23164
|
1 |
(* Title: HOL/Numeral.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1994 University of Cambridge
|
|
5 |
*)
|
|
6 |
|
|
7 |
header {* Arithmetic on Binary Integers *}
|
|
8 |
|
|
9 |
theory Numeral
|
|
10 |
imports IntDef
|
|
11 |
uses ("Tools/numeral_syntax.ML")
|
|
12 |
begin
|
|
13 |
|
|
14 |
subsection {* Binary representation *}
|
|
15 |
|
|
16 |
text {*
|
|
17 |
This formalization defines binary arithmetic in terms of the integers
|
|
18 |
rather than using a datatype. This avoids multiple representations (leading
|
|
19 |
zeroes, etc.) See @{text "ZF/Tools/twos-compl.ML"}, function @{text
|
|
20 |
int_of_binary}, for the numerical interpretation.
|
|
21 |
|
|
22 |
The representation expects that @{text "(m mod 2)"} is 0 or 1,
|
|
23 |
even if m is negative;
|
|
24 |
For instance, @{text "-5 div 2 = -3"} and @{text "-5 mod 2 = 1"}; thus
|
|
25 |
@{text "-5 = (-3)*2 + 1"}.
|
|
26 |
*}
|
|
27 |
|
|
28 |
datatype bit = B0 | B1
|
|
29 |
|
|
30 |
text{*
|
|
31 |
Type @{typ bit} avoids the use of type @{typ bool}, which would make
|
|
32 |
all of the rewrite rules higher-order.
|
|
33 |
*}
|
|
34 |
|
|
35 |
definition
|
|
36 |
Pls :: int where
|
|
37 |
[code func del]:"Pls = 0"
|
|
38 |
|
|
39 |
definition
|
|
40 |
Min :: int where
|
|
41 |
[code func del]:"Min = - 1"
|
|
42 |
|
|
43 |
definition
|
|
44 |
Bit :: "int \<Rightarrow> bit \<Rightarrow> int" (infixl "BIT" 90) where
|
|
45 |
[code func del]: "k BIT b = (case b of B0 \<Rightarrow> 0 | B1 \<Rightarrow> 1) + k + k"
|
|
46 |
|
|
47 |
class number = type + -- {* for numeric types: nat, int, real, \dots *}
|
|
48 |
fixes number_of :: "int \<Rightarrow> 'a"
|
|
49 |
|
|
50 |
syntax
|
|
51 |
"_Numeral" :: "num_const \<Rightarrow> 'a" ("_")
|
|
52 |
|
|
53 |
use "Tools/numeral_syntax.ML"
|
|
54 |
setup NumeralSyntax.setup
|
|
55 |
|
|
56 |
abbreviation
|
|
57 |
"Numeral0 \<equiv> number_of Pls"
|
|
58 |
|
|
59 |
abbreviation
|
|
60 |
"Numeral1 \<equiv> number_of (Pls BIT B1)"
|
|
61 |
|
|
62 |
lemma Let_number_of [simp]: "Let (number_of v) f = f (number_of v)"
|
|
63 |
-- {* Unfold all @{text let}s involving constants *}
|
|
64 |
unfolding Let_def ..
|
|
65 |
|
|
66 |
lemma Let_0 [simp]: "Let 0 f = f 0"
|
|
67 |
unfolding Let_def ..
|
|
68 |
|
|
69 |
lemma Let_1 [simp]: "Let 1 f = f 1"
|
|
70 |
unfolding Let_def ..
