src/HOL/Old_Number_Theory/BijectionRel.thy
author traytel
Thu, 24 Sep 2015 12:21:19 +0200
changeset 61241 69a97fc33f7a
parent 58889 5b7a9633cfa8
child 61382 efac889fccbc
permissions -rw-r--r--
conceal only the definitional theorems of map, set, rel (and not the actual constants)
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
38159
e9b4835a54ee modernized specifications;
wenzelm
parents: 32479
diff changeset
     1
(*  Title:      HOL/Old_Number_Theory/BijectionRel.thy
e9b4835a54ee modernized specifications;
wenzelm
parents: 32479
diff changeset
     2
    Author:     Thomas M. Rasmussen
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
     3
    Copyright   2000  University of Cambridge
9508
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
     4
*)
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
     5
58889
5b7a9633cfa8 modernized header uniformly as section;
wenzelm
parents: 38159
diff changeset
     6
section {* Bijections between sets *}
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
     7
38159
e9b4835a54ee modernized specifications;
wenzelm
parents: 32479
diff changeset
     8
theory BijectionRel
e9b4835a54ee modernized specifications;
wenzelm
parents: 32479
diff changeset
     9
imports Main
e9b4835a54ee modernized specifications;
wenzelm
parents: 32479
diff changeset
    10
begin
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    11
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    12
text {*
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    13
  Inductive definitions of bijections between two different sets and
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    14
  between the same set.  Theorem for relating the two definitions.
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    15
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    16
  \bigskip
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    17
*}
9508
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
    18
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 22274
diff changeset
    19
inductive_set
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    20
  bijR :: "('a => 'b => bool) => ('a set * 'b set) set"
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 22274
diff changeset
    21
  for P :: "'a => 'b => bool"
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 22274
diff changeset
    22
where
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    23
  empty [simp]: "({}, {}) \<in> bijR P"
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 22274
diff changeset
    24
| insert: "P a b ==> a \<notin> A ==> b \<notin> B ==> (A, B) \<in> bijR P
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    25
    ==> (insert a A, insert b B) \<in> bijR P"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    26
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    27
text {*
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    28
  Add extra condition to @{term insert}: @{term "\<forall>b \<in> B. \<not> P a b"}
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    29
  (and similar for @{term A}).
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    30
*}
9508
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
    31
19670
2e4a143c73c5 prefer 'definition' over low-level defs;
wenzelm
parents: 18369
diff changeset
    32
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 19670
diff changeset
    33
  bijP :: "('a => 'a => bool) => 'a set => bool" where
19670
2e4a143c73c5 prefer 'definition' over low-level defs;
wenzelm
parents: 18369
diff changeset
    34
  "bijP P F = (\<forall>a b. a \<in> F \<and> P a b --> b \<in> F)"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    35
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 19670
diff changeset
    36
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 19670
diff changeset
    37
  uniqP :: "('a => 'a => bool) => bool" where
19670
2e4a143c73c5 prefer 'definition' over low-level defs;
wenzelm
parents: 18369
diff changeset
    38
  "uniqP P = (\<forall>a b c d. P a b \<and> P c d --> (a = c) = (b = d))"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    39
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 19670
diff changeset
    40
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 19670
diff changeset
    41
  symP :: "('a => 'a => bool) => bool" where
19670
2e4a143c73c5 prefer 'definition' over low-level defs;
wenzelm
parents: 18369
diff changeset
    42
  "symP P = (\<forall>a b. P a b = P b a)"
9508
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
    43
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 22274
diff changeset
    44
inductive_set
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    45
  bijER :: "('a => 'a => bool) => 'a set set"
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 22274
diff changeset
    46
  for P :: "'a => 'a => bool"
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 22274
diff changeset
    47
where
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    48
  empty [simp]: "{} \<in> bijER P"
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 22274
diff changeset
    49
| insert1: "P a a ==> a \<notin> A ==> A \<in> bijER P ==> insert a A \<in> bijER P"
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 22274
diff changeset
    50
| insert2: "P a b ==> a \<noteq> b ==> a \<notin> A ==> b \<notin> A ==> A \<in> bijER P
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    51
    ==> insert a (insert b A) \<in> bijER P"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    52
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    53
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    54
text {* \medskip @{term bijR} *}
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    55
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    56
lemma fin_bijRl: "(A, B) \<in> bijR P ==> finite A"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    57
  apply (erule bijR.induct)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    58
  apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    59
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    60
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    61
lemma fin_bijRr: "(A, B) \<in> bijR P ==> finite B"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    62
  apply (erule bijR.induct)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    63
  apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    64
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    65
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    66
lemma aux_induct:
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16417
diff changeset
    67
  assumes major: "finite F"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    68
    and subs: "F \<subseteq> A"
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16417
diff changeset
    69
    and cases: "P {}"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16417
diff changeset
    70
      "!!F a. F \<subseteq> A ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16417
diff changeset
    71
  shows "P F"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16417
diff changeset
    72
  using major subs
22274
ce1459004c8d Adapted to changes in Finite_Set theory.
