author | wenzelm |
Tue, 11 Mar 1997 16:39:20 +0100 | |
changeset 2789 | 69cf3aea45ee |
parent 1459 | d12da312eff4 |
child 3537 | 79ac9b475621 |
permissions | -rw-r--r-- |
1459 | 1 |
(* Title: CCL/typecheck |
0 | 2 |
ID: $Id$ |
1459 | 3 |
Author: Martin Coen, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1993 University of Cambridge |
5 |
||
6 |
*) |
|
7 |
||
8 |
(*** Lemmas for constructors and subtypes ***) |
|
9 |
||
10 |
(* 0-ary constructors do not need additional rules as they are handled *) |
|
11 |
(* correctly by applying SubtypeI *) |
|
12 |
(* |
|
13 |
val Subtype_canTs = |
|
14 |
let fun tac prems = cut_facts_tac prems 1 THEN |
|
15 |
REPEAT (ares_tac (SubtypeI::canTs@icanTs) 1 ORELSE |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
289
diff
changeset
|
16 |
etac SubtypeE 1) |
0 | 17 |
fun solve s = prove_goal Type.thy s (fn prems => [tac prems]) |
18 |
in map solve |
|
19 |
["P(one) ==> one : {x:Unit.P(x)}", |
|
20 |
"P(true) ==> true : {x:Bool.P(x)}", |
|
21 |
"P(false) ==> false : {x:Bool.P(x)}", |
|
22 |
"a : {x:A. b:{y:B(a).P(<x,y>)}} ==> <a,b> : {x:Sigma(A,B).P(x)}", |
|
23 |
"a : {x:A.P(inl(x))} ==> inl(a) : {x:A+B.P(x)}", |
|
24 |
"b : {x:B.P(inr(x))} ==> inr(b) : {x:A+B.P(x)}", |
|
25 |
"P(zero) ==> zero : {x:Nat.P(x)}", |
|
26 |
"a : {x:Nat.P(succ(x))} ==> succ(a) : {x:Nat.P(x)}", |
|
27 |
"P([]) ==> [] : {x:List(A).P(x)}", |
|
289 | 28 |
"h : {x:A. t : {y:List(A).P(x$y)}} ==> h$t : {x:List(A).P(x)}" |
0 | 29 |
] end; |
30 |
*) |
|
31 |
val Subtype_canTs = |
|
32 |
let fun tac prems = cut_facts_tac prems 1 THEN |
|
33 |
REPEAT (ares_tac (SubtypeI::canTs@icanTs) 1 ORELSE |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
289
diff
changeset
|
34 |
etac SubtypeE 1) |
0 | 35 |
fun solve s = prove_goal Type.thy s (fn prems => [tac prems]) |
36 |
in map solve |
|
37 |
["a : {x:A. b:{y:B(a).P(<x,y>)}} ==> <a,b> : {x:Sigma(A,B).P(x)}", |
|
38 |
"a : {x:A.P(inl(x))} ==> inl(a) : {x:A+B.P(x)}", |
|
39 |
"b : {x:B.P(inr(x))} ==> inr(b) : {x:A+B.P(x)}", |
|
40 |
"a : {x:Nat.P(succ(x))} ==> succ(a) : {x:Nat.P(x)}", |
|
289 | 41 |
"h : {x:A. t : {y:List(A).P(x$y)}} ==> h$t : {x:List(A).P(x)}" |
0 | 42 |
] end; |
43 |
||
44 |
val prems = goal Type.thy |
|
45 |
"[| f(t):B; ~t=bot |] ==> let x be t in f(x) : B"; |
|
46 |
by (cut_facts_tac prems 1); |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
289
diff
changeset
|
47 |
by (etac (letB RS ssubst) 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
289
diff
changeset
|
48 |
by (assume_tac 1); |
757 | 49 |
qed "letT"; |
0 | 50 |
|
51 |
val prems = goal Type.thy |
|
52 |
"[| a:A; f : Pi(A,B) |] ==> f ` a : B(a)"; |
|
53 |
by (REPEAT (ares_tac (applyT::prems) 1)); |
|
757 | 54 |
qed "applyT2"; |
0 | 55 |
|
56 |
val prems = goal Type.thy |
|
57 |
"[| a:A; a:A ==> P(a) |] ==> a : {x:A.P(x)}"; |
|
58 |
by (fast_tac (type_cs addSIs prems) 1); |
|
757 | 59 |
qed "rcall_lemma1"; |
0 | 60 |
|
61 |
val prems = goal Type.thy |
|
62 |
"[| a:{x:A.Q(x)}; [| a:A; Q(a) |] ==> P(a) |] ==> a : {x:A.P(x)}"; |
|
63 |
by (cut_facts_tac prems 1); |
|
64 |
by (fast_tac (type_cs addSIs prems) 1); |
|
757 | 65 |