|
|
71 |
|
|
72 |
definition
|
|
73 |
succ :: "int \<Rightarrow> int" where
|
|
74 |
[code func del]: "succ k = k + 1"
|
|
75 |
|
|
76 |
definition
|
|
77 |
pred :: "int \<Rightarrow> int" where
|
|
78 |
[code func del]: "pred k = k - 1"
|
|
79 |
|
|
80 |
lemmas
|
|
81 |
max_number_of [simp] = max_def
|
|
82 |
[of "number_of u" "number_of v", standard, simp]
|
|
83 |
and
|
|
84 |
min_number_of [simp] = min_def
|
|
85 |
[of "number_of u" "number_of v", standard, simp]
|
|
86 |
-- {* unfolding @{text minx} and @{text max} on numerals *}
|
|
87 |
|
|
88 |
lemmas numeral_simps =
|
|
89 |
succ_def pred_def Pls_def Min_def Bit_def
|
|
90 |
|
|
91 |
text {* Removal of leading zeroes *}
|
|
92 |
|
|
93 |
lemma Pls_0_eq [simp, normal post]:
|
|
94 |
"Pls BIT B0 = Pls"
|
|
95 |
unfolding numeral_simps by simp
|
|
96 |
|
|
97 |
lemma Min_1_eq [simp, normal post]:
|
|
98 |
"Min BIT B1 = Min"
|
|
99 |
unfolding numeral_simps by simp
|
|
100 |
|
|
101 |
|
|
102 |
subsection {* The Functions @{term succ}, @{term pred} and @{term uminus} *}
|
|
103 |
|
|
104 |
lemma succ_Pls [simp]:
|
|
105 |
"succ Pls = Pls BIT B1"
|
|
106 |
unfolding numeral_simps by simp
|
|
107 |
|
|
108 |
lemma succ_Min [simp]:
|
|
109 |
"succ Min = Pls"
|
|
110 |
unfolding numeral_simps by simp
|
|
111 |
|
|
112 |
lemma succ_1 [simp]:
|
|
113 |
"succ (k BIT B1) = succ k BIT B0"
|
|
114 |
unfolding numeral_simps by simp
|
|
115 |
|
|
116 |
lemma succ_0 [simp]:
|
|
117 |
"succ (k BIT B0) = k BIT B1"
|
|
118 |
unfolding numeral_simps by simp
|
|
119 |
|
|
120 |
lemma pred_Pls [simp]:
|
|
121 |
"pred Pls = Min"
|
|
122 |
unfolding numeral_simps by simp
|
|
123 |
|
|
124 |
lemma pred_Min [simp]:
|
|
125 |
"pred Min = Min BIT B0"
|
|
126 |
unfolding numeral_simps by simp
|
|
127 |
|
|
128 |
lemma pred_1 [simp]:
|
|
129 |
"pred (k BIT B1) = k BIT B0"
|
|
130 |
unfolding numeral_simps by simp
|
|
131 |
|
|
132 |
lemma pred_0 [simp]:
|
|
133 |
"pred (k BIT B0) = pred k BIT B1"
|
|
134 |
unfolding numeral_simps by simp
|
|
135 |
|
|
136 |
lemma minus_Pls [simp]:
|
|
137 |
"- Pls = Pls"
|
|
138 |
unfolding numeral_simps by simp
|
|
139 |
|
|
140 |
lemma minus_Min [simp]:
|
|
141 |
"- Min = Pls BIT B1"
|
|
142 |
unfolding numeral_simps by simp
|
|
143 |
|
|
144 |
lemma minus_1 [simp]:
|
|
145 |
"- (k BIT B1) = pred (- k) BIT B1"
|
|
146 |
unfolding numeral_simps by simp
|
|
147 |
|
|
148 |
lemma minus_0 [simp]:
|
|
149 |
"- (k BIT B0) = (- k) BIT B0"
|
|
150 |
unfolding numeral_simps by simp
|
|
151 |
|
|
152 |
|
|
153 |
subsection {*
|
|
154 |
Binary Addition and Multiplication: @{term "op + \<Colon> int \<Rightarrow> int \<Rightarrow> int"}
|
|
155 |
and @{term "op * \<Colon> int \<Rightarrow> int \<Rightarrow> int"}
|
|
156 |
*}
|
|
157 |
|
|
158 |
lemma add_Pls [simp]:
|
|
159 |
"Pls + k = k"
|
|
160 |
unfolding numeral_simps by simp
|
|
161 |
|
|
162 |
lemma add_Min [simp]:
|
|
163 |
"Min + k = pred k"
|
|
164 |
unfolding numeral_simps by simp
|
|
165 |
|
|
166 |
lemma add_BIT_11 [simp]:
|
|
167 |
"(k BIT B1) + (l BIT B1) = (k + succ l) BIT B0"
|
|
168 |
unfolding numeral_simps by simp
|
|
169 |
|
|
170 |
lemma add_BIT_10 [simp]:
|
|
171 |
"(k BIT B1) + (l BIT B0) = (k + l) BIT B1"
|
|
172 |
unfolding numeral_simps by simp
|
|
173 |
|
|
174 |
lemma add_BIT_0 [simp]:
|
|
175 |
"(k BIT B0) + (l BIT b) = (k + l) BIT b"
