| author | haftmann | 
| Wed, 01 Dec 2010 18:00:40 +0100 | |
| changeset 40858 | 69ab03d29c92 | 
| parent 39247 | 3a15ee47c610 | 
| child 41693 | 47532fe9e075 | 
| permissions | -rw-r--r-- | 
| 37936 | 1  | 
(* Title: HOL/Auth/Shared.thy  | 
| 1934 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
3  | 
Copyright 1996 University of Cambridge  | 
|
4  | 
||
5  | 
Theory of Shared Keys (common to all symmetric-key protocols)  | 
|
6  | 
||
| 
3512
 
9dcb4daa15e8
Moving common declarations and proofs from theories "Shared"
 
paulson 
parents: 
3472 
diff
changeset
 | 
7  | 
Shared, long-term keys; initial states of agents  | 
| 1934 | 8  | 
*)  | 
9  | 
||
| 32631 | 10  | 
theory Shared  | 
11  | 
imports Event All_Symmetric  | 
|
12  | 
begin  | 
|
| 1934 | 13  | 
|
14  | 
consts  | 
|
| 39216 | 15  | 
shrK :: "agent => key" (*symmetric keys*)  | 
| 
14126
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
16  | 
|
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
17  | 
specification (shrK)  | 
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
18  | 
inj_shrK: "inj shrK"  | 
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
19  | 
  --{*No two agents have the same long-term key*}
 | 
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
20  | 
apply (rule exI [of _ "agent_case 0 (\<lambda>n. n + 2) 1"])  | 
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
21  | 
apply (simp add: inj_on_def split: agent.split)  | 
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
22  | 
done  | 
| 1967 | 23  | 
|
| 
14126
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
24  | 
text{*Server knows all long-term keys; other agents know only their own*}
 | 
| 39246 | 25  | 
|
26  | 
overloading  | 
|
27  | 
initState \<equiv> initState  | 
|
28  | 
begin  | 
|
29  | 
||
30  | 
primrec initState where  | 
|
| 11104 | 31  | 
initState_Server: "initState Server = Key ` range shrK"  | 
| 39246 | 32  | 
| initState_Friend:  "initState (Friend i) = {Key (shrK (Friend i))}"
 | 
33  | 
| initState_Spy: "initState Spy = Key`shrK`bad"  | 
|
34  | 
||
35  | 
end  | 
|
| 2032 | 36  | 
|
| 1934 | 37  | 
|
| 13926 | 38  | 
subsection{*Basic properties of shrK*}
 | 
39  | 
||
40  | 
(*Injectiveness: Agents' long-term keys are distinct.*)  | 
|
| 
18749
 
31c2af8b0c60
replacement of bool by a datatype (making problems first-order). More lemma names
 
paulson 
parents: 
17744 
diff
changeset
 | 
41  | 
lemmas shrK_injective = inj_shrK [THEN inj_eq]  | 
| 
 
31c2af8b0c60
replacement of bool by a datatype (making problems first-order). More lemma names
 
