author | wenzelm |
Wed, 28 Dec 2022 12:30:18 +0100 | |
changeset 76798 | 69d8d16c5612 |
parent 73932 | fd21b4a93043 |
child 80914 | d97fdabd9e2b |
permissions | -rw-r--r-- |
47613 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
68778 | 3 |
subsection "Widening and Narrowing" |
4 |
||
47613 | 5 |
theory Abs_Int3 |
6 |
imports Abs_Int2_ivl |
|
7 |
begin |
|
8 |
||
9 |
class widen = |
|
10 |
fixes widen :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infix "\<nabla>" 65) |
|
11 |
||
12 |
class narrow = |
|
13 |
fixes narrow :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infix "\<triangle>" 65) |
|
14 |
||
52504 | 15 |
class wn = widen + narrow + order + |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
16 |
assumes widen1: "x \<le> x \<nabla> y" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
17 |
assumes widen2: "y \<le> x \<nabla> y" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
18 |
assumes narrow1: "y \<le> x \<Longrightarrow> y \<le> x \<triangle> y" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
19 |
assumes narrow2: "y \<le> x \<Longrightarrow> x \<triangle> y \<le> x" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
20 |
begin |
47613 | 21 |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
22 |
lemma narrowid[simp]: "x \<triangle> x = x" |
73411 | 23 |
by (rule order.antisym) (simp_all add: narrow1 narrow2) |
47613 | 24 |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
25 |
end |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
26 |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52504
diff
changeset
|
27 |
lemma top_widen_top[simp]: "\<top> \<nabla> \<top> = (\<top>::_::{wn,order_top})" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
28 |
by (metis eq_iff top_greatest widen2) |
47613 | 29 |
|
52504 | 30 |
instantiation ivl :: wn |
47613 | 31 |
begin |
32 |
||
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
33 |
definition "widen_rep p1 p2 = |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
34 |
(if is_empty_rep p1 then p2 else if is_empty_rep p2 then p1 else |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
35 |
let (l1,h1) = p1; (l2,h2) = p2 |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
36 |
in (if l2 < l1 then Minf else l1, if h1 < h2 then Pinf else h1))" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
37 |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
38 |
lift_definition widen_ivl :: "ivl \<Rightarrow> ivl \<Rightarrow> ivl" is widen_rep |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
39 |
by(auto simp: widen_rep_def eq_ivl_iff) |
47613 | 40 |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
41 |
definition "narrow_rep p1 p2 = |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
42 |
(if is_empty_rep p1 \<or> is_empty_rep p2 then empty_rep else |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
43 |
let (l1,h1) = p1; (l2,h2) = p2 |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
44 |
in (if l1 = Minf then l2 else l1, if h1 = Pinf then h2 else h1))" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
45 |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
46 |
lift_definition narrow_ivl :: "ivl \<Rightarrow> ivl \<Rightarrow> ivl" is narrow_rep |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
47 |
by(auto simp: narrow_rep_def eq_ivl_iff) |
47613 | 48 |
|
49 |
instance |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
50 |
proof |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
51 |
qed (transfer, auto simp: widen_rep_def narrow_rep_def le_iff_subset \<gamma>_rep_def subset_eq is_empty_rep_def empty_rep_def eq_ivl_def split: if_splits extended.splits)+ |
47613 | 52 |
|
53 |
end |
|
54 |
||
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52504
diff
changeset
|
55 |
instantiation st :: ("{order_top,wn}")wn |
47613 | 56 |
begin |
57 |
||
67399 | 58 |
lift_definition widen_st :: "'a st \<Rightarrow> 'a st \<Rightarrow> 'a st" is "map2_st_rep (\<nabla>)" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
59 |
by(auto simp: eq_st_def) |
47613 | 60 |
|
67399 | 61 |
lift_definition narrow_st :: "'a st \<Rightarrow> 'a st \<Rightarrow> 'a st" is "map2_st_rep (\<triangle>)" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
62 |
by(auto simp: eq_st_def) |
47613 | 63 |
|
64 |
instance |
|
61179 | 65 |
proof (standard, goal_cases) |
66 |
case 1 thus ?case by transfer (simp add: less_eq_st_rep_iff widen1) |
|
47613 | 67 |
next |
61179 | 68 |
case 2 thus ?case by transfer (simp add: less_eq_st_rep_iff widen2) |
47613 | 69 |
next |
61179 | 70 |
case 3 thus ?case by transfer (simp add: less_eq_st_rep_iff narrow1) |
47613 | 71 |
next |
61179 | 72 |
case 4 thus ?case by transfer (simp add: less_eq_st_rep_iff narrow2) |
47613 | 73 |
qed |
74 |
||
75 |
end |
|
76 |
||
77 |
||
52504 | 78 |
instantiation option :: (wn)wn |
47613 | 79 |
begin |
80 |
||
81 |
fun widen_option where |
|
82 |
"None \<nabla> x = x" | |
|
83 |
"x \<nabla> None = x" | |
|
84 |
"(Some x) \<nabla> (Some y) = Some(x \<nabla> y)" |
|
85 |
||
86 |
fun narrow_option where |
|
87 |
"None \<triangle> x = None" | |
|
88 |
"x \<triangle> None = None" | |
|
89 |
"(Some x) \<triangle> (Some y) = Some(x \<triangle> y)" |
|
90 |
||
91 |
instance |
|
61179 | 92 |
proof (standard, goal_cases) |
93 |
case (1 x y) thus ?case |
|
47613 | 94 |
by(induct x y rule: widen_option.induct)(simp_all add: widen1) |
95 |
next |
|
61179 | 96 |
case (2 x y) thus ?case |
47613 | 97 |
by(induct x y rule: widen_option.induct)(simp_all add: widen2) |
98 |
next |
|
61179 | 99 |
case (3 x y) thus ?case |
47613 | 100 |
by(induct x y rule: narrow_option.induct) (simp_all add: narrow1) |
101 |