|
|
176 |
unfolding numeral_simps by simp
|
|
177 |
|
|
178 |
lemma add_Pls_right [simp]:
|
|
179 |
"k + Pls = k"
|
|
180 |
unfolding numeral_simps by simp
|
|
181 |
|
|
182 |
lemma add_Min_right [simp]:
|
|
183 |
"k + Min = pred k"
|
|
184 |
unfolding numeral_simps by simp
|
|
185 |
|
|
186 |
lemma mult_Pls [simp]:
|
|
187 |
"Pls * w = Pls"
|
|
188 |
unfolding numeral_simps by simp
|
|
189 |
|
|
190 |
lemma mult_Min [simp]:
|
|
191 |
"Min * k = - k"
|
|
192 |
unfolding numeral_simps by simp
|
|
193 |
|
|
194 |
lemma mult_num1 [simp]:
|
|
195 |
"(k BIT B1) * l = ((k * l) BIT B0) + l"
|
|
196 |
unfolding numeral_simps int_distrib by simp
|
|
197 |
|
|
198 |
lemma mult_num0 [simp]:
|
|
199 |
"(k BIT B0) * l = (k * l) BIT B0"
|
|
200 |
unfolding numeral_simps int_distrib by simp
|
|
201 |
|
|
202 |
|
|
203 |
|
|
204 |
subsection {* Converting Numerals to Rings: @{term number_of} *}
|
|
205 |
|
|
206 |
axclass number_ring \<subseteq> number, comm_ring_1
|
|
207 |
number_of_eq: "number_of k = of_int k"
|
|
208 |
|
|
209 |
text {* self-embedding of the intergers *}
|
|
210 |
|
|
211 |
instance int :: number_ring
|
|
212 |
int_number_of_def: "number_of w \<equiv> of_int w"
|
|
213 |
by intro_classes (simp only: int_number_of_def)
|
|
214 |
|
|
215 |
lemmas [code func del] = int_number_of_def
|
|
216 |
|
|
217 |
lemma number_of_is_id:
|
|
218 |
"number_of (k::int) = k"
|
|
219 |
unfolding int_number_of_def by simp
|
|
220 |
|
|
221 |
lemma number_of_succ:
|
|
222 |
"number_of (succ k) = (1 + number_of k ::'a::number_ring)"
|
|
223 |
unfolding number_of_eq numeral_simps by simp
|
|
224 |
|
|
225 |
lemma number_of_pred:
|
|
226 |
"number_of (pred w) = (- 1 + number_of w ::'a::number_ring)"
|
|
227 |
unfolding number_of_eq numeral_simps by simp
|
|
228 |
|
|
229 |
lemma number_of_minus:
|
|
230 |
"number_of (uminus w) = (- (number_of w)::'a::number_ring)"
|
|
231 |
unfolding number_of_eq numeral_simps by simp
|
|
232 |
|
|
233 |
lemma number_of_add:
|
|
234 |
"number_of (v + w) = (number_of v + number_of w::'a::number_ring)"
|
|
235 |
unfolding number_of_eq numeral_simps by simp
|
|
236 |
|
|
237 |
lemma number_of_mult:
|
|
238 |
"number_of (v * w) = (number_of v * number_of w::'a::number_ring)"
|
|
239 |
unfolding number_of_eq numeral_simps by simp
|
|
240 |
|
|
241 |
text {*
|
|
242 |
The correctness of shifting.
|
|
243 |
But it doesn't seem to give a measurable speed-up.
|
|
244 |
*}
|
|
245 |
|
|
246 |
lemma double_number_of_BIT:
|
|
247 |
"(1 + 1) * number_of w = (number_of (w BIT B0) ::'a::number_ring)"
|
|
248 |
unfolding number_of_eq numeral_simps left_distrib by simp
|
|
249 |
|
|
250 |
text {*
|
|
251 |
Converting numerals 0 and 1 to their abstract versions.
|
|
252 |
*}
|
|
253 |
|
|
254 |
lemma numeral_0_eq_0 [simp]:
|
|
255 |
"Numeral0 = (0::'a::number_ring)"
|
|
256 |
unfolding number_of_eq numeral_simps by simp
|
|
257 |
|
|
258 |
lemma numeral_1_eq_1 [simp]:
|
|
259 |
"Numeral1 = (1::'a::number_ring)"
|
|
260 |
unfolding number_of_eq numeral_simps by simp
|
|
261 |
|
|
262 |
text {*
|
|
263 |
Special-case simplification for small constants.
|
|
264 |
*}
|
|
265 |
|
|
266 |
text{*
|
|
267 |
Unary minus for the abstract constant 1. Cannot be inserted
|
|
268 |
as a simprule until later: it is @{text number_of_Min} re-oriented!
