| author | Fabian Huch <huch@in.tum.de> | 
| Fri, 14 Feb 2025 11:36:26 +0100 | |
| changeset 82164 | 69ed0333ba5f | 
| parent 78656 | 4da1e18a9633 | 
| permissions | -rw-r--r-- | 
| 63627 | 1 | (* Title: HOL/Analysis/Lebesgue_Measure.thy | 
| 42067 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | Author: Robert Himmelmann, TU München | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 4 | Author: Jeremy Avigad | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 5 | Author: Luke Serafin | 
| 42067 | 6 | *) | 
| 7 | ||
| 69517 | 8 | section \<open>Lebesgue Measure\<close> | 
| 42067 | 9 | |
| 38656 | 10 | theory Lebesgue_Measure | 
| 69517 | 11 | imports | 
| 12 | Finite_Product_Measure | |
| 13 | Caratheodory | |
| 14 | Complete_Measure | |
| 15 | Summation_Tests | |
| 16 | Regularity | |
| 38656 | 17 | begin | 
| 18 | ||
| 64008 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 19 | lemma measure_eqI_lessThan: | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 20 | fixes M N :: "real measure" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 21 | assumes sets: "sets M = sets borel" "sets N = sets borel" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 22 |   assumes fin: "\<And>x. emeasure M {x <..} < \<infinity>"
 | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 23 |   assumes "\<And>x. emeasure M {x <..} = emeasure N {x <..}"
 | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 24 | shows "M = N" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 25 | proof (rule measure_eqI_generator_eq_countable) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 26 |   let ?LT = "\<lambda>a::real. {a <..}" let ?E = "range ?LT"
 | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 27 | show "Int_stable ?E" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 28 | by (auto simp: Int_stable_def lessThan_Int_lessThan) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 29 | |
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 30 | show "?E \<subseteq> Pow UNIV" "sets M = sigma_sets UNIV ?E" "sets N = sigma_sets UNIV ?E" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 31 | unfolding sets borel_Ioi by auto | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 32 | |
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 33 | show "?LT`Rats \<subseteq> ?E" "(\<Union>i\<in>Rats. ?LT i) = UNIV" "\<And>a. a \<in> ?LT`Rats \<Longrightarrow> emeasure M a \<noteq> \<infinity>" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 34 | using fin by (auto intro: Rats_no_bot_less simp: less_top) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 35 | qed (auto intro: assms countable_rat) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63968diff
changeset | 36 | |
| 69447 | 37 | subsection \<open>Measures defined by monotonous functions\<close> | 
| 38 | ||
| 39 | text \<open> | |
| 40 | Every right-continuous and nondecreasing function gives rise to a measure on the reals: | |
| 41 | \<close> | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 42 | |
| 70136 | 43 | definition\<^marker>\<open>tag important\<close> interval_measure :: "(real \<Rightarrow> real) \<Rightarrow> real measure" where | 
| 69447 | 44 | "interval_measure F = | 
| 45 |      extend_measure UNIV {(a, b). a \<le> b} (\<lambda>(a, b). {a<..b}) (\<lambda>(a, b). ennreal (F b - F a))"
 | |
| 49777 | 46 | |
| 70136 | 47 | lemma\<^marker>\<open>tag important\<close> emeasure_interval_measure_Ioc: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 48 | assumes "a \<le> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 49 | assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 50 | assumes right_cont_F : "\<And>a. continuous (at_right a) F" | 
| 69447 | 51 |   shows "emeasure (interval_measure F) {a<..b} = F b - F a"
 | 
| 70136 | 52 | proof (rule extend_measure_caratheodory_pair[OF interval_measure_def \<open>a \<le> b\<close>]) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 53 |   show "semiring_of_sets UNIV {{a<..b} |a b :: real. a \<le> b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 54 | proof (unfold_locales, safe) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 55 | fix a b c d :: real assume *: "a \<le> b" "c \<le> d" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 56 |     then show "\<exists>C\<subseteq>{{a<..b} |a b. a \<le> b}. finite C \<and> disjoint C \<and> {a<..b} - {c<..d} = \<Union>C"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 57 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 58 |       let ?C = "{{a<..b}}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 59 | assume "b < c \<or> d \<le> a \<or> d \<le> c" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 60 |       with * have "?C \<subseteq> {{a<..b} |a b. a \<le> b} \<and> finite ?C \<and> disjoint ?C \<and> {a<..b} - {c<..d} = \<Union>?C"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 61 | by (auto simp add: disjoint_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 62 | thus ?thesis .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 63 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 64 |       let ?C = "{{a<..c}, {d<..b}}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 65 | assume "\<not> (b < c \<or> d \<le> a \<or> d \<le> c)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 66 |       with * have "?C \<subseteq> {{a<..b} |a b. a \<le> b} \<and> finite ?C \<and> disjoint ?C \<and> {a<..b} - {c<..d} = \<Union>?C"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 67 | by (auto simp add: disjoint_def Ioc_inj) (metis linear)+ | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 68 | thus ?thesis .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 69 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 70 | qed (auto simp: Ioc_inj, metis linear) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 71 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 72 | fix l r :: "nat \<Rightarrow> real" and a b :: real | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 73 |   assume l_r[simp]: "\<And>n. l n \<le> r n" and "a \<le> b" and disj: "disjoint_family (\<lambda>n. {l n<..r n})"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 74 |   assume lr_eq_ab: "(\<Union>i. {l i<..r i}) = {a<..b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 75 | |
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 76 | have [intro, simp]: "\<And>a b. a \<le> b \<Longrightarrow> F a \<le> F b" | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 77 | by (auto intro!: l_r mono_F) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 78 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 79 |   { fix S :: "nat set" assume "finite S"
 | 
| 61808 | 80 | moreover note \<open>a \<le> b\<close> | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 81 |     moreover have "\<And>i. i \<in> S \<Longrightarrow> {l i <.. r i} \<subseteq> {a <.. b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 82 | unfolding lr_eq_ab[symmetric] by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 83 | ultimately have "(\<Sum>i\<in>S. F (r i) - F (l i)) \<le> F b - F a" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 84 | proof (induction S arbitrary: a rule: finite_psubset_induct) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 85 | case (psubset S) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 86 | show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 87 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 88 | assume "\<exists>i\<in>S. l i < r i" | 
| 61808 | 89 |         with \<open>finite S\<close> have "Min (l ` {i\<in>S. l i < r i}) \<in> l ` {i\<in>S. l i < r i}"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 90 | by (intro Min_in) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 91 |         then obtain m where m: "m \<in> S" "l m < r m" "l m = Min (l ` {i\<in>S. l i < r i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 92 | by fastforce | 
| 50104 | 93 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 94 |         have "(\<Sum>i\<in>S. F (r i) - F (l i)) = (F (r m) - F (l m)) + (\<Sum>i\<in>S - {m}. F (r i) - F (l i))"
 | 
| 64267 | 95 | using m psubset by (intro sum.remove) auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 96 |         also have "(\<Sum>i\<in>S - {m}. F (r i) - F (l i)) \<le> F b - F (r m)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 97 | proof (intro psubset.IH) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 98 |           show "S - {m} \<subset> S"
 | 
| 61808 | 99 | using \<open>m\<in>S\<close> by auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 100 | show "r m \<le> b" | 
| 61808 | 101 | using psubset.prems(2)[OF \<open>m\<in>S\<close>] \<open>l m < r m\<close> by auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 102 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 103 |           fix i assume "i \<in> S - {m}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 104 | then have i: "i \<in> S" "i \<noteq> m" by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 105 |           { assume i': "l i < r i" "l i < r m"
 | 
| 63540 | 106 | with \<open>finite S\<close> i m have "l m \<le> l i" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 107 | by auto | 