next |
|
61179 | 102 |
case (4 y x) thus ?case |
47613 | 103 |
by(induct x y rule: narrow_option.induct) (simp_all add: narrow2) |
104 |
qed |
|
105 |
||
106 |
end |
|
107 |
||
52019
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
108 |
definition map2_acom :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a acom \<Rightarrow> 'a acom \<Rightarrow> 'a acom" |
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
109 |
where |
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
110 |
"map2_acom f C1 C2 = annotate (\<lambda>p. f (anno C1 p) (anno C2 p)) (strip C1)" |
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
111 |
|
52504 | 112 |
|
49548 | 113 |
instantiation acom :: (widen)widen |
114 |
begin |
|
67399 | 115 |
definition "widen_acom = map2_acom (\<nabla>)" |
49548 | 116 |
instance .. |
117 |
end |
|
118 |
||
119 |
instantiation acom :: (narrow)narrow |
|
120 |
begin |
|
67399 | 121 |
definition "narrow_acom = map2_acom (\<triangle>)" |
49548 | 122 |
instance .. |
123 |
end |
|
124 |
||
47613 | 125 |
lemma strip_map2_acom[simp]: |
126 |
"strip C1 = strip C2 \<Longrightarrow> strip(map2_acom f C1 C2) = strip C1" |
|
52019
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
127 |
by(simp add: map2_acom_def) |
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
128 |
(*by(induct f C1 C2 rule: map2_acom.induct) simp_all*) |
47613 | 129 |
|
130 |
lemma strip_widen_acom[simp]: |
|
131 |
"strip C1 = strip C2 \<Longrightarrow> strip(C1 \<nabla> C2) = strip C1" |
|
49548 | 132 |
by(simp add: widen_acom_def) |
47613 | 133 |
|
134 |
lemma strip_narrow_acom[simp]: |
|
135 |
"strip C1 = strip C2 \<Longrightarrow> strip(C1 \<triangle> C2) = strip C1" |
|
49548 | 136 |
by(simp add: narrow_acom_def) |
47613 | 137 |
|
52504 | 138 |
lemma narrow1_acom: "C2 \<le> C1 \<Longrightarrow> C2 \<le> C1 \<triangle> (C2::'a::wn acom)" |
52019
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
139 |
by(simp add: narrow_acom_def narrow1 map2_acom_def less_eq_acom_def size_annos) |
47613 | 140 |
|
52504 | 141 |
lemma narrow2_acom: "C2 \<le> C1 \<Longrightarrow> C1 \<triangle> (C2::'a::wn acom) \<le> C1" |
52019
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
142 |
by(simp add: narrow_acom_def narrow2 map2_acom_def less_eq_acom_def size_annos) |
47613 | 143 |
|
144 |
||
52019
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
145 |
subsubsection "Pre-fixpoint computation" |
47613 | 146 |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
147 |
definition iter_widen :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> ('a::{order,widen})option" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
148 |
where "iter_widen f = while_option (\<lambda>x. \<not> f x \<le> x) (\<lambda>x. x \<nabla> f x)" |
47613 | 149 |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
150 |
definition iter_narrow :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> ('a::{order,narrow})option" |
51385
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
151 |
where "iter_narrow f = while_option (\<lambda>x. x \<triangle> f x < x) (\<lambda>x. x \<triangle> f x)" |
47613 | 152 |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
153 |
definition pfp_wn :: "('a::{order,widen,narrow} \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a option" |
49548 | 154 |
where "pfp_wn f x = |
49576 | 155 |
(case iter_widen f x of None \<Rightarrow> None | Some p \<Rightarrow> iter_narrow f p)" |
47613 | 156 |
|
157 |
||
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
158 |
lemma iter_widen_pfp: "iter_widen f x = Some p \<Longrightarrow> f p \<le> p" |
47613 | 159 |
by(auto simp add: iter_widen_def dest: while_option_stop) |
160 |
||
161 |
lemma iter_widen_inv: |
|
162 |
assumes "!!x. P x \<Longrightarrow> P(f x)" "!!x1 x2. P x1 \<Longrightarrow> P x2 \<Longrightarrow> P(x1 \<nabla> x2)" and "P x" |
|
163 |
and "iter_widen f x = Some y" shows "P y" |
|
164 |
using while_option_rule[where P = "P", OF _ assms(4)[unfolded iter_widen_def]] |
|
165 |
by (blast intro: assms(1-3)) |
|
166 |
||
167 |
lemma strip_while: fixes f :: "'a acom \<Rightarrow> 'a acom" |
|
168 |
assumes "\<forall>C. strip (f C) = strip C" and "while_option P f C = Some C'" |
|
169 |
shows "strip C' = strip C" |
|
170 |
using while_option_rule[where P = "\<lambda>C'. strip C' = strip C", OF _ assms(2)] |
|
171 |
by (metis assms(1)) |
|
172 |
||
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
173 |
lemma strip_iter_widen: fixes f :: "'a::{order,widen} acom \<Rightarrow> 'a acom" |
47613 | 174 |
assumes "\<forall>C. strip (f C) = strip C" and "iter_widen f C = Some C'" |
175 |
shows "strip C' = strip C" |
|
176 |
proof- |
|
177 |
have "\<forall>C. strip(C \<nabla> f C) = strip C" |
|
178 |
by (metis assms(1) strip_map2_acom widen_acom_def) |
|
179 |
from strip_while[OF this] assms(2) show ?thesis by(simp add: iter_widen_def) |
|
180 |
qed |
|
181 |
||
182 |
lemma iter_narrow_pfp: |
|
52504 | 183 |
assumes mono: "!!x1 x2::_::wn acom. P x1 \<Longrightarrow> P x2 \<Longrightarrow> x1 \<le> x2 \<Longrightarrow> f x1 \<le> f x2" |
49576 | 184 |
and Pinv: "!!x. P x \<Longrightarrow> P(f x)" "!!x1 x2. P x1 \<Longrightarrow> P x2 \<Longrightarrow> P(x1 \<triangle> x2)" |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
185 |
and "P p0" and "f p0 \<le> p0" and "iter_narrow f p0 = Some p" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
186 |
shows "P p \<and> f p \<le> p" |
47613 | 187 |
proof- |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
188 |
let ?Q = "%p. P p \<and> f p \<le> p \<and> p \<le> p0" |
67019
7a3724078363
Replaced { } proofs by local lemmas; added Hoare logic with logical variables.