berghofe
parents: 21404
diff changeset
    73
  apply (induct set: finite)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16417
diff changeset
    74
   apply (blast intro: cases)+
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16417
diff changeset
    75
  done
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16417
diff changeset
    76
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    77
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 11549
diff changeset
    78
lemma inj_func_bijR_aux1:
604d0f3622d6 *** empty log message ***
wenzelm
parents: 11549
diff changeset
    79
    "A \<subseteq> B ==> a \<notin> A ==> a \<in> B ==> inj_on f B ==> f a \<notin> f ` A"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    80
  apply (unfold inj_on_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    81
  apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    82
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    83
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 11549
diff changeset
    84
lemma inj_func_bijR_aux2:
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    85
  "\<forall>a. a \<in> A --> P a (f a) ==> inj_on f A ==> finite A ==> F <= A
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    86
    ==> (F, f ` F) \<in> bijR P"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    87
  apply (rule_tac F = F and A = A in aux_induct)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    88
     apply (rule finite_subset)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    89
      apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    90
  apply (rule bijR.insert)
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 11549
diff changeset
    91
     apply (rule_tac [3] inj_func_bijR_aux1)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    92
        apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    93
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    94
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    95
lemma inj_func_bijR:
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    96
  "\<forall>a. a \<in> A --> P a (f a) ==> inj_on f A ==> finite A
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    97
    ==> (A, f ` A) \<in> bijR P"
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 11549
diff changeset
    98
  apply (rule inj_func_bijR_aux2)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
    99
     apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   100
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   101
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   102
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   103
text {* \medskip @{term bijER} *}
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   104
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   105
lemma fin_bijER: "A \<in> bijER P ==> finite A"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   106
  apply (erule bijER.induct)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   107
    apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   108
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   109
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   110
lemma aux1:
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   111
  "a \<notin> A ==> a \<notin> B ==> F \<subseteq> insert a A ==> F \<subseteq> insert a B ==> a \<in> F
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   112
    ==> \<exists>C. F = insert a C \<and> a \<notin> C \<and> C <= A \<and> C <= B"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   113
  apply (rule_tac x = "F - {a}" in exI)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   114
  apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   115
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   116
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   117
lemma aux2: "a \<noteq> b ==> a \<notin> A ==> b \<notin> B ==> a \<in> F ==> b \<in> F
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   118
    ==> F \<subseteq> insert a A ==> F \<subseteq> insert b B
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   119
    ==> \<exists>C. F = insert a (insert b C) \<and> a \<notin> C \<and> b \<notin> C \<and> C \<subseteq> A \<and> C \<subseteq> B"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   120
  apply (rule_tac x = "F - {a, b}" in exI)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   121
  apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   122
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   123
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   124
lemma aux_uniq: "uniqP P ==> P a b ==> P c d ==> (a = c) = (b = d)"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   125
  apply (unfold uniqP_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   126
  apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   127
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   128
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   129
lemma aux_sym: "symP P ==> P a b = P b a"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   130
  apply (unfold symP_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   131
  apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   132
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   133
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   134
lemma aux_in1:
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   135
    "uniqP P ==> b \<notin> C ==> P b b ==> bijP P (insert b C) ==> bijP P C"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   136
  apply (unfold bijP_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   137
  apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   138
  apply (subgoal_tac "b \<noteq> a")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   139
   prefer 2
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   140
   apply clarify
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   141
  apply (simp add: aux_uniq)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   142
  apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   143
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   144
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   145
lemma aux_in2:
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   146
  "symP P ==> uniqP P ==> a \<notin> C ==> b \<notin> C ==> a \<noteq> b ==> P a b
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   147
    ==> bijP P (insert a (insert b C)) ==> bijP P C"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   148
  apply (unfold bijP_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   149
  apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   150
  apply (subgoal_tac "aa \<noteq> a")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   151
   prefer 2
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   152
   apply clarify
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   153