|
|
269 |
*}
|
|
270 |
|
|
271 |
lemma numeral_m1_eq_minus_1:
|
|
272 |
"(-1::'a::number_ring) = - 1"
|
|
273 |
unfolding number_of_eq numeral_simps by simp
|
|
274 |
|
|
275 |
lemma mult_minus1 [simp]:
|
|
276 |
"-1 * z = -(z::'a::number_ring)"
|
|
277 |
unfolding number_of_eq numeral_simps by simp
|
|
278 |
|
|
279 |
lemma mult_minus1_right [simp]:
|
|
280 |
"z * -1 = -(z::'a::number_ring)"
|
|
281 |
unfolding number_of_eq numeral_simps by simp
|
|
282 |
|
|
283 |
(*Negation of a coefficient*)
|
|
284 |
lemma minus_number_of_mult [simp]:
|
|
285 |
"- (number_of w) * z = number_of (uminus w) * (z::'a::number_ring)"
|
|
286 |
unfolding number_of_eq by simp
|
|
287 |
|
|
288 |
text {* Subtraction *}
|
|
289 |
|
|
290 |
lemma diff_number_of_eq:
|
|
291 |
"number_of v - number_of w =
|
|
292 |
(number_of (v + uminus w)::'a::number_ring)"
|
|
293 |
unfolding number_of_eq by simp
|
|
294 |
|
|
295 |
lemma number_of_Pls:
|
|
296 |
"number_of Pls = (0::'a::number_ring)"
|
|
297 |
unfolding number_of_eq numeral_simps by simp
|
|
298 |
|
|
299 |
lemma number_of_Min:
|
|
300 |
"number_of Min = (- 1::'a::number_ring)"
|
|
301 |
unfolding number_of_eq numeral_simps by simp
|
|
302 |
|
|
303 |
lemma number_of_BIT:
|
|
304 |
"number_of(w BIT x) = (case x of B0 => 0 | B1 => (1::'a::number_ring))
|
|
305 |
+ (number_of w) + (number_of w)"
|
|
306 |
unfolding number_of_eq numeral_simps by (simp split: bit.split)
|
|
307 |
|
|
308 |
|
|
309 |
subsection {* Equality of Binary Numbers *}
|
|
310 |
|
|
311 |
text {* First version by Norbert Voelker *}
|
|
312 |
|
|
313 |
lemma eq_number_of_eq:
|
|
314 |
"((number_of x::'a::number_ring) = number_of y) =
|
|
315 |
iszero (number_of (x + uminus y) :: 'a)"
|
|
316 |
unfolding iszero_def number_of_add number_of_minus
|
|
317 |
by (simp add: compare_rls)
|
|
318 |
|
|
319 |
lemma iszero_number_of_Pls:
|
|
320 |
"iszero ((number_of Pls)::'a::number_ring)"
|
|
321 |
unfolding iszero_def numeral_0_eq_0 ..
|
|
322 |
|
|
323 |
lemma nonzero_number_of_Min:
|
|
324 |
"~ iszero ((number_of Min)::'a::number_ring)"
|
|
325 |
unfolding iszero_def numeral_m1_eq_minus_1 by simp
|
|
326 |
|
|
327 |
|
|
328 |
subsection {* Comparisons, for Ordered Rings *}
|
|
329 |
|
|
330 |
lemma double_eq_0_iff:
|
|
331 |
"(a + a = 0) = (a = (0::'a::ordered_idom))"
|
|
332 |
proof -
|
|
333 |
have "a + a = (1 + 1) * a" unfolding left_distrib by simp
|
|
334 |
with zero_less_two [where 'a = 'a]
|
|
335 |
show ?thesis by force
|
|
336 |
qed
|
|
337 |
|
|
338 |
lemma le_imp_0_less:
|
|
339 |
assumes le: "0 \<le> z"
|
|
340 |
shows "(0::int) < 1 + z"
|
|
341 |
proof -
|
|
342 |
have "0 \<le> z" .
|
|
343 |
also have "... < z + 1" by (rule less_add_one)
|
|
344 |
also have "... = 1 + z" by (simp add: add_ac)
|
|
345 |
finally show "0 < 1 + z" .