nipkow
parents:
64267
diff
changeset
|
189 |
have "?Q (p \<triangle> f p)" if Q: "?Q p" for p |
7a3724078363
Replaced { } proofs by local lemmas; added Hoare logic with logical variables.
nipkow
parents:
64267
diff
changeset
|
190 |
proof auto |
7a3724078363
Replaced { } proofs by local lemmas; added Hoare logic with logical variables.
nipkow
parents:
64267
diff
changeset
|
191 |
note P = conjunct1[OF Q] and 12 = conjunct2[OF Q] |
47613 | 192 |
note 1 = conjunct1[OF 12] and 2 = conjunct2[OF 12] |
49576 | 193 |
let ?p' = "p \<triangle> f p" |
67019
7a3724078363
Replaced { } proofs by local lemmas; added Hoare logic with logical variables.
nipkow
parents:
64267
diff
changeset
|
194 |
show "P ?p'" by (blast intro: P Pinv) |
67406 | 195 |
have "f ?p' \<le> f p" by(rule mono[OF \<open>P (p \<triangle> f p)\<close> P narrow2_acom[OF 1]]) |
67019
7a3724078363
Replaced { } proofs by local lemmas; added Hoare logic with logical variables.
nipkow
parents:
64267
diff
changeset
|
196 |
also have "\<dots> \<le> ?p'" by(rule narrow1_acom[OF 1]) |
7a3724078363
Replaced { } proofs by local lemmas; added Hoare logic with logical variables.
nipkow
parents:
64267
diff
changeset
|
197 |
finally show "f ?p' \<le> ?p'" . |
7a3724078363
Replaced { } proofs by local lemmas; added Hoare logic with logical variables.
nipkow
parents:
64267
diff
changeset
|
198 |
have "?p' \<le> p" by (rule narrow2_acom[OF 1]) |
7a3724078363
Replaced { } proofs by local lemmas; added Hoare logic with logical variables.
nipkow
parents:
64267
diff
changeset
|
199 |
also have "p \<le> p0" by(rule 2) |
7a3724078363
Replaced { } proofs by local lemmas; added Hoare logic with logical variables.
nipkow
parents:
64267
diff
changeset
|
200 |
finally show "?p' \<le> p0" . |
7a3724078363
Replaced { } proofs by local lemmas; added Hoare logic with logical variables.
nipkow
parents:
64267
diff
changeset
|
201 |
qed |
47613 | 202 |
thus ?thesis |
203 |
using while_option_rule[where P = ?Q, OF _ assms(6)[simplified iter_narrow_def]] |
|
204 |
by (blast intro: assms(4,5) le_refl) |
|
205 |
qed |
|
206 |
||
207 |
lemma pfp_wn_pfp: |
|
52504 | 208 |
assumes mono: "!!x1 x2::_::wn acom. P x1 \<Longrightarrow> P x2 \<Longrightarrow> x1 \<le> x2 \<Longrightarrow> f x1 \<le> f x2" |
49548 | 209 |
and Pinv: "P x" "!!x. P x \<Longrightarrow> P(f x)" |
210 |
"!!x1 x2. P x1 \<Longrightarrow> P x2 \<Longrightarrow> P(x1 \<nabla> x2)" |
|
211 |
"!!x1 x2. P x1 \<Longrightarrow> P x2 \<Longrightarrow> P(x1 \<triangle> x2)" |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
212 |
and pfp_wn: "pfp_wn f x = Some p" shows "P p \<and> f p \<le> p" |
47613 | 213 |
proof- |
49576 | 214 |
from pfp_wn obtain p0 |
215 |
where its: "iter_widen f x = Some p0" "iter_narrow f p0 = Some p" |
|
47613 | 216 |
by(auto simp: pfp_wn_def split: option.splits) |
49576 | 217 |
have "P p0" by (blast intro: iter_widen_inv[where P="P"] its(1) Pinv(1-3)) |
47613 | 218 |
thus ?thesis |
219 |
by - (assumption | |
|
220 |
rule iter_narrow_pfp[where P=P] mono Pinv(2,4) iter_widen_pfp its)+ |
|
221 |
qed |
|
222 |
||
223 |
lemma strip_pfp_wn: |
|
49548 | 224 |
"\<lbrakk> \<forall>C. strip(f C) = strip C; pfp_wn f C = Some C' \<rbrakk> \<Longrightarrow> strip C' = strip C" |
47613 | 225 |
by(auto simp add: pfp_wn_def iter_narrow_def split: option.splits) |
51390 | 226 |
(metis (mono_tags) strip_iter_widen strip_narrow_acom strip_while) |
47613 | 227 |
|
228 |
||
52504 | 229 |
locale Abs_Int_wn = Abs_Int_inv_mono where \<gamma>=\<gamma> |
230 |
for \<gamma> :: "'av::{wn,bounded_lattice} \<Rightarrow> val set" |
|
47613 | 231 |
begin |
232 |
||
233 |
definition AI_wn :: "com \<Rightarrow> 'av st option acom option" where |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
234 |
"AI_wn c = pfp_wn (step' \<top>) (bot c)" |
47613 | 235 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
236 |
lemma AI_wn_correct: "AI_wn c = Some C \<Longrightarrow> CS c \<le> \<gamma>\<^sub>c C" |
47613 | 237 |
proof(simp add: CS_def AI_wn_def) |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
238 |
assume 1: "pfp_wn (step' \<top>) (bot c) = Some C" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
239 |
have 2: "strip C = c \<and> step' \<top> C \<le> C" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
240 |
by(rule pfp_wn_pfp[where x="bot c"]) (simp_all add: 1 mono_step'_top) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
241 |
have pfp: "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c C" |
50986 | 242 |
proof(rule order_trans) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
243 |
show "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (step' \<top> C)" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
244 |
by(rule step_step') |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
245 |
show "... \<le> \<gamma>\<^sub>c C" |
50986 | 246 |
by(rule mono_gamma_c[OF conjunct2[OF 2]]) |
47613 | 247 |
qed |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
248 |
have 3: "strip (\<gamma>\<^sub>c C) = c" by(simp add: strip_pfp_wn[OF _ 1]) |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
249 |
have "lfp c (step (\<gamma>\<^sub>o \<top>)) \<le> \<gamma>\<^sub>c C" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
250 |
by(rule lfp_lowerbound[simplified,where f="step (\<gamma>\<^sub>o \<top>)", OF 3 pfp]) |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
251 |
thus "lfp c (step UNIV) \<le> \<gamma>\<^sub>c C" by simp |
47613 | 252 |
qed |
253 |
||
254 |
end |
|
255 |
||
61890
f6ded81f5690
abandoned attempt to unify sublocale and interpretation into global theories