| 63540 | 108 |             with i' have "{l i <.. r i} \<inter> {l m <.. r m} \<noteq> {}"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 109 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 110 | then have False | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 111 | using disjoint_family_onD[OF disj, of i m] i by auto } | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 112 | then have "l i \<noteq> r i \<Longrightarrow> r m \<le> l i" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 113 | unfolding not_less[symmetric] using l_r[of i] by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 114 |           then show "{l i <.. r i} \<subseteq> {r m <.. b}"
 | 
| 61808 | 115 | using psubset.prems(2)[OF \<open>i\<in>S\<close>] by auto | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 116 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 117 | also have "F (r m) - F (l m) \<le> F (r m) - F a" | 
| 61808 | 118 | using psubset.prems(2)[OF \<open>m \<in> S\<close>] \<open>l m < r m\<close> | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 119 | by (auto simp add: Ioc_subset_iff intro!: mono_F) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 120 | finally show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 121 | by (auto intro: add_mono) | 
| 61808 | 122 | qed (auto simp add: \<open>a \<le> b\<close> less_le) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 123 | qed } | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 124 | note claim1 = this | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 125 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 126 | (* second key induction: a lower bound on the measures of any finite collection of Ai's | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 127 |      that cover an interval {u..v} *)
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 128 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 129 |   { fix S u v and l r :: "nat \<Rightarrow> real"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 130 |     assume "finite S" "\<And>i. i\<in>S \<Longrightarrow> l i < r i" "{u..v} \<subseteq> (\<Union>i\<in>S. {l i<..< r i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 131 | then have "F v - F u \<le> (\<Sum>i\<in>S. F (r i) - F (l i))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 132 | proof (induction arbitrary: v u rule: finite_psubset_induct) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 133 | case (psubset S) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 134 | show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 135 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 136 |         assume "S = {}" then show ?case
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 137 | using psubset by (simp add: mono_F) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 138 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 139 |         assume "S \<noteq> {}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 140 | then obtain j where "j \<in> S" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 141 | by auto | 
| 47694 | 142 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 143 |         let ?R = "r j < u \<or> l j > v \<or> (\<exists>i\<in>S-{j}. l i \<le> l j \<and> r j \<le> r i)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 144 | show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 145 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 146 | assume "?R" | 
| 61808 | 147 |           with \<open>j \<in> S\<close> psubset.prems have "{u..v} \<subseteq> (\<Union>i\<in>S-{j}. {l i<..< r i})"
 | 
| 76786 | 148 | apply (simp add: subset_eq Ball_def Bex_def) | 
| 149 | by (metis order_le_less_trans order_less_le_trans order_less_not_sym) | |
| 61808 | 150 |           with \<open>j \<in> S\<close> have "F v - F u \<le> (\<Sum>i\<in>S - {j}. F (r i) - F (l i))"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 151 | by (intro psubset) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 152 | also have "\<dots> \<le> (\<Sum>i\<in>S. F (r i) - F (l i))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 153 | using psubset.prems | 
| 64267 | 154 | by (intro sum_mono2 psubset) (auto intro: less_imp_le) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 155 | finally show ?thesis . | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 156 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 157 | assume "\<not> ?R" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 158 |           then have j: "u \<le> r j" "l j \<le> v" "\<And>i. i \<in> S - {j} \<Longrightarrow> r i < r j \<or> l i > l j"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 159 | by (auto simp: not_less) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 160 |           let ?S1 = "{i \<in> S. l i < l j}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 161 |           let ?S2 = "{i \<in> S. r i > r j}"
 | 
| 76786 | 162 |           have *: "?S1 \<inter> ?S2 = {}"
 | 
| 163 | using j by (fastforce simp add: disjoint_iff) | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 164 |           have "(\<Sum>i\<in>S. F (r i) - F (l i)) \<ge> (\<Sum>i\<in>?S1 \<union> ?S2 \<union> {j}. F (r i) - F (l i))"
 | 
| 61808 | 165 | using \<open>j \<in> S\<close> \<open>finite S\<close> psubset.prems j | 
| 64267 | 166 | by (intro sum_mono2) (auto intro: less_imp_le) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 167 |           also have "(\<Sum>i\<in>?S1 \<union> ?S2 \<union> {j}. F (r i) - F (l i)) =
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 168 | (\<Sum>i\<in>?S1. F (r i) - F (l i)) + (\<Sum>i\<in>?S2 . F (r i) - F (l i)) + (F (r j) - F (l j))" | 
| 76786 | 169 | using psubset(1) by (simp add: * sum.union_disjoint disjoint_iff_not_equal) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 170 | also (xtrans) have "(\<Sum>i\<in>?S1. F (r i) - F (l i)) \<ge> F (l j) - F u" | 
| 61808 | 171 | using \<open>j \<in> S\<close> \<open>finite S\<close> psubset.prems j | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 172 | apply (intro psubset.IH psubset) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 173 | apply (auto simp: subset_eq Ball_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 174 | apply (metis less_le_trans not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 175 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 176 | also (xtrans) have "(\<Sum>i\<in>?S2. F (r i) - F (l i)) \<ge> F v - F (r j)" | 
| 61808 | 177 | using \<open>j \<in> S\<close> \<open>finite S\<close> psubset.prems j | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 178 | apply (intro psubset.IH psubset) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 179 | apply (auto simp: subset_eq Ball_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 180 | apply (metis le_less_trans not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 181 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 182 | finally (xtrans) show ?case | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 183 | by (auto simp: add_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 184 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 185 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 186 | qed } | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 187 | note claim2 = this | 
| 49777 | 188 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 189 | (* now prove the inequality going the other way *) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 190 | have "ennreal (F b - F a) \<le> (\<Sum>i. ennreal (F (r i) - F (l i)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 191 | proof (rule ennreal_le_epsilon) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 192 | fix epsilon :: real assume egt0: "epsilon > 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 193 | have "\<forall>i. \<exists>d>0. F (r i + d) < F (r i) + epsilon / 2^(i+2)" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 194 | proof | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 195 | fix i | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 196 | note right_cont_F [of "r i"] | 
| 76786 | 197 | then have "\<exists>d>0. F (r i + d) - F (r i) < epsilon / 2 ^ (i + 2)" | 
| 198 | by (simp add: continuous_at_right_real_increasing egt0) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 199 | thus "\<exists>d>0. F (r i + d) < F (r i) + epsilon / 2^(i+2)" | 
| 76786 | 200 | by force | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 201 | qed | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 202 | then obtain delta where | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 203 | deltai_gt0: "\<And>i. delta i > 0" and | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 204 | deltai_prop: "\<And>i. F (r i + delta i) < F (r i) + epsilon / 2^(i+2)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 205 | by metis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 206 | have "\<exists>a' > a. F a' - F a < epsilon / 2" | 
| 76786 | 207 | using right_cont_F [of a] | 
| 208 | by (metis continuous_at_right_real_increasing egt0 half_gt_zero less_add_same_cancel1 mono_F) | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 209 | then obtain a' where a'lea [arith]: "a' > a" and | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 210 | a_prop: "F a' - F a < epsilon / 2" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 211 | by auto | 
| 63040 | 212 |     define S' where "S' = {i. l i < r i}"
 | 
| 76786 | 213 | obtain S :: "nat set" where "S \<subseteq> S'" and finS: "finite S" | 
| 214 |       and Sprop: "{a'..b} \<subseteq> (\<Union>i \<in> S. {l i<..<r i + delta i})"
