite_growing:
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58889
diff changeset
   768
  assumes "X \<noteq> {}"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58889
diff changeset
   769
  assumes *: "\<And>x. x \<in> X \<Longrightarrow> \<exists>y\<in>X. y > x"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58889
diff changeset
   770
  shows "\<not> finite X"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58889
diff changeset
   771
proof
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58889
diff changeset
   772
  assume "finite X"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 59000
diff changeset
   773
  with \<open>X \<noteq> {}\<close> have "Max X \<in> X" "\<forall>x\<in>X. x \<le> Max X"
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58889
diff changeset
   774
    by auto
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58889
diff changeset
   775
  with *[of "Max X"] show False
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58889
diff changeset
   776
    by auto
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58889
diff changeset
   777
qed
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58889
diff changeset
   778
54744
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   779
end
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   780
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   781
context linordered_ab_semigroup_add
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   782
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   783
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   784
lemma add_Min_commute:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   785
  fixes k
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   786
  assumes "finite N" and "N \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   787
  shows "k + Min N = Min {k + m | m. m \<in> N}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   788
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   789
  have "\<And>x y. k + min x y = min (k + x) (k + y)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   790
    by (simp add: min_def not_le)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   791
      (blast intro: antisym less_imp_le add_left_mono)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   792
  with assms show ?thesis
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   793
    using hom_Min_commute [of "plus k" N]
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   794
    by simp (blast intro: arg_cong [where f = Min])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   795
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   796
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   797
lemma add_Max_commute:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   798
  fixes k
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   799
  assumes "finite N" and "N \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   800
  shows "k + Max N = Max {k + m | m. m \<in> N}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   801
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   802
  have "\<And>x y. k + max x y = max (k + x) (k + y)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   803
    by (simp add: max_def not_le)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   804
      (blast intro: antisym less_imp_le add_left_mono)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   805
  with assms show ?thesis
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   806
    using hom_Max_commute [of "plus k" N]
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   807
    by simp (blast intro: arg_cong [where f = Max])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   808
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   809
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   810
end
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   811
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   812
context linordered_ab_group_add
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   813
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   814
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   815
lemma minus_Max_eq_Min [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   816
  "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - Max S = Min (uminus ` S)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   817
  by (induct S rule: finite_ne_induct) (simp_all add: minus_max_eq_min)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   818
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   819
lemma minus_Min_eq_Max [simp]:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   820
  "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - Min S = Max (uminus ` S)"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   821
  by (induct S rule: finite_ne_induct) (simp_all add: minus_min_eq_max)
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   822
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   823
end
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   824
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   825
context complete_linorder
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   826
begin
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   827
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   828
lemma Min_Inf:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   829
  assumes "finite A" and "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   830
  shows "Min A = Inf A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   831
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   832
  from assms obtain b B where "A = insert b B" and "finite B" by auto
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   833
  then show ?thesis
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   834
    by (simp add: Min.eq_fold complete_linorder_inf_min [symmetric] inf_Inf_fold_inf inf.commute [of b])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   835
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   836
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   837
lemma Max_Sup:
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   838
  assumes "finite A" and "A \<noteq> {}"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   839
  shows "Max A = Sup A"
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   840
proof -
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   841
  from assms obtain b B where "A = insert b B" and "finite B" by auto
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   842
  then show ?thesis
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   843
    by (simp add: Max.eq_fold complete_linorder_sup_max [symmetric] sup_Sup_fold_sup sup.commute [of b])
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   844
qed
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   845
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   846
end
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   847
1e7f2d296e19 more algebraic terminology for theories about big operators
haftmann
parents:
diff changeset
   848
end