haftmann
parents:
61671
diff
changeset
|
256 |
global_interpretation Abs_Int_wn |
67399 | 257 |
where \<gamma> = \<gamma>_ivl and num' = num_ivl and plus' = "(+)" |
47613 | 258 |
and test_num' = in_ivl |
51974 | 259 |
and inv_plus' = inv_plus_ivl and inv_less' = inv_less_ivl |
61671
20d4cd2ceab2
prefer "rewrites" and "defines" to note rewrite morphisms
haftmann
parents:
61179
diff
changeset
|
260 |
defines AI_wn_ivl = AI_wn |
47613 | 261 |
.. |
262 |
||
263 |
||
264 |
subsubsection "Tests" |
|
265 |
||
51791 | 266 |
definition "step_up_ivl n = ((\<lambda>C. C \<nabla> step_ivl \<top> C)^^n)" |
267 |
definition "step_down_ivl n = ((\<lambda>C. C \<triangle> step_ivl \<top> C)^^n)" |
|
47613 | 268 |
|
69597 | 269 |
text\<open>For \<^const>\<open>test3_ivl\<close>, \<^const>\<open>AI_ivl\<close> needed as many iterations as |
270 |
the loop took to execute. In contrast, \<^const>\<open>AI_wn_ivl\<close> converges in a |
|
67406 | 271 |
constant number of steps:\<close> |
47613 | 272 |
|
273 |
value "show_acom (step_up_ivl 1 (bot test3_ivl))" |
|
274 |
value "show_acom (step_up_ivl 2 (bot test3_ivl))" |
|
275 |
value "show_acom (step_up_ivl 3 (bot test3_ivl))" |
|
276 |
value "show_acom (step_up_ivl 4 (bot test3_ivl))" |
|
277 |
value "show_acom (step_up_ivl 5 (bot test3_ivl))" |
|
49188 | 278 |
value "show_acom (step_up_ivl 6 (bot test3_ivl))" |
279 |
value "show_acom (step_up_ivl 7 (bot test3_ivl))" |
|
280 |
value "show_acom (step_up_ivl 8 (bot test3_ivl))" |
|
281 |
value "show_acom (step_down_ivl 1 (step_up_ivl 8 (bot test3_ivl)))" |
|
282 |
value "show_acom (step_down_ivl 2 (step_up_ivl 8 (bot test3_ivl)))" |
|
283 |
value "show_acom (step_down_ivl 3 (step_up_ivl 8 (bot test3_ivl)))" |
|
284 |
value "show_acom (step_down_ivl 4 (step_up_ivl 8 (bot test3_ivl)))" |
|
51953 | 285 |
value "show_acom_opt (AI_wn_ivl test3_ivl)" |
47613 | 286 |
|
287 |
||
67406 | 288 |
text\<open>Now all the analyses terminate:\<close> |
47613 | 289 |
|
51953 | 290 |
value "show_acom_opt (AI_wn_ivl test4_ivl)" |
291 |
value "show_acom_opt (AI_wn_ivl test5_ivl)" |
|
292 |
value "show_acom_opt (AI_wn_ivl test6_ivl)" |
|
47613 | 293 |
|
294 |
||
295 |
subsubsection "Generic Termination Proof" |
|
296 |
||
51722 | 297 |
lemma top_on_opt_widen: |
51785 | 298 |
"top_on_opt o1 X \<Longrightarrow> top_on_opt o2 X \<Longrightarrow> top_on_opt (o1 \<nabla> o2 :: _ st option) X" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
299 |
apply(induct o1 o2 rule: widen_option.induct) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
300 |
apply (auto) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
301 |
by transfer simp |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
302 |
|
51722 | 303 |
lemma top_on_opt_narrow: |
51785 | 304 |
"top_on_opt o1 X \<Longrightarrow> top_on_opt o2 X \<Longrightarrow> top_on_opt (o1 \<triangle> o2 :: _ st option) X" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
305 |
apply(induct o1 o2 rule: narrow_option.induct) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
306 |
apply (auto) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
307 |
by transfer simp |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
308 |
|
52019
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
309 |
(* FIXME mk anno abbrv *) |
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
310 |
lemma annos_map2_acom[simp]: "strip C2 = strip C1 \<Longrightarrow> |
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
311 |
annos(map2_acom f C1 C2) = map (%(x,y).f x y) (zip (annos C1) (annos C2))" |
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
312 |
by(simp add: map2_acom_def list_eq_iff_nth_eq size_annos anno_def[symmetric] size_annos_same[of C1 C2]) |
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
313 |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
314 |
lemma top_on_acom_widen: |
51785 | 315 |
"\<lbrakk>top_on_acom C1 X; strip C1 = strip C2; top_on_acom C2 X\<rbrakk> |
316 |
\<Longrightarrow> top_on_acom (C1 \<nabla> C2 :: _ st option acom) X" |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
317 |
by(auto simp add: widen_acom_def top_on_acom_def)(metis top_on_opt_widen in_set_zipE) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
318 |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
319 |
lemma top_on_acom_narrow: |
51785 | 320 |
"\<lbrakk>top_on_acom C1 X; strip C1 = strip C2; top_on_acom C2 X\<rbrakk> |
321 |
\<Longrightarrow> top_on_acom (C1 \<triangle> C2 :: _ st option acom) X" |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
322 |
by(auto simp add: narrow_acom_def top_on_acom_def)(metis top_on_opt_narrow in_set_zipE) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
323 |
|
67406 | 324 |
text\<open>The assumptions for widening and narrowing differ because during |
69597 | 325 |
narrowing we have the invariant \<^prop>\<open>y \<le> x\<close> (where \<open>y\<close> is the next |
51385
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
326 |
iterate), but during widening there is no such invariant, there we only have |
69597 | 327 |
that not yet \<^prop>\<open>y \<le> x\<close>. This complicates the termination proof for |
67406 | 328 |
widening.\<close> |
51385
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
329 |
|
52504 | 330 |
locale Measure_wn = Measure1 where m=m |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52504
diff
changeset
|
331 |
for m :: "'av::{order_top,wn} \<Rightarrow> nat" + |
47613 | 332 |
fixes n :: "'av \<Rightarrow> nat" |
51372 | 333 |