paulson 
parents: 
17744 
diff
changeset
 | 
42  | 
declare shrK_injective [iff]  | 
| 13926 | 43  | 
|
44  | 
lemma invKey_K [simp]: "invKey K = K"  | 
|
45  | 
apply (insert isSym_keys)  | 
|
46  | 
apply (simp add: symKeys_def)  | 
|
47  | 
done  | 
|
48  | 
||
49  | 
||
50  | 
lemma analz_Decrypt' [dest]:  | 
|
51  | 
"[| Crypt K X \<in> analz H; Key K \<in> analz H |] ==> X \<in> analz H"  | 
|
52  | 
by auto  | 
|
53  | 
||
54  | 
text{*Now cancel the @{text dest} attribute given to
 | 
|
55  | 
 @{text analz.Decrypt} in its declaration.*}
 | 
|
| 
14200
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
56  | 
declare analz.Decrypt [rule del]  | 
| 13926 | 57  | 
|
58  | 
text{*Rewrites should not refer to  @{term "initState(Friend i)"} because
 | 
|
59  | 
that expression is not in normal form.*}  | 
|
60  | 
||
61  | 
lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
 | 
|
62  | 
apply (unfold keysFor_def)  | 
|
63  | 
apply (induct_tac "C", auto)  | 
|
64  | 
done  | 
|
65  | 
||
66  | 
(*Specialized to shared-key model: no @{term invKey}*)
 | 
|
67  | 
lemma keysFor_parts_insert:  | 
|
| 14983 | 68  | 
"[| K \<in> keysFor (parts (insert X G)); X \<in> synth (analz H) |]  | 
| 39216 | 69  | 
==> K \<in> keysFor (parts (G \<union> H)) | Key K \<in> parts H"  | 
| 13926 | 70  | 
by (force dest: Event.keysFor_parts_insert)  | 
71  | 
||
72  | 
lemma Crypt_imp_keysFor: "Crypt K X \<in> H ==> K \<in> keysFor H"  | 
|
73  | 
by (drule Crypt_imp_invKey_keysFor, simp)  | 
|
74  | 
||
75  | 
||
76  | 
subsection{*Function "knows"*}
 | 
|
77  | 
||
78  | 
(*Spy sees shared keys of agents!*)  | 
|
79  | 
lemma Spy_knows_Spy_bad [intro!]: "A: bad ==> Key (shrK A) \<in> knows Spy evs"  | 
|
80  | 
apply (induct_tac "evs")  | 
|
81  | 
apply (simp_all (no_asm_simp) add: imageI knows_Cons split add: event.split)  | 
|
82  | 
done  | 
|
83  | 
||
84  | 
(*For case analysis on whether or not an agent is compromised*)  | 
|
85  | 
lemma Crypt_Spy_analz_bad: "[| Crypt (shrK A) X \<in> analz (knows Spy evs); A: bad |]  | 
|
86  | 
==> X \<in> analz (knows Spy evs)"  | 
|
87  | 
apply (force dest!: analz.Decrypt)  | 
|
88  | 
done  | 
|
89  | 
||
90  | 
||
91  | 
(** Fresh keys never clash with long-term shared keys **)  | 
|
92  | 
||
93  | 
(*Agents see their own shared keys!*)  | 
|
94  | 
lemma shrK_in_initState [iff]: "Key (shrK A) \<in> initState A"  | 
|
95  | 
by (induct_tac "A", auto)  | 
|
96  | 
||
97  | 
lemma shrK_in_used [iff]: "Key (shrK A) \<in> used evs"  | 
|
98  | 
by (rule initState_into_used, blast)  | 
|
99  | 
||
100  | 
(*Used in parts_induct_tac and analz_Fake_tac to distinguish session keys  | 
|
101  | 
from long-term shared keys*)  | 
|
102  | 
lemma Key_not_used [simp]: "Key K \<notin> used evs ==> K \<notin> range shrK"  | 
|
103  | 
by blast  | 
|
104  | 
||
105  | 
lemma shrK_neq [simp]: "Key K \<notin> used evs ==> shrK B \<noteq> K"  | 
|
106  | 
by blast  | 
|
107  | 
||
| 17744 | 108  | 
lemmas shrK_sym_neq = shrK_neq [THEN not_sym]  | 
109  | 
declare shrK_sym_neq [simp]  | 
|
| 13926 | 110  | 
|
111  | 
||
112  | 
subsection{*Fresh nonces*}
 | 
|
113  | 
||
114  | 
lemma Nonce_notin_initState [iff]: "Nonce N \<notin> parts (initState B)"  | 
|
115  | 
by (induct_tac "B", auto)  | 
|
116  | 
||
117  | 
lemma Nonce_notin_used_empty [simp]: "Nonce N \<notin> used []"  | 
|
118  | 
apply (simp (no_asm) add: used_Nil)  | 
|
119  | 
done  | 
|
120  | 
||
121  | 
||
122  | 
subsection{*Supply fresh nonces for possibility theorems.*}
 | 
|
123  | 
||
124  | 
(*In any trace, there is an upper bound N on the greatest nonce in use.*)  | 
|
125  | 
lemma Nonce_supply_lemma: "\<exists>N. ALL n. N<=n --> Nonce n \<notin> used evs"  | 
|
126  | 
apply (induct_tac "evs")  | 
|
127  | 
apply (rule_tac x = 0 in exI)  | 
|
128  | 
apply (simp_all (no_asm_simp) add: used_Cons split add: event.split)  | 
|
129  | 
apply safe  | 
|
130  | 
apply (rule msg_Nonce_supply [THEN exE], blast elim!: add_leE)+  | 
|
131  | 
done  | 
|
132  | 
||
133  | 
lemma Nonce_supply1: "\<exists>N. Nonce N \<notin> used evs"  | 
|
134  | 
by (rule Nonce_supply_lemma [THEN exE], blast)  | 
|
135  | 
||
136  | 
lemma Nonce_supply2: "\<exists>N N'. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' & N \<noteq> N'"  | 