|
|
346 |
qed
|
|
347 |
|
|
348 |
lemma odd_nonzero:
|
|
349 |
"1 + z + z \<noteq> (0::int)";
|
|
350 |
proof (cases z rule: int_cases)
|
|
351 |
case (nonneg n)
|
|
352 |
have le: "0 \<le> z+z" by (simp add: nonneg add_increasing)
|
|
353 |
thus ?thesis using le_imp_0_less [OF le]
|
|
354 |
by (auto simp add: add_assoc)
|
|
355 |
next
|
|
356 |
case (neg n)
|
|
357 |
show ?thesis
|
|
358 |
proof
|
|
359 |
assume eq: "1 + z + z = 0"
|
|
360 |
have "0 < 1 + (int n + int n)"
|
|
361 |
by (simp add: le_imp_0_less add_increasing)
|
|
362 |
also have "... = - (1 + z + z)"
|
|
363 |
by (simp add: neg add_assoc [symmetric])
|
|
364 |
also have "... = 0" by (simp add: eq)
|
|
365 |
finally have "0<0" ..
|
|
366 |
thus False by blast
|
|
367 |
qed
|
|
368 |
qed
|
|
369 |
|
|
370 |
text {* The premise involving @{term Ints} prevents @{term "a = 1/2"}. *}
|
|
371 |
|
|
372 |
lemma Ints_double_eq_0_iff:
|
|
373 |
assumes in_Ints: "a \<in> Ints"
|
|
374 |
shows "(a + a = 0) = (a = (0::'a::ring_char_0))"
|
|
375 |
proof -
|
|
376 |
from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
|
|
377 |
then obtain z where a: "a = of_int z" ..
|
|
378 |
show ?thesis
|
|
379 |
proof
|
|
380 |
assume "a = 0"
|
|
381 |
thus "a + a = 0" by simp
|
|
382 |
next
|
|
383 |
assume eq: "a + a = 0"
|
|
384 |
hence "of_int (z + z) = (of_int 0 :: 'a)" by (simp add: a)
|
|
385 |
hence "z + z = 0" by (simp only: of_int_eq_iff)
|
|
386 |
hence "z = 0" by (simp only: double_eq_0_iff)
|
|
387 |
thus "a = 0" by (simp add: a)
|
|
388 |
qed
|
|
389 |
qed
|
|
390 |
|
|
391 |
lemma Ints_odd_nonzero:
|
|
392 |
assumes in_Ints: "a \<in> Ints"
|
|
393 |
shows "1 + a + a \<noteq> (0::'a::ring_char_0)"
|
|
394 |
proof -
|
|
395 |
from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
|
|
396 |
then obtain z where a: "a = of_int z" ..
|
|
397 |
show ?thesis
|
|
398 |
proof
|
|
399 |
assume eq: "1 + a + a = 0"
|
|
400 |
hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a)
|
|
401 |
hence "1 + z + z = 0" by (simp only: of_int_eq_iff)
|
|
402 |
with odd_nonzero show False by blast
|
|
403 |
qed
|
|
404 |
qed
|
|
405 |
|
|
406 |
lemma Ints_number_of:
|
|
407 |
"(number_of w :: 'a::number_ring) \<in> Ints"
|
|
408 |
unfolding number_of_eq Ints_def by simp
|
|
409 |
|
|
410 |
lemma iszero_number_of_BIT:
|
|
411 |
"iszero (number_of (w BIT x)::'a) =
|
|
412 |
(x = B0 \<and> iszero (number_of w::'a::{ring_char_0,number_ring}))"
|
|
413 |
by (simp add: iszero_def number_of_eq numeral_simps Ints_double_eq_0_iff
|
|
414 |
Ints_odd_nonzero Ints_def split: bit.split)
|
|
415 |
|
|
416 |
lemma iszero_number_of_0:
|
|
417 |
"iszero (number_of (w BIT B0) :: 'a::{ring_char_0,number_ring}) =
|
|
418 |
iszero (number_of w :: 'a)"
|
|
419 |
by (simp only: iszero_number_of_BIT simp_thms)
|
|
420 |
|
|
421 |
lemma iszero_number_of_1:
|
|
422 |
"~ iszero (number_of (w BIT B1)::'a::{ring_char_0,number_ring})"
|
|
423 |
by (simp add: iszero_number_of_BIT)
|
|
424 |
|
|
425 |
|
|
426 |
subsection {* The Less-Than Relation *}
|
|
427 |
|
|
428 |
lemma less_number_of_eq_neg:
|
|
429 |
"((number_of x::'a::{ordered_idom,number_ring}) < number_of y)
|
|
430 |
= neg (number_of (x + uminus y) :: 'a)"
|
|
431 |
apply (subst less_iff_diff_less_0)
|
|
432 |
apply (simp add: neg_def diff_minus number_of_add number_of_minus)
|
|
433 |
done
|
|
434 |
|
|
435 |
text {*
|
|
436 |
If @{term Numeral0} is rewritten to 0 then this rule can't be applied:
|
|
437 |
@{term Numeral0} IS @{term "number_of Pls"}
|
|
438 |
*}
|
|
439 |
|
|
440 |
lemma not_neg_number_of_Pls:
|
|
441 |
"~ neg (number_of Pls ::'a::{ordered_idom,number_ring})"
|
|
442 |
by (simp add: neg_def numeral_0_eq_0)
|
|
443 |
|
|
444 |
lemma neg_number_of_Min:
|
|
445 |
"neg (number_of Min ::'a::{ordered_idom,number_ring})"
|
|
446 |
by (simp add: neg_def zero_less_one numeral_m1_eq_minus_1)
|
|
447 |
|
|
448 |
lemma double_less_0_iff:
|
|
449 |
"(a + a < 0) = (a < (0::'a::ordered_idom))"
|
|
450 |
proof -
|
|
451 |
have "(a + a < 0) = ((1+1)*a < 0)" by (simp add: left_distrib)
|
|
452 |
also have "... = (a < 0)"
|
|
453 |
by (simp add: mult_less_0_iff zero_less_two
|
|
454 |
order_less_not_sym [OF zero_less_two])
|
|
455 |
finally show ?thesis .