 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 215 | proof (rule compactE_image) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 216 |       show "compact {a'..b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 217 | by (rule compact_Icc) | 
| 65585 
a043de9ad41e
Some fixes related to compactE_image
 paulson <lp15@cam.ac.uk> parents: 
65204diff
changeset | 218 |       show "\<And>i. i \<in> S' \<Longrightarrow> open ({l i<..<r i + delta i})" by auto
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 219 |       have "{a'..b} \<subseteq> {a <.. b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 220 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 221 |       also have "{a <.. b} = (\<Union>i\<in>S'. {l i<..r i})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 222 | unfolding lr_eq_ab[symmetric] by (fastforce simp add: S'_def intro: less_le_trans) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 223 |       also have "\<dots> \<subseteq> (\<Union>i \<in> S'. {l i<..<r i + delta i})"
 | 
| 76786 | 224 | by (intro UN_mono; simp add: add.commute add_strict_increasing deltai_gt0 subset_iff) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 225 |       finally show "{a'..b} \<subseteq> (\<Union>i \<in> S'. {l i<..<r i + delta i})" .
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 226 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 227 | with S'_def have Sprop2: "\<And>i. i \<in> S \<Longrightarrow> l i < r i" by auto | 
| 76786 | 228 | obtain n where Sbound: "\<And>i. i \<in> S \<Longrightarrow> i \<le> n" | 
| 229 | using Max_ge finS by blast | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 230 | have "F b - F a = (F b - F a') + (F a' - F a)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 231 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 232 | also have "... \<le> (F b - F a') + epsilon / 2" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 233 | using a_prop by (intro add_left_mono) simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 234 | also have "... \<le> (\<Sum>i\<in>S. F (r i) - F (l i)) + epsilon / 2 + epsilon / 2" | 
| 76786 | 235 | proof - | 
| 236 | have "F b - F a' \<le> (\<Sum>i\<in>S. F (r i + delta i) - F (l i))" | |
| 237 | using claim2 l_r Sprop by (simp add: deltai_gt0 finS add.commute add_strict_increasing) | |
| 238 | also have "... \<le> (\<Sum>i \<in> S. F(r i) - F(l i) + epsilon / 2^(i+2))" | |
| 239 | by (smt (verit) sum_mono deltai_prop) | |
| 240 | also have "... = (\<Sum>i \<in> S. F(r i) - F(l i)) + | |
| 241 | (epsilon / 4) * (\<Sum>i \<in> S. (1 / 2)^i)" (is "_ = ?t + _") | |
| 242 | by (subst sum.distrib) (simp add: field_simps sum_distrib_left) | |
| 243 | also have "... \<le> ?t + (epsilon / 4) * (\<Sum> i < Suc n. (1 / 2)^i)" | |
| 244 | using egt0 Sbound by (intro add_left_mono mult_left_mono sum_mono2) force+ | |
| 245 | also have "... \<le> ?t + (epsilon / 2)" | |
| 246 | using egt0 by (simp add: geometric_sum add_left_mono mult_left_mono) | |
| 247 | finally have "F b - F a' \<le> (\<Sum>i\<in>S. F (r i) - F (l i)) + epsilon / 2" | |
| 248 | by simp | |
| 249 | then show ?thesis | |
| 250 | by linarith | |
| 251 | qed | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 252 | also have "... = (\<Sum>i\<in>S. F (r i) - F (l i)) + epsilon" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 253 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 254 | also have "... \<le> (\<Sum>i\<le>n. F (r i) - F (l i)) + epsilon" | 
| 65680 
378a2f11bec9
Simplification of some proofs. Also key lemmas using !! rather than ! in premises
 paulson <lp15@cam.ac.uk> parents: 
65585diff
changeset | 255 | using finS Sbound Sprop by (auto intro!: add_right_mono sum_mono2) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 256 | finally have "ennreal (F b - F a) \<le> (\<Sum>i\<le>n. ennreal (F (r i) - F (l i))) + epsilon" | 
| 68403 | 257 | using egt0 by (simp add: sum_nonneg flip: ennreal_plus) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 258 | then show "ennreal (F b - F a) \<le> (\<Sum>i. ennreal (F (r i) - F (l i))) + (epsilon :: real)" | 
| 64267 | 259 | by (rule order_trans) (auto intro!: add_mono sum_le_suminf simp del: sum_ennreal) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 260 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 261 | moreover have "(\<Sum>i. ennreal (F (r i) - F (l i))) \<le> ennreal (F b - F a)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 262 | using \<open>a \<le> b\<close> by (auto intro!: suminf_le_const ennreal_le_iff[THEN iffD2] claim1) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 263 | ultimately show "(\<Sum>n. ennreal (F (r n) - F (l n))) = ennreal (F b - F a)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 264 | by (rule antisym[rotated]) | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 265 | qed (auto simp: Ioc_inj mono_F) | 
| 38656 | 266 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 267 | lemma measure_interval_measure_Ioc: | 
| 70271 | 268 | assumes "a \<le> b" and "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y" and "\<And>a. continuous (at_right a) F" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 269 |   shows "measure (interval_measure F) {a <.. b} = F b - F a"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 270 | unfolding measure_def | 
| 70271 | 271 | by (simp add: assms emeasure_interval_measure_Ioc) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 272 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 273 | lemma emeasure_interval_measure_Ioc_eq: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 274 | "(\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y) \<Longrightarrow> (\<And>a. continuous (at_right a) F) \<Longrightarrow> | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 275 |     emeasure (interval_measure F) {a <.. b} = (if a \<le> b then F b - F a else 0)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 276 | using emeasure_interval_measure_Ioc[of a b F] by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 277 | |
| 70136 | 278 | lemma\<^marker>\<open>tag important\<close> sets_interval_measure [simp, measurable_cong]: | 
| 69447 | 279 | "sets (interval_measure F) = sets borel" | 
| 76786 | 280 | apply (simp add: sets_extend_measure interval_measure_def borel_sigma_sets_Ioc image_def split: prod.split) | 
| 281 | by (metis greaterThanAtMost_empty nle_le) | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 282 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 283 | lemma space_interval_measure [simp]: "space (interval_measure F) = UNIV" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 284 | by (simp add: interval_measure_def space_extend_measure) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 285 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 286 | lemma emeasure_interval_measure_Icc: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 287 | assumes "a \<le> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 288 | assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 289 | assumes cont_F : "continuous_on UNIV F" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 290 |   shows "emeasure (interval_measure F) {a .. b} = F b - F a"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 291 | proof (rule tendsto_unique) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 292 |   { fix a b :: real assume "a \<le> b" then have "emeasure (interval_measure F) {a <.. b} = F b - F a"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 293 | using cont_F | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 294 | by (subst emeasure_interval_measure_Ioc) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 295 | (auto intro: mono_F continuous_within_subset simp: continuous_on_eq_continuous_within) } | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 296 | note * = this | 
| 38656 | 297 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 298 | let ?F = "interval_measure F" | 
| 61973 | 299 |   show "((\<lambda>a. F b - F a) \<longlongrightarrow> emeasure ?F {a..b}) (at_left a)"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 300 | proof (rule tendsto_at_left_sequentially) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 301 | show "a - 1 < a" by simp | 
| 76786 | 302 | fix X assume X: "\<And>n. X n < a" "incseq X" "X \<longlonglongrightarrow> a" | 
| 303 |     then have "emeasure (interval_measure F) {X n<..b} \<noteq> \<infinity>" for n
 | |
| 304 | by (smt (verit) "*" \<open>a \<le> b\<close> ennreal_neq_top infinity_ennreal_def) | |
| 305 |     with X have "(\<lambda>n. emeasure ?F {X n<..b}) \<longlonglongrightarrow> emeasure ?F (\<Inter>n. {X n <..b})"
 | |
| 306 | by (intro Lim_emeasure_decseq; force simp: decseq_def incseq_def emeasure_interval_measure_Ioc *) | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 307 |     also have "(\<Inter>n. {X n <..b}) = {a..b}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 308 | apply auto | 
| 61969 | 309 | apply (rule LIMSEQ_le_const2[OF \<open>X \<longlonglongrightarrow> a\<close>]) | 
| 76786 | 310 | using less_eq_real_def apply presburger | 
| 311 | using X(1) order_less_le_trans by blast | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 312 |     also have "(\<lambda>n. emeasure ?F {X n<..b}) = (\<lambda>n. F b - F (X n))"
 | 
| 61808 | 313 | using \<open>\<And>n. X n < a\<close> \<open>a \<le> b\<close> by (subst *) (auto intro: less_imp_le less_le_trans) | 
| 61969 | 314 |     finally show "(\<lambda>n. F b - F (X n)) \<longlonglongrightarrow> emeasure ?F {a..b}" .