assumes m_anti_mono: "x \<le> y \<Longrightarrow> m x \<ge> m y" |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
334 |
assumes m_widen: "~ y \<le> x \<Longrightarrow> m(x \<nabla> y) < m x" |
51385
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
335 |
assumes n_narrow: "y \<le> x \<Longrightarrow> x \<triangle> y < x \<Longrightarrow> n(x \<triangle> y) < n x" |
47613 | 336 |
|
337 |
begin |
|
338 |
||
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
339 |
lemma m_s_anti_mono_rep: assumes "\<forall>x. S1 x \<le> S2 x" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
340 |
shows "(\<Sum>x\<in>X. m (S2 x)) \<le> (\<Sum>x\<in>X. m (S1 x))" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
341 |
proof- |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
342 |
from assms have "\<forall>x. m(S1 x) \<ge> m(S2 x)" by (metis m_anti_mono) |
64267 | 343 |
thus "(\<Sum>x\<in>X. m (S2 x)) \<le> (\<Sum>x\<in>X. m (S1 x))" by (metis sum_mono) |
51372 | 344 |
qed |
345 |
||
51791 | 346 |
lemma m_s_anti_mono: "S1 \<le> S2 \<Longrightarrow> m_s S1 X \<ge> m_s S2 X" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
347 |
unfolding m_s_def |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
348 |
apply (transfer fixing: m) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
349 |
apply(simp add: less_eq_st_rep_iff eq_st_def m_s_anti_mono_rep) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
350 |
done |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
351 |
|
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
352 |
lemma m_s_widen_rep: assumes "finite X" "S1 = S2 on -X" "\<not> S2 x \<le> S1 x" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
353 |
shows "(\<Sum>x\<in>X. m (S1 x \<nabla> S2 x)) < (\<Sum>x\<in>X. m (S1 x))" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
354 |
proof- |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
355 |
have 1: "\<forall>x\<in>X. m(S1 x) \<ge> m(S1 x \<nabla> S2 x)" |
52504 | 356 |
by (metis m_anti_mono wn_class.widen1) |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
357 |
have "x \<in> X" using assms(2,3) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
358 |
by(auto simp add: Ball_def) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
359 |
hence 2: "\<exists>x\<in>X. m(S1 x) > m(S1 x \<nabla> S2 x)" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
360 |
using assms(3) m_widen by blast |
67406 | 361 |
from sum_strict_mono_ex1[OF \<open>finite X\<close> 1 2] |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
362 |
show ?thesis . |
47613 | 363 |
qed |
364 |
||
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
365 |
lemma m_s_widen: "finite X \<Longrightarrow> fun S1 = fun S2 on -X ==> |
51791 | 366 |
~ S2 \<le> S1 \<Longrightarrow> m_s (S1 \<nabla> S2) X < m_s S1 X" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
367 |
apply(auto simp add: less_st_def m_s_def) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
368 |
apply (transfer fixing: m) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
369 |
apply(auto simp add: less_eq_st_rep_iff m_s_widen_rep) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
370 |
done |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
371 |
|
51785 | 372 |
lemma m_o_anti_mono: "finite X \<Longrightarrow> top_on_opt o1 (-X) \<Longrightarrow> top_on_opt o2 (-X) \<Longrightarrow> |
51791 | 373 |
o1 \<le> o2 \<Longrightarrow> m_o o1 X \<ge> m_o o2 X" |
51372 | 374 |
proof(induction o1 o2 rule: less_eq_option.induct) |
375 |
case 1 thus ?case by (simp add: m_o_def)(metis m_s_anti_mono) |
|
376 |
next |
|
377 |
case 2 thus ?case |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
378 |
by(simp add: m_o_def le_SucI m_s_h split: option.splits) |
51372 | 379 |
next |
380 |
case 3 thus ?case by simp |
|
381 |
qed |
|
382 |
||
51785 | 383 |
lemma m_o_widen: "\<lbrakk> finite X; top_on_opt S1 (-X); top_on_opt S2 (-X); \<not> S2 \<le> S1 \<rbrakk> \<Longrightarrow> |
51791 | 384 |
m_o (S1 \<nabla> S2) X < m_o S1 X" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
385 |
by(auto simp: m_o_def m_s_h less_Suc_eq_le m_s_widen split: option.split) |
47613 | 386 |
|
49547 | 387 |
lemma m_c_widen: |
51785 | 388 |
"strip C1 = strip C2 \<Longrightarrow> top_on_acom C1 (-vars C1) \<Longrightarrow> top_on_acom C2 (-vars C2) |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
389 |
\<Longrightarrow> \<not> C2 \<le> C1 \<Longrightarrow> m_c (C1 \<nabla> C2) < m_c C1" |
64267 | 390 |
apply(auto simp: m_c_def widen_acom_def map2_acom_def size_annos[symmetric] anno_def[symmetric]sum_list_sum_nth) |
49547 | 391 |
apply(subgoal_tac "length(annos C2) = length(annos C1)") |
51390 | 392 |
prefer 2 apply (simp add: size_annos_same2) |
49547 | 393 |
apply (auto) |
64267 | 394 |
apply(rule sum_strict_mono_ex1) |
52019
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
395 |
apply(auto simp add: m_o_anti_mono vars_acom_def anno_def top_on_acom_def top_on_opt_widen widen1 less_eq_acom_def listrel_iff_nth) |
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
396 |
apply(rule_tac x=p in bexI) |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
397 |
apply (auto simp: vars_acom_def m_o_widen top_on_acom_def) |
49547 | 398 |
done |
399 |
||
400 |
||
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
401 |
definition n_s :: "'av st \<Rightarrow> vname set \<Rightarrow> nat" ("n\<^sub>s") where |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
402 |
"n\<^sub>s S X = (\<Sum>x\<in>X. n(fun S x))" |
49547 | 403 |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
404 |
lemma n_s_narrow_rep: |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