|
|
456 |
qed
|
|
457 |
|
|
458 |
lemma odd_less_0:
|
|
459 |
"(1 + z + z < 0) = (z < (0::int))";
|
|
460 |
proof (cases z rule: int_cases)
|
|
461 |
case (nonneg n)
|
|
462 |
thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing
|
|
463 |
le_imp_0_less [THEN order_less_imp_le])
|
|
464 |
next
|
|
465 |
case (neg n)
|
|
466 |
thus ?thesis by (simp del: int_Suc
|
|
467 |
add: int_Suc0_eq_1 [symmetric] zadd_int compare_rls)
|
|
468 |
qed
|
|
469 |
|
|
470 |
text {* The premise involving @{term Ints} prevents @{term "a = 1/2"}. *}
|
|
471 |
|
|
472 |
lemma Ints_odd_less_0:
|
|
473 |
assumes in_Ints: "a \<in> Ints"
|
|
474 |
shows "(1 + a + a < 0) = (a < (0::'a::ordered_idom))";
|
|
475 |
proof -
|
|
476 |
from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
|
|
477 |
then obtain z where a: "a = of_int z" ..
|
|
478 |
hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))"
|
|
479 |
by (simp add: a)
|
|
480 |
also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0)
|
|
481 |
also have "... = (a < 0)" by (simp add: a)
|
|
482 |
finally show ?thesis .
|
|
483 |
qed
|
|
484 |
|
|
485 |
lemma neg_number_of_BIT:
|
|
486 |
"neg (number_of (w BIT x)::'a) =
|
|
487 |
neg (number_of w :: 'a::{ordered_idom,number_ring})"
|
|
488 |
by (simp add: neg_def number_of_eq numeral_simps double_less_0_iff
|
|
489 |
Ints_odd_less_0 Ints_def split: bit.split)
|
|
490 |
|
|
491 |
|
|
492 |
text {* Less-Than or Equals *}
|
|
493 |
|
|
494 |
text {* Reduces @{term "a\<le>b"} to @{term "~ (b<a)"} for ALL numerals. *}
|
|
495 |
|
|
496 |
lemmas le_number_of_eq_not_less =
|
|
497 |
linorder_not_less [of "number_of w" "number_of v", symmetric,
|
|
498 |
standard]
|
|
499 |
|
|
500 |
lemma le_number_of_eq:
|
|
501 |
"((number_of x::'a::{ordered_idom,number_ring}) \<le> number_of y)
|
|
502 |
= (~ (neg (number_of (y + uminus x) :: 'a)))"
|
|
503 |
by (simp add: le_number_of_eq_not_less less_number_of_eq_neg)
|
|
504 |
|
|
505 |
|
|
506 |
text {* Absolute value (@{term abs}) *}
|
|
507 |
|
|
508 |
lemma abs_number_of:
|
|
509 |
"abs(number_of x::'a::{ordered_idom,number_ring}) =
|
|
510 |
(if number_of x < (0::'a) then -number_of x else number_of x)"
|
|
511 |
by (simp add: abs_if)
|
|
512 |
|
|
513 |
|
|
514 |
text {* Re-orientation of the equation nnn=x *}
|
|
515 |
|
|
516 |
lemma number_of_reorient:
|
|
517 |
"(number_of w = x) = (x = number_of w)"
|
|
518 |
by auto
|
|
519 |
|
|
520 |
|
|
521 |
subsection {* Simplification of arithmetic operations on integer constants. *}
|
|
522 |
|
|
523 |
lemmas arith_extra_simps [standard, simp] =
|
|
524 |
number_of_add [symmetric]
|
|
525 |
number_of_minus [symmetric] numeral_m1_eq_minus_1 [symmetric]
|
|
526 |
number_of_mult [symmetric]
|
|
527 |
diff_number_of_eq abs_number_of
|
|
528 |
|
|
529 |
text {*
|
|
530 |
For making a minimal simpset, one must include these default simprules.