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 315 | qed | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 316 | show "((\<lambda>a. ennreal (F b - F a)) \<longlongrightarrow> F b - F a) (at_left a)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 317 | by (rule continuous_on_tendsto_compose[where g="\<lambda>x. x" and s=UNIV]) | 
| 71172 | 318 | (auto simp: continuous_on_ennreal continuous_on_diff cont_F) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 319 | qed (rule trivial_limit_at_left_real) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 320 | |
| 70136 | 321 | lemma\<^marker>\<open>tag important\<close> sigma_finite_interval_measure: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 322 | assumes mono_F: "\<And>x y. x \<le> y \<Longrightarrow> F x \<le> F y" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 323 | assumes right_cont_F : "\<And>a. continuous (at_right a) F" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 324 | shows "sigma_finite_measure (interval_measure F)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 325 | apply unfold_locales | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 326 |   apply (intro exI[of _ "(\<lambda>(a, b). {a <.. b}) ` (\<rat> \<times> \<rat>)"])
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 327 | apply (auto intro!: Rats_no_top_le Rats_no_bot_less countable_rat simp: emeasure_interval_measure_Ioc_eq[OF assms]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 328 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 329 | |
| 61808 | 330 | subsection \<open>Lebesgue-Borel measure\<close> | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 331 | |
| 70136 | 332 | definition\<^marker>\<open>tag important\<close> lborel :: "('a :: euclidean_space) measure" where
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 333 | "lborel = distr (\<Pi>\<^sub>M b\<in>Basis. interval_measure (\<lambda>x. x)) borel (\<lambda>f. \<Sum>b\<in>Basis. f b *\<^sub>R b)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 334 | |
| 70136 | 335 | abbreviation\<^marker>\<open>tag important\<close> lebesgue :: "'a::euclidean_space measure" | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 336 | where "lebesgue \<equiv> completion lborel" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 337 | |
| 70136 | 338 | abbreviation\<^marker>\<open>tag important\<close> lebesgue_on :: "'a set \<Rightarrow> 'a::euclidean_space measure" | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 339 | where "lebesgue_on \<Omega> \<equiv> restrict_space (completion lborel) \<Omega>" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 340 | |
| 70380 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 341 | lemma lebesgue_on_mono: | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 342 | assumes major: "AE x in lebesgue_on S. P x" and minor: "\<And>x.\<lbrakk>P x; x \<in> S\<rbrakk> \<Longrightarrow> Q x" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 343 | shows "AE x in lebesgue_on S. Q x" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 344 | proof - | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 345 | have "AE a in lebesgue_on S. P a \<longrightarrow> Q a" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 346 | using minor space_restrict_space by fastforce | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 347 | then show ?thesis | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 348 | using major by auto | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 349 | qed | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 350 | |
| 70547 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 351 | lemma integral_eq_zero_null_sets: | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 352 | assumes "S \<in> null_sets lebesgue" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 353 | shows "integral\<^sup>L (lebesgue_on S) f = 0" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 354 | proof (rule integral_eq_zero_AE) | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 355 | show "AE x in lebesgue_on S. f x = 0" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 356 | by (metis (no_types, lifting) assms AE_not_in lebesgue_on_mono null_setsD2 null_sets_restrict_space order_refl) | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 357 | qed | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 358 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 359 | lemma | 
| 59048 | 360 | shows sets_lborel[simp, measurable_cong]: "sets lborel = sets borel" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 361 | and space_lborel[simp]: "space lborel = space borel" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 362 | and measurable_lborel1[simp]: "measurable M lborel = measurable M borel" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 363 | and measurable_lborel2[simp]: "measurable lborel M = measurable borel M" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 364 | by (simp_all add: lborel_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 365 | |
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 366 | lemma space_lebesgue_on [simp]: "space (lebesgue_on S) = S" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 367 | by (simp add: space_restrict_space) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 368 | |
| 66164 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 369 | lemma sets_lebesgue_on_refl [iff]: "S \<in> sets (lebesgue_on S)" | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 370 | by (metis inf_top.right_neutral sets.top space_borel space_completion space_lborel space_restrict_space) | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 371 | |
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 372 | lemma Compl_in_sets_lebesgue: "-A \<in> sets lebesgue \<longleftrightarrow> A \<in> sets lebesgue" | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 373 | by (metis Compl_eq_Diff_UNIV double_compl space_borel space_completion space_lborel Sigma_Algebra.sets.compl_sets) | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 374 | |
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 375 | lemma measurable_lebesgue_cong: | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 376 | assumes "\<And>x. x \<in> S \<Longrightarrow> f x = g x" | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 377 | shows "f \<in> measurable (lebesgue_on S) M \<longleftrightarrow> g \<in> measurable (lebesgue_on S) M" | 
| 69546 
27dae626822b
prefer naming convention from datatype package for strong congruence rules
 haftmann parents: 
69517diff
changeset | 378 | by (metis (mono_tags, lifting) IntD1 assms measurable_cong_simp space_restrict_space) | 
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 379 | |
| 70532 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 380 | lemma lebesgue_on_UNIV_eq: "lebesgue_on UNIV = lebesgue" | 
| 76786 | 381 | by (simp add: emeasure_restrict_space measure_eqI) | 
| 70532 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 382 | |
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 383 | lemma integral_restrict_Int: | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 384 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 385 | assumes "S \<in> sets lebesgue" "T \<in> sets lebesgue" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 386 | shows "integral\<^sup>L (lebesgue_on T) (\<lambda>x. if x \<in> S then f x else 0) = integral\<^sup>L (lebesgue_on (S \<inter> T)) f" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 387 | proof - | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 388 | have "(\<lambda>x. indicat_real T x *\<^sub>R (if x \<in> S then f x else 0)) = (\<lambda>x. indicat_real (S \<inter> T) x *\<^sub>R f x)" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 389 | by (force simp: indicator_def) | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 390 | then show ?thesis | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 391 | by (simp add: assms sets.Int Bochner_Integration.integral_restrict_space) | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 392 | qed | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 393 | |
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 394 | lemma integral_restrict: | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 395 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 396 | assumes "S \<subseteq> T" "S \<in> sets lebesgue" "T \<in> sets lebesgue" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 397 | shows "integral\<^sup>L (lebesgue_on T) (\<lambda>x. if x \<in> S then f x else 0) = integral\<^sup>L (lebesgue_on S) f" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 398 | using integral_restrict_Int [of S T f] assms | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 399 | by (simp add: Int_absorb2) | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 400 | |
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 401 | lemma integral_restrict_UNIV: | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 402 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 403 | assumes "S \<in> sets lebesgue" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 404 | shows "integral\<^sup>L lebesgue (\<lambda>x. if x \<in> S then f x else 0) = integral\<^sup>L (lebesgue_on S) f" | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 405 | using integral_restrict_Int [of S UNIV f] assms | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 406 | by (simp add: lebesgue_on_UNIV_eq) | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 407 | |