405 |
assumes "finite X" "S1 = S2 on -X" "\<forall>x. S2 x \<le> S1 x" "\<forall>x. S1 x \<triangle> S2 x \<le> S1 x" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
406 |
"S1 x \<noteq> S1 x \<triangle> S2 x" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
407 |
shows "(\<Sum>x\<in>X. n (S1 x \<triangle> S2 x)) < (\<Sum>x\<in>X. n (S1 x))" |
47613 | 408 |
proof- |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
409 |
have 1: "\<forall>x. n(S1 x \<triangle> S2 x) \<le> n(S1 x)" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
410 |
by (metis assms(3) assms(4) eq_iff less_le_not_le n_narrow) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
411 |
have "x \<in> X" by (metis Compl_iff assms(2) assms(5) narrowid) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
412 |
hence 2: "\<exists>x\<in>X. n(S1 x \<triangle> S2 x) < n(S1 x)" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
413 |
by (metis assms(3-5) eq_iff less_le_not_le n_narrow) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
414 |
show ?thesis |
67406 | 415 |
apply(rule sum_strict_mono_ex1[OF \<open>finite X\<close>]) using 1 2 by blast+ |
47613 | 416 |
qed |
417 |
||
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
418 |
lemma n_s_narrow: "finite X \<Longrightarrow> fun S1 = fun S2 on -X \<Longrightarrow> S2 \<le> S1 \<Longrightarrow> S1 \<triangle> S2 < S1 |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
419 |
\<Longrightarrow> n\<^sub>s (S1 \<triangle> S2) X < n\<^sub>s S1 X" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
420 |
apply(auto simp add: less_st_def n_s_def) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
421 |
apply (transfer fixing: n) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
422 |
apply(auto simp add: less_eq_st_rep_iff eq_st_def fun_eq_iff n_s_narrow_rep) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
423 |
done |
47613 | 424 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
425 |
definition n_o :: "'av st option \<Rightarrow> vname set \<Rightarrow> nat" ("n\<^sub>o") where |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
426 |
"n\<^sub>o opt X = (case opt of None \<Rightarrow> 0 | Some S \<Rightarrow> n\<^sub>s S X + 1)" |
47613 | 427 |
|
428 |
lemma n_o_narrow: |
|
51785 | 429 |
"top_on_opt S1 (-X) \<Longrightarrow> top_on_opt S2 (-X) \<Longrightarrow> finite X |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
430 |
\<Longrightarrow> S2 \<le> S1 \<Longrightarrow> S1 \<triangle> S2 < S1 \<Longrightarrow> n\<^sub>o (S1 \<triangle> S2) X < n\<^sub>o S1 X" |
47613 | 431 |
apply(induction S1 S2 rule: narrow_option.induct) |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
432 |
apply(auto simp: n_o_def n_s_narrow) |
47613 | 433 |
done |
434 |
||
49576 | 435 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
436 |
definition n_c :: "'av st option acom \<Rightarrow> nat" ("n\<^sub>c") where |
63882
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
nipkow
parents:
61890
diff
changeset
|
437 |
"n\<^sub>c C = sum_list (map (\<lambda>a. n\<^sub>o a (vars C)) (annos C))" |
47613 | 438 |
|
51385
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
439 |
lemma less_annos_iff: "(C1 < C2) = (C1 \<le> C2 \<and> |
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
440 |
(\<exists>i<length (annos C1). annos C1 ! i < annos C2 ! i))" |
73932
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents:
73411
diff
changeset
|
441 |
by(metis (opaque_lifting, no_types) less_le_not_le le_iff_le_annos size_annos_same2) |
51385
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
442 |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
443 |
lemma n_c_narrow: "strip C1 = strip C2 |
51785 | 444 |
\<Longrightarrow> top_on_acom C1 (- vars C1) \<Longrightarrow> top_on_acom C2 (- vars C2) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
445 |
\<Longrightarrow> C2 \<le> C1 \<Longrightarrow> C1 \<triangle> C2 < C1 \<Longrightarrow> n\<^sub>c (C1 \<triangle> C2) < n\<^sub>c C1" |
64267 | 446 |
apply(auto simp: n_c_def narrow_acom_def sum_list_sum_nth) |
47613 | 447 |
apply(subgoal_tac "length(annos C2) = length(annos C1)") |
448 |
prefer 2 apply (simp add: size_annos_same2) |
|
449 |
apply (auto) |
|
51385
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
450 |
apply(simp add: less_annos_iff le_iff_le_annos) |
64267 | 451 |
apply(rule sum_strict_mono_ex1) |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
452 |
apply (auto simp: vars_acom_def top_on_acom_def) |
51385
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
453 |
apply (metis n_o_narrow nth_mem finite_cvars less_imp_le le_less order_refl) |
47613 | 454 |
apply(rule_tac x=i in bexI) |
455 |
prefer 2 apply simp |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
456 |
apply(rule n_o_narrow[where X = "vars(strip C2)"]) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
457 |
apply (simp_all) |
47613 | 458 |
done |
459 |
||
460 |
end |
|
461 |
||
462 |
||
463 |
lemma iter_widen_termination: |
|
52504 | 464 |
fixes m :: "'a::wn acom \<Rightarrow> nat" |
47613 | 465 |
assumes P_f: "\<And>C. P C \<Longrightarrow> P(f C)" |
466 |
and P_widen: "\<And>C1 C2. P C1 \<Longrightarrow> P C2 \<Longrightarrow> P(C1 \<nabla> C2)" |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
467 |
and m_widen: "\<And>C1 C2. P C1 \<Longrightarrow> P C2 \<Longrightarrow> ~ C2 \<le> C1 \<Longrightarrow> m(C1 \<nabla> C2) < m C1" |
67613 | 468 |
and "P C" shows "\<exists>C'. iter_widen f C = Some C'" |
49547 | 469 |
proof(simp add: iter_widen_def, |
470 |