|
|
531 |
Also include @{text simp_thms}.
|
|
532 |
*}
|
|
533 |
|
|
534 |
lemmas arith_simps =
|
|
535 |
bit.distinct
|
|
536 |
Pls_0_eq Min_1_eq
|
|
537 |
pred_Pls pred_Min pred_1 pred_0
|
|
538 |
succ_Pls succ_Min succ_1 succ_0
|
|
539 |
add_Pls add_Min add_BIT_0 add_BIT_10 add_BIT_11
|
|
540 |
minus_Pls minus_Min minus_1 minus_0
|
|
541 |
mult_Pls mult_Min mult_num1 mult_num0
|
|
542 |
add_Pls_right add_Min_right
|
|
543 |
abs_zero abs_one arith_extra_simps
|
|
544 |
|
|
545 |
text {* Simplification of relational operations *}
|
|
546 |
|
|
547 |
lemmas rel_simps [simp] =
|
|
548 |
eq_number_of_eq iszero_number_of_Pls nonzero_number_of_Min
|
|
549 |
iszero_number_of_0 iszero_number_of_1
|
|
550 |
less_number_of_eq_neg
|
|
551 |
not_neg_number_of_Pls not_neg_0 not_neg_1 not_iszero_1
|
|
552 |
neg_number_of_Min neg_number_of_BIT
|
|
553 |
le_number_of_eq
|
|
554 |
|
|
555 |
|
|
556 |
subsection {* Simplification of arithmetic when nested to the right. *}
|
|
557 |
|
|
558 |
lemma add_number_of_left [simp]:
|
|
559 |
"number_of v + (number_of w + z) =
|
|
560 |
(number_of(v + w) + z::'a::number_ring)"
|
|
561 |
by (simp add: add_assoc [symmetric])
|
|
562 |
|
|
563 |
lemma mult_number_of_left [simp]:
|
|
564 |
"number_of v * (number_of w * z) =
|
|
565 |
(number_of(v * w) * z::'a::number_ring)"
|
|
566 |
by (simp add: mult_assoc [symmetric])
|
|
567 |
|
|
568 |
lemma add_number_of_diff1:
|
|
569 |
"number_of v + (number_of w - c) =
|
|
570 |
number_of(v + w) - (c::'a::number_ring)"
|
|
571 |
by (simp add: diff_minus add_number_of_left)
|
|
572 |
|
|
573 |
lemma add_number_of_diff2 [simp]:
|
|
574 |
"number_of v + (c - number_of w) =
|
|
575 |
number_of (v + uminus w) + (c::'a::number_ring)"
|
|
576 |
apply (subst diff_number_of_eq [symmetric])
|
|
577 |
apply (simp only: compare_rls)
|
|
578 |
done
|
|
579 |
|
|
580 |
|
|
581 |
subsection {* Configuration of the code generator *}
|
|
582 |
|
|
583 |
instance int :: eq ..