  apply (subgoal_tac "aa \<noteq> b")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   154
   prefer 2
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   155
   apply clarify
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   156
  apply (simp add: aux_uniq)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   157
  apply (subgoal_tac "ba \<noteq> a")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   158
   apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   159
  apply (subgoal_tac "P a aa")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   160
   prefer 2
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   161
   apply (simp add: aux_sym)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   162
  apply (subgoal_tac "b = aa")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   163
   apply (rule_tac [2] iffD1)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   164
    apply (rule_tac [2] a = a and c = a and P = P in aux_uniq)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   165
      apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   166
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   167
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 11549
diff changeset
   168
lemma aux_foo: "\<forall>a b. Q a \<and> P a b --> R b ==> P a b ==> Q a ==> R b"
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   169
  apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   170
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   171
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   172
lemma aux_bij: "bijP P F ==> symP P ==> P a b ==> (a \<in> F) = (b \<in> F)"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   173
  apply (unfold bijP_def)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   174
  apply (rule iffI)
13524
604d0f3622d6 *** empty log message ***
wenzelm
parents: 11549
diff changeset
   175
  apply (erule_tac [!] aux_foo)
11049
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   176
      apply simp_all
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   177
  apply (rule iffD2)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   178
   apply (rule_tac P = P in aux_sym)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   179
   apply simp_all
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   180
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   181
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   182
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   183
lemma aux_bijRER:
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   184
  "(A, B) \<in> bijR P ==> uniqP P ==> symP P
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   185
    ==> \<forall>F. bijP P F \<and> F \<subseteq> A \<and> F \<subseteq> B --> F \<in> bijER P"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   186
  apply (erule bijR.induct)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   187
   apply simp
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   188
  apply (case_tac "a = b")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   189
   apply clarify
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   190
   apply (case_tac "b \<in> F")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   191
    prefer 2
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   192
    apply (simp add: subset_insert)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   193
   apply (cut_tac F = F and a = b and A = A and B = B in aux1)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   194
        prefer 6
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   195
        apply clarify
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   196
        apply (rule bijER.insert1)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   197
          apply simp_all
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   198
   apply (subgoal_tac "bijP P C")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   199
    apply simp
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   200
   apply (rule aux_in1)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   201
      apply simp_all
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   202
  apply clarify
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   203
  apply (case_tac "a \<in> F")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   204
   apply (case_tac [!] "b \<in> F")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   205
     apply (cut_tac F = F and a = a and b = b and A = A and B = B
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   206
       in aux2)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   207
            apply (simp_all add: subset_insert)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   208
    apply clarify
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   209
    apply (rule bijER.insert2)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   210
        apply simp_all
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   211
    apply (subgoal_tac "bijP P C")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   212
     apply simp
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   213
    apply (rule aux_in2)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   214
          apply simp_all
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   215
   apply (subgoal_tac "b \<in> F")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   216
    apply (rule_tac [2] iffD1)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   217
     apply (rule_tac [2] a = a and F = F and P = P in aux_bij)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   218
       apply (simp_all (no_asm_simp))
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   219
   apply (subgoal_tac [2] "a \<in> F")
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   220
    apply (rule_tac [3] iffD2)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   221
     apply (rule_tac [3] b = b and F = F and P = P in aux_bij)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   222
       apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   223
  done
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   224
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   225
lemma bijR_bijER:
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   226
  "(A, A) \<in> bijR P ==>
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   227
    bijP P A ==> uniqP P ==> symP P ==> A \<in> bijER P"
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   228
  apply (cut_tac A = A and B = A and P = P in aux_bijRER)
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   229
     apply auto
7eef34adb852 HOL-NumberTheory: converted to new-style format and proper document setup;
wenzelm
parents: 9508
diff changeset
   230
  done
9508
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
   231
4d01dbf6ded7 Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff changeset
   232
end