|
137  | 
apply (cut_tac evs = evs in Nonce_supply_lemma)  | 
|
138  | 
apply (cut_tac evs = "evs'" in Nonce_supply_lemma, clarify)  | 
|
139  | 
apply (rule_tac x = N in exI)  | 
|
| 
14200
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
140  | 
apply (rule_tac x = "Suc (N+Na)" in exI)  | 
| 13926 | 141  | 
apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le)  | 
142  | 
done  | 
|
143  | 
||
144  | 
lemma Nonce_supply3: "\<exists>N N' N''. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' &  | 
|
145  | 
Nonce N'' \<notin> used evs'' & N \<noteq> N' & N' \<noteq> N'' & N \<noteq> N''"  | 
|
146  | 
apply (cut_tac evs = evs in Nonce_supply_lemma)  | 
|
147  | 
apply (cut_tac evs = "evs'" in Nonce_supply_lemma)  | 
|
148  | 
apply (cut_tac evs = "evs''" in Nonce_supply_lemma, clarify)  | 
|
149  | 
apply (rule_tac x = N in exI)  | 
|
| 
14200
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
150  | 
apply (rule_tac x = "Suc (N+Na)" in exI)  | 
| 13926 | 151  | 
apply (rule_tac x = "Suc (Suc (N+Na+Nb))" in exI)  | 
152  | 
apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le)  | 
|
153  | 
done  | 
|
154  | 
||
155  | 
lemma Nonce_supply: "Nonce (@ N. Nonce N \<notin> used evs) \<notin> used evs"  | 
|
156  | 
apply (rule Nonce_supply_lemma [THEN exE])  | 
|
157  | 
apply (rule someI, blast)  | 
|
158  | 
done  | 
|
159  | 
||
| 
14200
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
160  | 
text{*Unlike the corresponding property of nonces, we cannot prove
 | 
| 
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
161  | 
    @{term "finite KK ==> \<exists>K. K \<notin> KK & Key K \<notin> used evs"}.
 | 
| 
2516
 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 
paulson 
parents: 
2451 
diff
changeset
 | 
162  | 
We have infinitely many agents and there is nothing to stop their  | 
| 
14200
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
163  | 
long-term keys from exhausting all the natural numbers. Instead,  | 
| 
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
164  | 
possibility theorems must assume the existence of a few keys.*}  | 
| 13926 | 165  | 
|
166  | 
||
| 13956 | 167  | 
subsection{*Specialized Rewriting for Theorems About @{term analz} and Image*}
 | 
| 13926 | 168  | 
|
169  | 
lemma subset_Compl_range: "A <= - (range shrK) ==> shrK x \<notin> A"  | 
|
170  | 
by blast  | 
|
171  | 
||
172  | 
lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} \<union> H"
 | 
|
173  | 
by blast  | 
|
174  | 
||
| 13956 | 175  | 
lemma insert_Key_image: "insert (Key K) (Key`KK \<union> C) = Key`(insert K KK) \<union> C"  | 
| 13926 | 176  | 
by blast  | 
177  | 
||
178  | 
(** Reverse the normal simplification of "image" to build up (not break down)  | 
|
179  | 
the set of keys. Use analz_insert_eq with (Un_upper2 RS analz_mono) to  | 
|
180  | 
erase occurrences of forwarded message components (X). **)  | 
|
181  | 
||
182  | 
lemmas analz_image_freshK_simps =  | 
|
183  | 
       simp_thms mem_simps --{*these two allow its use with @{text "only:"}*}
 | 
|
184  | 
disj_comms  | 
|
185  | 
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset  | 
|
186  | 
analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD]  | 
|
187  | 
insert_Key_singleton subset_Compl_range  | 
|
188  | 
Key_not_used insert_Key_image Un_assoc [THEN sym]  | 
|
189  | 
||
190  | 
(*Lemma for the trivial direction of the if-and-only-if*)  | 
|
191  | 
lemma analz_image_freshK_lemma:  | 
|
192  | 
"(Key K \<in> analz (Key`nE \<union> H)) --> (K \<in> nE | Key K \<in> analz H) ==>  | 
|
193  | 
(Key K \<in> analz (Key`nE \<union> H)) = (K \<in> nE | Key K \<in> analz H)"  | 
|
194  | 
by (blast intro: analz_mono [THEN [2] rev_subsetD])  | 
|
195  | 
||
| 24122 | 196  | 
|
197  | 
subsection{*Tactics for possibility theorems*}
 | 
|
198  | 
||
| 13926 | 199  | 
ML  | 
200  | 
{*
 | 
|
| 24122 | 201  | 
structure Shared =  | 
202  | 
struct  | 
|
203  | 
||
204  | 
(*Omitting used_Says makes the tactic much faster: it leaves expressions  | 
|
205  | 
such as Nonce ?N \<notin> used evs that match Nonce_supply*)  | 
|
206  | 
fun possibility_tac ctxt =  | 
|
207  | 
(REPEAT  | 
|
| 
32149
 