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 408 | lemma integrable_lebesgue_on_empty [iff]: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 409 |   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::{second_countable_topology,banach}"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 410 |   shows "integrable (lebesgue_on {}) f"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 411 | by (simp add: integrable_restrict_space) | 
| 70271 | 412 | |
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 413 | lemma integral_lebesgue_on_empty [simp]: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 414 |   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::{second_countable_topology,banach}"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 415 |   shows "integral\<^sup>L (lebesgue_on {}) f = 0"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 416 | by (simp add: Bochner_Integration.integral_empty) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 417 | lemma has_bochner_integral_restrict_space: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 418 |   fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 419 | assumes \<Omega>: "\<Omega> \<inter> space M \<in> sets M" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 420 | shows "has_bochner_integral (restrict_space M \<Omega>) f i | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 421 | \<longleftrightarrow> has_bochner_integral M (\<lambda>x. indicator \<Omega> x *\<^sub>R f x) i" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 422 | by (simp add: integrable_restrict_space [OF assms] integral_restrict_space [OF assms] has_bochner_integral_iff) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 423 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 424 | lemma integrable_restrict_UNIV: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 425 |   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::{banach, second_countable_topology}"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 426 | assumes S: "S \<in> sets lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 427 | shows "integrable lebesgue (\<lambda>x. if x \<in> S then f x else 0) \<longleftrightarrow> integrable (lebesgue_on S) f" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 428 | using has_bochner_integral_restrict_space [of S lebesgue f] assms | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 429 | by (simp add: integrable.simps indicator_scaleR_eq_if) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 430 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 431 | lemma integral_mono_lebesgue_on_AE: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 432 | fixes f::"_ \<Rightarrow> real" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 433 | assumes f: "integrable (lebesgue_on T) f" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 434 | and gf: "AE x in (lebesgue_on S). g x \<le> f x" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 435 | and f0: "AE x in (lebesgue_on T). 0 \<le> f x" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 436 | and "S \<subseteq> T" and S: "S \<in> sets lebesgue" and T: "T \<in> sets lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 437 | shows "(\<integral>x. g x \<partial>(lebesgue_on S)) \<le> (\<integral>x. f x \<partial>(lebesgue_on T))" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 438 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 439 | have "(\<integral>x. g x \<partial>(lebesgue_on S)) = (\<integral>x. (if x \<in> S then g x else 0) \<partial>lebesgue)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 440 | by (simp add: Lebesgue_Measure.integral_restrict_UNIV S) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 441 | also have "\<dots> \<le> (\<integral>x. (if x \<in> T then f x else 0) \<partial>lebesgue)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 442 | proof (rule Bochner_Integration.integral_mono_AE') | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 443 | show "integrable lebesgue (\<lambda>x. if x \<in> T then f x else 0)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 444 | by (simp add: integrable_restrict_UNIV T f) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 445 | show "AE x in lebesgue. (if x \<in> S then g x else 0) \<le> (if x \<in> T then f x else 0)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 446 | using assms by (auto simp: AE_restrict_space_iff) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 447 | show "AE x in lebesgue. 0 \<le> (if x \<in> T then f x else 0)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 448 | using f0 by (simp add: AE_restrict_space_iff T) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 449 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 450 | also have "\<dots> = (\<integral>x. f x \<partial>(lebesgue_on T))" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 451 | using Lebesgue_Measure.integral_restrict_UNIV T by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 452 | finally show ?thesis . | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 453 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 454 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 455 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 456 | subsection \<open>Borel measurability\<close> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 457 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 458 | lemma borel_measurable_if_I: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 459 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 460 | assumes f: "f \<in> borel_measurable (lebesgue_on S)" and S: "S \<in> sets lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 461 | shows "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 462 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 463 |   have eq: "{x. x \<notin> S} \<union> {x. f x \<in> Y} = {x. x \<notin> S} \<union> {x. f x \<in> Y} \<inter> S" for Y
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 464 | by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 465 | show ?thesis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 466 | using f S | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 467 | apply (simp add: vimage_def in_borel_measurable_borel Ball_def) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 468 | apply (elim all_forward imp_forward asm_rl) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 469 | apply (simp only: Collect_conj_eq Collect_disj_eq imp_conv_disj eq) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 470 | apply (auto simp: Compl_eq [symmetric] Compl_in_sets_lebesgue sets_restrict_space_iff) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 471 | done | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 472 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 473 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 474 | lemma borel_measurable_if_D: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 475 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 476 | assumes "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 477 | shows "f \<in> borel_measurable (lebesgue_on S)" | 
| 76786 | 478 | using assms by (smt (verit) measurable_lebesgue_cong measurable_restrict_space1) | 
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 479 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 480 | lemma borel_measurable_if: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 481 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 482 | assumes "S \<in> sets lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 483 | shows "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable lebesgue \<longleftrightarrow> f \<in> borel_measurable (lebesgue_on S)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 484 | using assms borel_measurable_if_D borel_measurable_if_I by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 485 | |
| 70694 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 486 | lemma borel_measurable_if_lebesgue_on: | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 487 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 488 | assumes "S \<in> sets lebesgue" "T \<in> sets lebesgue" "S \<subseteq> T" | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 489 | shows "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable (lebesgue_on T) \<longleftrightarrow> f \<in> borel_measurable (lebesgue_on S)" | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 490 | (is "?lhs = ?rhs") | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 491 | proof | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 492 | assume ?lhs then show ?rhs | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 493 | using measurable_restrict_mono [OF _ \<open>S \<subseteq> T\<close>] | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 494 | by (subst measurable_lebesgue_cong [where g = "(\<lambda>x. if x \<in> S then f x else 0)"]) auto | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 495 | next | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 496 | assume ?rhs then show ?lhs | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 497 | by (simp add: \<open>S \<in> sets lebesgue\<close> borel_measurable_if_I measurable_restrict_space1) | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 498 | qed | 
| 
ae37b8fbf023
New theory Equivalence_Measurable_On_Borel, with the HOL Light notion of measurable_on and its equivalence to ours
 paulson <lp15@cam.ac.uk> parents: 