qed "rcall_lemma2"; |
0 | 66 |
|
67 |
val rcall_lemmas = [asm_rl,rcall_lemma1,SubtypeD1,rcall_lemma2]; |
|
68 |
||
69 |
(***********************************TYPECHECKING*************************************) |
|
70 |
||
71 |
fun bvars (Const("all",_) $ Abs(s,_,t)) l = bvars t (s::l) |
|
72 |
| bvars _ l = l; |
|
73 |
||
74 |
fun get_bno l n (Const("all",_) $ Abs(s,_,t)) = get_bno (s::l) n t |
|
75 |
| get_bno l n (Const("Trueprop",_) $ t) = get_bno l n t |
|
76 |
| get_bno l n (Const("Ball",_) $ _ $ Abs(s,_,t)) = get_bno (s::l) (n+1) t |
|
77 |
| get_bno l n (Const("op :",_) $ t $ _) = get_bno l n t |
|
78 |
| get_bno l n (t $ s) = get_bno l n t |
|
79 |
| get_bno l n (Bound m) = (m-length(l),n); |
|
80 |
||
81 |
(* Not a great way of identifying induction hypothesis! *) |
|
82 |
fun could_IH x = could_unify(x,hd (prems_of rcallT)) orelse |
|
83 |
could_unify(x,hd (prems_of rcall2T)) orelse |
|
84 |
could_unify(x,hd (prems_of rcall3T)); |
|
85 |
||
86 |
fun IHinst tac rls i = STATE (fn state => |
|
87 |
let val (_,_,Bi,_) = dest_state(state,i); |
|
88 |
val bvs = bvars Bi []; |
|
89 |
val ihs = filter could_IH (Logic.strip_assums_hyp Bi); |
|
90 |
val rnames = map (fn x=> |
|
91 |
let val (a,b) = get_bno [] 0 x |
|
92 |
in (nth_elem(a,bvs),b) end) ihs; |
|
93 |
fun try_IHs [] = no_tac |
|
94 |
| try_IHs ((x,y)::xs) = tac [("g",x)] (nth_elem(y-1,rls)) i ORELSE (try_IHs xs); |
|
95 |
in try_IHs rnames end); |
|
96 |
||
97 |
(*****) |
|
98 |
||
99 |
val type_rls = canTs@icanTs@(applyT2::ncanTs)@incanTs@ |
|
100 |
precTs@letrecTs@[letT]@Subtype_canTs; |
|
101 |
||
102 |
fun is_rigid_prog t = |
|
103 |
case (Logic.strip_assums_concl t) of |
|
104 |
(Const("Trueprop",_) $ (Const("op :",_) $ a $ _)) => (term_vars a = []) |
|
105 |
| _ => false; |
|
106 |
||
107 |
fun rcall_tac i = let fun tac ps rl i = res_inst_tac ps rl i THEN atac i; |
|
108 |
in IHinst tac rcallTs i end THEN |
|
109 |
eresolve_tac rcall_lemmas i; |
|
110 |
||
111 |
fun raw_step_tac prems i = ares_tac (prems@type_rls) i ORELSE |
|
112 |
rcall_tac i ORELSE |
|
113 |
ematch_tac [SubtypeE] i ORELSE |
|
114 |
match_tac [SubtypeI] i; |
|
115 |
||
116 |
fun tc_step_tac prems i = STATE(fn state => |
|
117 |
if (i>length(prems_of state)) |
|
118 |
then no_tac |
|
119 |
else let val (_,_,c,_) = dest_state(state,i) |
|
120 |
in if is_rigid_prog c then raw_step_tac prems i else no_tac |
|
121 |
end); |
|
122 |
||
123 |
fun typechk_tac rls i = SELECT_GOAL (REPEAT_FIRST (tc_step_tac rls)) i; |
|
124 |
||
125 |
val tac = typechk_tac [] 1; |
|
126 |
||
127 |
||
128 |
(*** Clean up Correctness Condictions ***) |
|
129 |
||
130 |
val clean_ccs_tac = REPEAT_FIRST (eresolve_tac ([SubtypeE]@rmIHs) ORELSE' |
|
131 |
hyp_subst_tac); |
|
132 |
||
133 |
val clean_ccs_tac = |
|
134 |
let fun tac ps rl i = eres_inst_tac ps rl i THEN atac i; |
|
135 |
in TRY (REPEAT_FIRST (IHinst tac hyprcallTs ORELSE' |
|
136 |
eresolve_tac ([asm_rl,SubtypeE]@rmIHs) ORELSE' |
|
137 |
hyp_subst_tac)) end; |
|
138 |
||
139 |
fun gen_ccs_tac rls i = SELECT_GOAL (REPEAT_FIRST (tc_step_tac rls) THEN |
|
140 |
clean_ccs_tac) i; |
|
141 |
||
142 |