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
 
wenzelm 
parents: 
30549 
diff
changeset
 | 
208  | 
(ALLGOALS (simp_tac (simpset_of ctxt  | 
| 24122 | 209  | 
          delsimps [@{thm used_Says}, @{thm used_Notes}, @{thm used_Gets}] 
 | 
210  | 
setSolver safe_solver))  | 
|
211  | 
THEN  | 
|
212  | 
REPEAT_FIRST (eq_assume_tac ORELSE'  | 
|
213  | 
                   resolve_tac [refl, conjI, @{thm Nonce_supply}])))
 | 
|
| 13926 | 214  | 
|
| 24122 | 215  | 
(*For harder protocols (such as Recur) where we have to set up some  | 
216  | 
nonces and keys initially*)  | 
|
217  | 
fun basic_possibility_tac ctxt =  | 
|
218  | 
REPEAT  | 
|
| 
32149
 
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
 
wenzelm 
parents: 
30549 
diff
changeset
 | 
219  | 
(ALLGOALS (asm_simp_tac (simpset_of ctxt setSolver safe_solver))  | 
| 24122 | 220  | 
THEN  | 
221  | 
REPEAT_FIRST (resolve_tac [refl, conjI]))  | 
|
222  | 
||
223  | 
||
224  | 
val analz_image_freshK_ss =  | 
|
225  | 
  @{simpset} delsimps [image_insert, image_Un]
 | 
|
226  | 
      delsimps [@{thm imp_disjL}]    (*reduces blow-up*)
 | 
|
227  | 
      addsimps @{thms analz_image_freshK_simps}
 | 
|
228  | 
||
229  | 
end  | 
|
| 13926 | 230  | 
*}  | 
231  | 
||
232  | 
||
| 11104 | 233  | 
|
234  | 
(*Lets blast_tac perform this step without needing the simplifier*)  | 
|
235  | 
lemma invKey_shrK_iff [iff]:  | 
|
| 
11270
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11230 
diff
changeset
 | 
236  | 
"(Key (invKey K) \<in> X) = (Key K \<in> X)"  | 
| 13507 | 237  | 
by auto  | 
| 11104 | 238  | 
|
239  | 
(*Specialized methods*)  | 
|
240  | 
||
241  | 
method_setup analz_freshK = {*
 | 
|
| 30549 | 242  | 
Scan.succeed (fn ctxt =>  | 
| 
30510
 
4120fc59dd85
unified type Proof.method and pervasive METHOD combinators;
 
wenzelm 
parents: 
24122 
diff
changeset
 | 
243  | 
(SIMPLE_METHOD  | 
| 21588 | 244  | 
(EVERY [REPEAT_FIRST (resolve_tac [allI, ballI, impI]),  | 
| 24122 | 245  | 
          REPEAT_FIRST (rtac @{thm analz_image_freshK_lemma}),
 | 
246  | 
ALLGOALS (asm_simp_tac (Simplifier.context ctxt Shared.analz_image_freshK_ss))]))) *}  | 
|
| 11104 | 247  | 
"for proving the Session Key Compromise theorem"  | 
248  | 
||
249  | 
method_setup possibility = {*
 | 
|
| 30549 | 250  | 
Scan.succeed (fn ctxt => SIMPLE_METHOD (Shared.possibility_tac ctxt)) *}  | 
| 
23894
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
251  | 
"for proving possibility theorems"  | 
| 
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
252  | 
|
| 
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
253  | 
method_setup basic_possibility = {*
 | 
| 30549 | 254  | 
Scan.succeed (fn ctxt => SIMPLE_METHOD (Shared.basic_possibility_tac ctxt)) *}  | 
| 11104 | 255  | 
"for proving possibility theorems"  | 
| 
2516
 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 
paulson 
parents: 
2451 
diff
changeset
 | 
256  | 
|
| 
12415
 
74977582a585
Slightly generalized the agents' knowledge theorems
 
paulson 
parents: 
11270 
diff
changeset
 | 
257  | 
lemma knows_subset_knows_Cons: "knows A evs <= knows A (e # evs)"  | 
| 
23894
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
258  | 
by (induct e) (auto simp: knows_Cons)  | 
| 
12415
 
74977582a585
Slightly generalized the agents' knowledge theorems
 
paulson 
parents: 
11270 
diff
changeset
 | 
259  | 
|
| 1934 | 260  | 
end  |