70688diff
changeset | 499 | |
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 500 | lemma borel_measurable_vimage_halfspace_component_lt: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 501 | "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 502 |       (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i < a} \<in> sets (lebesgue_on S))"
 | 
| 76786 | 503 | by (force simp add: space_restrict_space trans [OF borel_measurable_iff_halfspace_less]) | 
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 504 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 505 | lemma borel_measurable_vimage_halfspace_component_ge: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 506 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 507 | shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 508 |          (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i \<ge> a} \<in> sets (lebesgue_on S))"
 | 
| 76786 | 509 | by (force simp add: space_restrict_space trans [OF borel_measurable_iff_halfspace_ge]) | 
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 510 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 511 | lemma borel_measurable_vimage_halfspace_component_gt: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 512 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 513 | shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 514 |          (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i > a} \<in> sets (lebesgue_on S))"
 | 
| 76786 | 515 | by (force simp add: space_restrict_space trans [OF borel_measurable_iff_halfspace_greater]) | 
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 516 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 517 | lemma borel_measurable_vimage_halfspace_component_le: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 518 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 519 | shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 520 |          (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i \<le> a} \<in> sets (lebesgue_on S))"
 | 
| 76786 | 521 | by (force simp add: space_restrict_space trans [OF borel_measurable_iff_halfspace_le]) | 
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 522 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 523 | lemma | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 524 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 525 | shows borel_measurable_vimage_open_interval: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 526 | "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 527 |          (\<forall>a b. {x \<in> S. f x \<in> box a b} \<in> sets (lebesgue_on S))" (is ?thesis1)
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 528 | and borel_measurable_vimage_open: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 529 | "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 530 |          (\<forall>T. open T \<longrightarrow> {x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S))" (is ?thesis2)
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 531 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 532 |   have "{x \<in> S. f x \<in> box a b} \<in> sets (lebesgue_on S)" if "f \<in> borel_measurable (lebesgue_on S)" for a b
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 533 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 534 | have "S = S \<inter> space lebesgue" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 535 | by simp | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 536 | then have "S \<inter> (f -` box a b) \<in> sets (lebesgue_on S)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 537 | by (metis (no_types) box_borel in_borel_measurable_borel inf_sup_aci(1) space_restrict_space that) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 538 | then show ?thesis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 539 | by (simp add: Collect_conj_eq vimage_def) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 540 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 541 | moreover | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 542 |   have "{x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S)"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 543 |        if T: "\<And>a b. {x \<in> S. f x \<in> box a b} \<in> sets (lebesgue_on S)" "open T" for T
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 544 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 545 | obtain \<D> where "countable \<D>" and \<D>: "\<And>X. X \<in> \<D> \<Longrightarrow> \<exists>a b. X = box a b" "\<Union>\<D> = T" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 546 | using open_countable_Union_open_box that \<open>open T\<close> by metis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 547 |     then have eq: "{x \<in> S. f x \<in> T} = (\<Union>U \<in> \<D>. {x \<in> S. f x \<in> U})"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 548 | by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 549 |     have "{x \<in> S. f x \<in> U} \<in> sets (lebesgue_on S)" if "U \<in> \<D>" for U
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 550 | using that T \<D> by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 551 | then show ?thesis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 552 | by (auto simp: eq intro: Sigma_Algebra.sets.countable_UN' [OF \<open>countable \<D>\<close>]) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 553 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 554 | moreover | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 555 |   have eq: "{x \<in> S. f x \<bullet> i < a} = {x \<in> S. f x \<in> {y. y \<bullet> i < a}}" for i a
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 556 | by auto | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 557 | have "f \<in> borel_measurable (lebesgue_on S)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 558 |     if "\<And>T. open T \<Longrightarrow> {x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S)"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 559 | by (metis (no_types) eq borel_measurable_vimage_halfspace_component_lt open_halfspace_component_lt that) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 560 | ultimately show "?thesis1" "?thesis2" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 561 | by blast+ | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 562 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 563 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 564 | lemma borel_measurable_vimage_closed: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 565 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 566 | shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 567 |          (\<forall>T. closed T \<longrightarrow> {x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S))"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 568 | proof - | 
| 76786 | 569 |   have eq: "{x \<in> S. f x \<in> T} = S - (S \<inter> f -` (- T))" for T
 | 
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 570 | by auto | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 571 | show ?thesis | 
| 76786 | 572 | unfolding borel_measurable_vimage_open eq | 
| 573 | by (metis Diff_Diff_Int closed_Compl diff_eq open_Compl sets.Diff sets_lebesgue_on_refl vimage_Compl) | |
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 574 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 575 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 576 | lemma borel_measurable_vimage_closed_interval: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 577 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 578 | shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 579 |          (\<forall>a b. {x \<in> S. f x \<in> cbox a b} \<in> sets (lebesgue_on S))"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 580 | (is "?lhs = ?rhs") | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 581 | proof | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 582 | assume ?lhs then show ?rhs | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 583 | using borel_measurable_vimage_closed by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 584 | next | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 585 | assume RHS: ?rhs | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 586 |   have "{x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S)" if "open T" for T
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 587 | proof - | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 588 | obtain \<D> where "countable \<D>" and \<D>: "\<D> \<subseteq> Pow T" "\<And>X. X \<in> \<D> \<Longrightarrow> \<exists>a b. X = cbox a b" "\<Union>\<D> = T" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 589 | using open_countable_Union_open_cbox that \<open>open T\<close> by metis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 590 |     then have eq: "{x \<in> S. f x \<in> T} = (\<Union>U \<in> \<D>. {x \<in> S. f x \<in> U})"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 591 | by blast | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 592 |     have "{x \<in> S. f x \<in> U} \<in> sets (lebesgue_on S)" if "U \<in> \<D>" for U