rule measure_while_option_Some[where P = P and f=m]) |
|
67406 | 471 |
show "P C" by(rule \<open>P C\<close>) |
47613 | 472 |
next |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
473 |
fix C assume "P C" "\<not> f C \<le> C" thus "P (C \<nabla> f C) \<and> m (C \<nabla> f C) < m C" |
49547 | 474 |
by(simp add: P_f P_widen m_widen) |
47613 | 475 |
qed |
49496 | 476 |
|
47613 | 477 |
lemma iter_narrow_termination: |
52504 | 478 |
fixes n :: "'a::wn acom \<Rightarrow> nat" |
47613 | 479 |
assumes P_f: "\<And>C. P C \<Longrightarrow> P(f C)" |
480 |
and P_narrow: "\<And>C1 C2. P C1 \<Longrightarrow> P C2 \<Longrightarrow> P(C1 \<triangle> C2)" |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
481 |
and mono: "\<And>C1 C2. P C1 \<Longrightarrow> P C2 \<Longrightarrow> C1 \<le> C2 \<Longrightarrow> f C1 \<le> f C2" |
51385
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
482 |
and n_narrow: "\<And>C1 C2. P C1 \<Longrightarrow> P C2 \<Longrightarrow> C2 \<le> C1 \<Longrightarrow> C1 \<triangle> C2 < C1 \<Longrightarrow> n(C1 \<triangle> C2) < n C1" |
67613 | 483 |
and init: "P C" "f C \<le> C" shows "\<exists>C'. iter_narrow f C = Some C'" |
49547 | 484 |
proof(simp add: iter_narrow_def, |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
485 |
rule measure_while_option_Some[where f=n and P = "%C. P C \<and> f C \<le> C"]) |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
486 |
show "P C \<and> f C \<le> C" using init by blast |
47613 | 487 |
next |
51385
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
488 |
fix C assume 1: "P C \<and> f C \<le> C" and 2: "C \<triangle> f C < C" |
47613 | 489 |
hence "P (C \<triangle> f C)" by(simp add: P_f P_narrow) |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
490 |
moreover then have "f (C \<triangle> f C) \<le> C \<triangle> f C" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
491 |
by (metis narrow1_acom narrow2_acom 1 mono order_trans) |
49547 | 492 |
moreover have "n (C \<triangle> f C) < n C" using 1 2 by(simp add: n_narrow P_f) |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
493 |
ultimately show "(P (C \<triangle> f C) \<and> f (C \<triangle> f C) \<le> C \<triangle> f C) \<and> n(C \<triangle> f C) < n C" |
49547 | 494 |
by blast |
47613 | 495 |
qed |
496 |
||
52504 | 497 |
locale Abs_Int_wn_measure = Abs_Int_wn where \<gamma>=\<gamma> + Measure_wn where m=m |
498 |
for \<gamma> :: "'av::{wn,bounded_lattice} \<Rightarrow> val set" and m :: "'av \<Rightarrow> nat" |
|
49547 | 499 |
|
47613 | 500 |
|
501 |
subsubsection "Termination: Intervals" |
|
502 |
||
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
503 |
definition m_rep :: "eint2 \<Rightarrow> nat" where |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
504 |
"m_rep p = (if is_empty_rep p then 3 else |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
505 |
let (l,h) = p in (case l of Minf \<Rightarrow> 0 | _ \<Rightarrow> 1) + (case h of Pinf \<Rightarrow> 0 | _ \<Rightarrow> 1))" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
506 |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
507 |
lift_definition m_ivl :: "ivl \<Rightarrow> nat" is m_rep |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
508 |
by(auto simp: m_rep_def eq_ivl_iff) |
47613 | 509 |
|
51924 | 510 |
lemma m_ivl_nice: "m_ivl[l,h] = (if [l,h] = \<bottom> then 3 else |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
511 |
(if l = Minf then 0 else 1) + (if h = Pinf then 0 else 1))" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
512 |
unfolding bot_ivl_def |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
513 |
by transfer (auto simp: m_rep_def eq_ivl_empty split: extended.split) |
47613 | 514 |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
515 |
lemma m_ivl_height: "m_ivl iv \<le> 3" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
516 |
by transfer (simp add: m_rep_def split: prod.split extended.split) |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
517 |
|
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
518 |
lemma m_ivl_anti_mono: "y \<le> x \<Longrightarrow> m_ivl x \<le> m_ivl y" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
519 |
by transfer |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
520 |
(auto simp: m_rep_def is_empty_rep_def \<gamma>_rep_cases le_iff_subset |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
521 |
split: prod.split extended.splits if_splits) |
47613 | 522 |
|
523 |
lemma m_ivl_widen: |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
524 |
"~ y \<le> x \<Longrightarrow> m_ivl(x \<nabla> y) < m_ivl x" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
525 |
by transfer |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
526 |
(auto simp: m_rep_def widen_rep_def is_empty_rep_def \<gamma>_rep_cases le_iff_subset |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
527 |
split: prod.split extended.splits if_splits) |
47613 | 528 |
|
529 |
definition n_ivl :: "ivl \<Rightarrow> nat" where |
|
51953 | 530 |
"n_ivl iv = 3 - m_ivl iv" |
47613 | 531 |
|
532 |
lemma n_ivl_narrow: |
|
51385
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
533 |
"x \<triangle> y < x \<Longrightarrow> n_ivl(x \<triangle> y) < n_ivl x" |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
534 |
unfolding n_ivl_def |
51385
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
535 |
apply(subst (asm) less_le_not_le) |
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
536 |
apply transfer |
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
537 |