|
|
584 |
|
|
585 |
code_datatype Pls Min Bit "number_of \<Colon> int \<Rightarrow> int"
|
|
586 |
|
|
587 |
definition
|
|
588 |
int_aux :: "int \<Rightarrow> nat \<Rightarrow> int" where
|
|
589 |
"int_aux i n = (i + int n)"
|
|
590 |
|
|
591 |
lemma [code]:
|
|
592 |
"int_aux i 0 = i"
|
|
593 |
"int_aux i (Suc n) = int_aux (i + 1) n" -- {* tail recursive *}
|
|
594 |
by (simp add: int_aux_def)+
|
|
595 |
|
|
596 |
lemma [code]:
|
|
597 |
"int n = int_aux 0 n"
|
|
598 |
by (simp add: int_aux_def)
|
|
599 |
|
|
600 |
definition
|
|
601 |
nat_aux :: "nat \<Rightarrow> int \<Rightarrow> nat" where
|
|
602 |
"nat_aux n i = (n + nat i)"
|
|
603 |
|
|
604 |
lemma [code]: "nat_aux n i = (if i <= 0 then n else nat_aux (Suc n) (i - 1))"
|
|
605 |
-- {* tail recursive *}
|
|
606 |
by (auto simp add: nat_aux_def nat_eq_iff linorder_not_le order_less_imp_le
|
|
607 |
dest: zless_imp_add1_zle)
|
|
608 |
|
|
609 |
lemma [code]: "nat i = nat_aux 0 i"
|
|
610 |
by (simp add: nat_aux_def)
|
|
611 |
|
|
612 |
lemma zero_is_num_zero [code func, code inline, symmetric, normal post]:
|
|
613 |
"(0\<Colon>int) = number_of Numeral.Pls"
|
|
614 |
by simp
|
|
615 |
|
|
616 |
lemma one_is_num_one [code func, code inline, symmetric, normal post]:
|
|
617 |
"(1\<Colon>int) = number_of (Numeral.Pls BIT bit.B1)"
|
|
618 |
by simp
|
|
619 |
|
|
620 |
code_modulename SML
|
|
621 |
IntDef Integer
|
|
622 |
|
|
623 |
code_modulename OCaml
|
|
624 |
IntDef Integer
|
|
625 |
|
|
626 |
code_modulename Haskell
|
|
627 |
IntDef Integer
|
|
628 |
|
|
629 |
code_modulename SML
|
|
630 |
Numeral Integer
|
|
631 |
|
|
632 |
code_modulename OCaml
|
|
633 |
Numeral Integer
|
|
634 |
|
|
635 |
code_modulename Haskell
|
|
636 |
Numeral Integer
|
|
637 |
|
|
638 |
(*FIXME: the IntInf.fromInt below hides a dependence on fixed-precision ints!*)
|
|
639 |
|
|
640 |
types_code
|
|
641 |
"int" ("int")
|
|
642 |
attach (term_of) {*
|
|
643 |
val term_of_int = HOLogic.mk_number HOLogic.intT o IntInf.fromInt;
|
|
644 |
*}
|
|
645 |
attach (test) {*
|
|
646 |
fun gen_int i = one_of [~1, 1] * random_range 0 i;
|
|
647 |
*}
|
|
648 |
|
|
649 |
setup {*
|
|
650 |
let
|
|
651 |
|
|
652 |
fun number_of_codegen thy defs gr dep module b (Const (@{const_name Numeral.number_of}, Type ("fun", [_, T])) $ t) =
|
|
653 |
if T = HOLogic.intT then
|
|
654 |
(SOME (fst (Codegen.invoke_tycodegen thy defs dep module false (gr, T)),
|
|
655 |
(Pretty.str o IntInf.toString o HOLogic.dest_numeral) t) handle TERM _ => NONE)
|
|
656 |
else if T = HOLogic.natT then
|
|
657 |
SOME (Codegen.invoke_codegen thy defs dep module b (gr,
|
|
658 |
Const ("IntDef.nat", HOLogic.intT --> HOLogic.natT) $
|
|
659 |
(Const (@{const_name Numeral.number_of}, HOLogic.intT --> HOLogic.intT) $ t)))
|
|
660 |
else NONE
|
|
661 |
| number_of_codegen _ _ _ _ _ _ _ = NONE;
|
|
662 |
|
|
663 |
in
|
|
664 |
|
|
665 |
Codegen.add_codegen "number_of_codegen" number_of_codegen
|
|
666 |
|
|
667 |
end
|
|
668 |
*}
|
|
669 |
|
|
670 |
consts_code
|
|
671 |
"0 :: int" ("0")
|
|
672 |
"1 :: int" ("1")
|
|
673 |
"uminus :: int => int" ("~")
|
|
674 |
"op + :: int => int => int" ("(_ +/ _)")
|
|
675 |
"op * :: int => int => int" ("(_ */ _)")
|
|
676 |
"op \<le> :: int => int => bool" ("(_ <=/ _)")
|
|
677 |
"op < :: int => int => bool" ("(_ </ _)")
|
|
678 |
|
|
679 |
quickcheck_params [default_type = int]
|
|
680 |
|
|
681 |
(*setup continues in theory Presburger*)
|
|
682 |
|
|
683 |
hide (open) const Pls Min B0 B1 succ pred
|
|
684 |
|
|
685 |
end
|