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 593 | using that \<D> by (metis RHS) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 594 | then show ?thesis | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 595 | by (auto simp: eq intro: Sigma_Algebra.sets.countable_UN' [OF \<open>countable \<D>\<close>]) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 596 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 597 | then show ?lhs | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 598 | by (simp add: borel_measurable_vimage_open) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 599 | qed | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 600 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 601 | lemma borel_measurable_vimage_borel: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 602 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 603 | shows "f \<in> borel_measurable (lebesgue_on S) \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 604 |          (\<forall>T. T \<in> sets borel \<longrightarrow> {x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S))"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 605 | (is "?lhs = ?rhs") | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 606 | proof | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 607 | assume f: ?lhs | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 608 | then show ?rhs | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 609 | using measurable_sets [OF f] | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 610 | by (simp add: Collect_conj_eq inf_sup_aci(1) space_restrict_space vimage_def) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 611 | qed (simp add: borel_measurable_vimage_open_interval) | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 612 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 613 | lemma lebesgue_measurable_vimage_borel: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 614 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 615 | assumes "f \<in> borel_measurable lebesgue" "T \<in> sets borel" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 616 |   shows "{x. f x \<in> T} \<in> sets lebesgue"
 | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 617 | using assms borel_measurable_vimage_borel [of f UNIV] by auto | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 618 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 619 | lemma borel_measurable_lebesgue_preimage_borel: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 620 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 621 | shows "f \<in> borel_measurable lebesgue \<longleftrightarrow> | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 622 |          (\<forall>T. T \<in> sets borel \<longrightarrow> {x. f x \<in> T} \<in> sets lebesgue)"
 | 
| 76786 | 623 | by (smt (verit, best) Collect_cong UNIV_I borel_measurable_vimage_borel lebesgue_on_UNIV_eq) | 
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 624 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 625 | |
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70547diff
changeset | 626 | subsection \<^marker>\<open>tag unimportant\<close> \<open>Measurability of continuous functions\<close> | 
| 69447 | 627 | |
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 628 | lemma continuous_imp_measurable_on_sets_lebesgue: | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 629 | assumes f: "continuous_on S f" and S: "S \<in> sets lebesgue" | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 630 | shows "f \<in> borel_measurable (lebesgue_on S)" | 
| 76786 | 631 | by (metis borel_measurable_continuous_on_restrict borel_measurable_subalgebra f | 
| 632 | lebesgue_on_UNIV_eq mono_restrict_space sets_completionI_sets sets_lborel space_borel | |
| 633 | space_lebesgue_on space_restrict_space subsetI) | |
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 634 | |
| 70380 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 635 | lemma id_borel_measurable_lebesgue [iff]: "id \<in> borel_measurable lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 636 | by (simp add: measurable_completion) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 637 | |
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 638 | lemma id_borel_measurable_lebesgue_on [iff]: "id \<in> borel_measurable (lebesgue_on S)" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 639 | by (simp add: measurable_completion measurable_restrict_space1) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 640 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 641 | context | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 642 | begin | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 643 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 644 | interpretation sigma_finite_measure "interval_measure (\<lambda>x. x)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 645 | by (rule sigma_finite_interval_measure) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 646 | interpretation finite_product_sigma_finite "\<lambda>_. interval_measure (\<lambda>x. x)" Basis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 647 | proof qed simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 648 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 649 | lemma lborel_eq_real: "lborel = interval_measure (\<lambda>x. x)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 650 | unfolding lborel_def Basis_real_def | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 651 | using distr_id[of "interval_measure (\<lambda>x. x)"] | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 652 | by (subst distr_component[symmetric]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 653 | (simp_all add: distr_distr comp_def del: distr_id cong: distr_cong) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 654 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 655 | lemma lborel_eq: "lborel = distr (\<Pi>\<^sub>M b\<in>Basis. lborel) borel (\<lambda>f. \<Sum>b\<in>Basis. f b *\<^sub>R b)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 656 | by (subst lborel_def) (simp add: lborel_eq_real) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 657 | |
| 64272 | 658 | lemma nn_integral_lborel_prod: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 659 | assumes [measurable]: "\<And>b. b \<in> Basis \<Longrightarrow> f b \<in> borel_measurable borel" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 660 | assumes nn[simp]: "\<And>b x. b \<in> Basis \<Longrightarrow> 0 \<le> f b x" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 661 | shows "(\<integral>\<^sup>+x. (\<Prod>b\<in>Basis. f b (x \<bullet> b)) \<partial>lborel) = (\<Prod>b\<in>Basis. (\<integral>\<^sup>+x. f b x \<partial>lborel))" | 
| 64272 | 662 | by (simp add: lborel_def nn_integral_distr product_nn_integral_prod | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 663 | product_nn_integral_singleton) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 664 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 665 | lemma emeasure_lborel_Icc[simp]: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 666 | fixes l u :: real | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 667 | assumes [simp]: "l \<le> u" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 668 |   shows "emeasure lborel {l .. u} = u - l"
 | 
| 76786 | 669 | by (simp add: emeasure_interval_measure_Icc lborel_eq_real) | 
| 50104 | 670 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 671 | lemma emeasure_lborel_Icc_eq: "emeasure lborel {l .. u} = ennreal (if l \<le> u then u - l else 0)"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 672 | by simp | 
| 47694 | 673 | |
| 70136 | 674 | lemma\<^marker>\<open>tag important\<close> emeasure_lborel_cbox[simp]: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 675 | assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 676 | shows "emeasure lborel (cbox l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 70136 | 677 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 678 |   have "(\<lambda>x. \<Prod>b\<in>Basis. indicator {l\<bullet>b .. u\<bullet>b} (x \<bullet> b) :: ennreal) = indicator (cbox l u)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 679 | by (auto simp: fun_eq_iff cbox_def split: split_indicator) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 680 |   then have "emeasure lborel (cbox l u) = (\<integral>\<^sup>+x. (\<Prod>b\<in>Basis. indicator {l\<bullet>b .. u\<bullet>b} (x \<bullet> b)) \<partial>lborel)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 681 | by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 682 | also have "\<dots> = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 64272 | 683 | by (subst nn_integral_lborel_prod) (simp_all add: prod_ennreal inner_diff_left) | 
| 47694 | 684 | finally show ?thesis . | 
| 38656 | 685 | qed | 
| 686 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 687 | lemma AE_lborel_singleton: "AE x in lborel::'a::euclidean_space measure. x \<noteq> c" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 688 |   using SOME_Basis AE_discrete_difference [of "{c}" lborel] emeasure_lborel_cbox [of c c]
 | 
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 689 | by (auto simp add: power_0_left) | 
| 47757 
5e6fe71e2390
equate positive Lebesgue integral and MV-Analysis' Gauge integral
 hoelzl parents: 
47694diff
changeset | 690 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 691 | lemma emeasure_lborel_Ioo[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 692 | assumes [simp]: "l \<le> u" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 693 |   shows "emeasure lborel {l <..< u} = ennreal (u - l)"
 | 