by(auto simp add: m_rep_def narrow_rep_def is_empty_rep_def empty_rep_def \<gamma>_rep_cases le_iff_subset |
f193d44d4918
termination proof for narrowing: fewer assumptions
nipkow
parents:
51372
diff
changeset
|
538 |
split: prod.splits if_splits extended.split) |
47613 | 539 |
|
540 |
||
61890
f6ded81f5690
abandoned attempt to unify sublocale and interpretation into global theories
haftmann
parents:
61671
diff
changeset
|
541 |
global_interpretation Abs_Int_wn_measure |
67399 | 542 |
where \<gamma> = \<gamma>_ivl and num' = num_ivl and plus' = "(+)" |
47613 | 543 |
and test_num' = in_ivl |
51974 | 544 |
and inv_plus' = inv_plus_ivl and inv_less' = inv_less_ivl |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
545 |
and m = m_ivl and n = n_ivl and h = 3 |
61179 | 546 |
proof (standard, goal_cases) |
547 |
case 2 thus ?case by(rule m_ivl_anti_mono) |
|
47613 | 548 |
next |
61179 | 549 |
case 1 thus ?case by(rule m_ivl_height) |
47613 | 550 |
next |
61179 | 551 |
case 3 thus ?case by(rule m_ivl_widen) |
47613 | 552 |
next |
61179 | 553 |
case 4 from 4(2) show ?case by(rule n_ivl_narrow) |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
67406
diff
changeset
|
554 |
\<comment> \<open>note that the first assms is unnecessary for intervals\<close> |
47613 | 555 |
qed |
556 |
||
557 |
lemma iter_winden_step_ivl_termination: |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
558 |
"\<exists>C. iter_widen (step_ivl \<top>) (bot c) = Some C" |
51785 | 559 |
apply(rule iter_widen_termination[where m = "m_c" and P = "%C. strip C = c \<and> top_on_acom C (- vars C)"]) |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
560 |
apply (auto simp add: m_c_widen top_on_bot top_on_step'[simplified comp_def vars_acom_def] |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
561 |
vars_acom_def top_on_acom_widen) |
47613 | 562 |
done |
563 |
||
564 |
lemma iter_narrow_step_ivl_termination: |
|
51953 | 565 |
"top_on_acom C (- vars C) \<Longrightarrow> step_ivl \<top> C \<le> C \<Longrightarrow> |
566 |
\<exists>C'. iter_narrow (step_ivl \<top>) C = Some C'" |
|
567 |
apply(rule iter_narrow_termination[where n = "n_c" and P = "%C'. strip C = strip C' \<and> top_on_acom C' (-vars C')"]) |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
568 |
apply(auto simp: top_on_step'[simplified comp_def vars_acom_def] |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
569 |
mono_step'_top n_c_narrow vars_acom_def top_on_acom_narrow) |
47613 | 570 |
done |
571 |
||
51953 | 572 |
theorem AI_wn_ivl_termination: |
573 |
"\<exists>C. AI_wn_ivl c = Some C" |
|
47613 | 574 |
apply(auto simp: AI_wn_def pfp_wn_def iter_winden_step_ivl_termination |
575 |
split: option.split) |
|
576 |
apply(rule iter_narrow_step_ivl_termination) |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
577 |
apply(rule conjunct2) |
51785 | 578 |
apply(rule iter_widen_inv[where f = "step' \<top>" and P = "%C. c = strip C & top_on_acom C (- vars C)"]) |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
579 |
apply(auto simp: top_on_acom_widen top_on_step'[simplified comp_def vars_acom_def] |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
580 |
iter_widen_pfp top_on_bot vars_acom_def) |
47613 | 581 |
done |
582 |
||
51390 | 583 |
(*unused_thms Abs_Int_init - *) |
47613 | 584 |
|
49578 | 585 |
subsubsection "Counterexamples" |
586 |
||
69597 | 587 |
text\<open>Widening is increasing by assumption, but \<^prop>\<open>x \<le> f x\<close> is not an invariant of widening. |
67406 | 588 |
It can already be lost after the first step:\<close> |
49578 | 589 |
|
52504 | 590 |
lemma assumes "!!x y::'a::wn. x \<le> y \<Longrightarrow> f x \<le> f y" |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
591 |
and "x \<le> f x" and "\<not> f x \<le> x" shows "x \<nabla> f x \<le> f(x \<nabla> f x)" |
55357 | 592 |
nitpick[card = 3, expect = genuine, show_consts, timeout = 120] |
49578 | 593 |
(* |
594 |
1 < 2 < 3, |
|
595 |
f x = 2, |
|
596 |
x widen y = 3 -- guarantees termination with top=3 |
|
597 |
x = 1 |
|
598 |
Now f is mono, x <= f x, not f x <= x |
|
599 |
but x widen f x = 3, f 3 = 2, but not 3 <= 2 |
|
600 |
*) |
|
601 |
oops |
|
602 |
||
67406 | 603 |
text\<open>Widening terminates but may converge more slowly than Kleene iteration. |
49578 | 604 |
In the following model, Kleene iteration goes from 0 to the least pfp |
67406 | 605 |
in one step but widening takes 2 steps to reach a strictly larger pfp:\<close> |
52504 | 606 |
lemma assumes "!!x y::'a::wn. x \<le> y \<Longrightarrow> f x \<le> f y" |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
607 |
and "x \<le> f x" and "\<not> f x \<le> x" and "f(f x) \<le> f x" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51245
diff
changeset
|
608 |
shows "f(x \<nabla> f x) \<le> x \<nabla> f x" |
55357 | 609 |
nitpick[card = 4, expect = genuine, show_consts, timeout = 120] |
49578 | 610 |
(* |
611 |
||
612 |
0 < 1 < 2 < 3 |
|
613 |
f: 1 1 3 3 |
|
614 |
||
615 |
0 widen 1 = 2 |
|
616 |
2 widen 3 = 3 |
|
617 |
and x widen y arbitrary, eg 3, which guarantees termination |
|
618 |
||
619 |
Kleene: f(f 0) = f 1 = 1 <= 1 = f 1 |
|
620 |
||
621 |
but |
|
622 |
||
623 |
because not f 0 <= 0, we obtain 0 widen f 0 = 0 wide 1 = 2, |
|
624 |
which is again not a pfp: not f 2 = 3 <= 2 |
|
625 |
Another widening step yields 2 widen f 2 = 2 widen 3 = 3 |
|
626 |
*) |
|
49892
09956f7a00af
proper 'oops' to force sequential checking here, and avoid spurious *** Interrupt stemming from crash of forked outer syntax element;
wenzelm
parents:
49579
diff
changeset
|
627 |
oops |
49578 | 628 |
|
47613 | 629 |
end |