| 40859 | 694 | proof - | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 695 |   have "emeasure lborel {l <..< u} = emeasure lborel {l .. u}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 696 | using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto | 
| 47694 | 697 | then show ?thesis | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 698 | by simp | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 699 | qed | 
| 38656 | 700 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 701 | lemma emeasure_lborel_Ioc[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 702 | assumes [simp]: "l \<le> u" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 703 |   shows "emeasure lborel {l <.. u} = ennreal (u - l)"
 | 
| 76786 | 704 | by (simp add: emeasure_interval_measure_Ioc lborel_eq_real) | 
| 38656 | 705 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 706 | lemma emeasure_lborel_Ico[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 707 | assumes [simp]: "l \<le> u" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 708 |   shows "emeasure lborel {l ..< u} = ennreal (u - l)"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 709 | proof - | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 710 |   have "emeasure lborel {l ..< u} = emeasure lborel {l .. u}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 711 | using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 712 | then show ?thesis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 713 | by simp | 
| 38656 | 714 | qed | 
| 715 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 716 | lemma emeasure_lborel_box[simp]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 717 | assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 718 | shows "emeasure lborel (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 719 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 720 |   have "(\<lambda>x. \<Prod>b\<in>Basis. indicator {l\<bullet>b <..< u\<bullet>b} (x \<bullet> b) :: ennreal) = indicator (box l u)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 721 | by (auto simp: fun_eq_iff box_def split: split_indicator) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 722 |   then have "emeasure lborel (box l u) = (\<integral>\<^sup>+x. (\<Prod>b\<in>Basis. indicator {l\<bullet>b <..< u\<bullet>b} (x \<bullet> b)) \<partial>lborel)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 723 | by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 724 | also have "\<dots> = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 64272 | 725 | by (subst nn_integral_lborel_prod) (simp_all add: prod_ennreal inner_diff_left) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 726 | finally show ?thesis . | 
| 40859 | 727 | qed | 
| 38656 | 728 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 729 | lemma emeasure_lborel_cbox_eq: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 730 | "emeasure lborel (cbox l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 731 | using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le) | 
| 41654 | 732 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 733 | lemma emeasure_lborel_box_eq: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 734 | "emeasure lborel (box l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 735 | using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le) force | 
| 40859 | 736 | |
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 737 | lemma emeasure_lborel_singleton[simp]: "emeasure lborel {x} = 0"
 | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 738 | using emeasure_lborel_cbox[of x x] nonempty_Basis | 
| 71172 | 739 | by (auto simp del: emeasure_lborel_cbox nonempty_Basis) | 
| 66164 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 740 | |
| 71192 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 741 | lemma emeasure_lborel_cbox_finite: "emeasure lborel (cbox a b) < \<infinity>" | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 742 | by (auto simp: emeasure_lborel_cbox_eq) | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 743 | |
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 744 | lemma emeasure_lborel_box_finite: "emeasure lborel (box a b) < \<infinity>" | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 745 | by (auto simp: emeasure_lborel_box_eq) | 
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 746 | |
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 747 | lemma emeasure_lborel_ball_finite: "emeasure lborel (ball c r) < \<infinity>" | 
| 76786 | 748 | by (metis bounded_ball bounded_subset_cbox_symmetric cbox_borel emeasure_lborel_cbox_finite | 
| 749 | emeasure_mono order_le_less_trans sets_lborel) | |
| 71192 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 750 | |
| 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 751 | lemma emeasure_lborel_cball_finite: "emeasure lborel (cball c r) < \<infinity>" | 
| 76786 | 752 | by (metis bounded_cball bounded_subset_cbox_symmetric cbox_borel emeasure_lborel_cbox_finite | 
| 753 | emeasure_mono order_le_less_trans sets_lborel) | |
| 71192 
a8ccea88b725
Flattened dependency tree of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71172diff
changeset | 754 | |
| 66164 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 755 | lemma fmeasurable_cbox [iff]: "cbox a b \<in> fmeasurable lborel" | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 756 | and fmeasurable_box [iff]: "box a b \<in> fmeasurable lborel" | 
| 
2d79288b042c
New theorems and much tidying up of the old ones
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 757 | by (auto simp: fmeasurable_def emeasure_lborel_box_eq emeasure_lborel_cbox_eq) | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 758 | |
| 40859 | 759 | lemma | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 760 | fixes l u :: real | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 761 | assumes [simp]: "l \<le> u" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 762 |   shows measure_lborel_Icc[simp]: "measure lborel {l .. u} = u - l"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 763 |     and measure_lborel_Ico[simp]: "measure lborel {l ..< u} = u - l"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 764 |     and measure_lborel_Ioc[simp]: "measure lborel {l <.. u} = u - l"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 765 |     and measure_lborel_Ioo[simp]: "measure lborel {l <..< u} = u - l"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 766 | by (simp_all add: measure_def) | 
| 40859 | 767 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 768 | lemma | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 769 | assumes [simp]: "\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 770 | shows measure_lborel_box[simp]: "measure lborel (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 771 | and measure_lborel_cbox[simp]: "measure lborel (cbox l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 64272 | 772 | by (simp_all add: measure_def inner_diff_left prod_nonneg) | 
| 41654 | 773 | |
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 774 | lemma measure_lborel_cbox_eq: | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 775 | "measure lborel (cbox l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 776 | using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 777 | |
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 778 | lemma measure_lborel_box_eq: | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 779 | "measure lborel (box l u) = (if \<forall>b\<in>Basis. l \<bullet> b \<le> u \<bullet> b then \<Prod>b\<in>Basis. (u - l) \<bullet> b else 0)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 780 | using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le) force | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 781 | |
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 782 | lemma measure_lborel_singleton[simp]: "measure lborel {x} = 0"
 | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 783 | by (simp add: measure_def) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 784 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 785 | lemma sigma_finite_lborel: "sigma_finite_measure lborel" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 786 | proof | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 787 | show "\<exists>A::'a set set. countable A \<and> A \<subseteq> sets lborel \<and> \<Union>A = space lborel \<and> (\<forall>a\<in>A. emeasure lborel a \<noteq> \<infinity>)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 788 | by (intro exI[of _ "range (\<lambda>n::nat. box (- real n *\<^sub>R One) (real n *\<^sub>R One))"]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 789 | (auto simp: emeasure_lborel_cbox_eq UN_box_eq_UNIV) | 
| 49777 | 790 | qed | 
| 40859 | 791 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 792 | end | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 793 | |
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 794 | lemma emeasure_lborel_UNIV [simp]: "emeasure lborel (UNIV::'a::euclidean_space set) = \<infinity>" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 795 | proof - | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 796 |   { fix n::nat
 | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 797 | let ?Ba = "Basis :: 'a set" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 798 | have "real n \<le> (2::real) ^ card ?Ba * real n" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 799 | by (simp add: mult_le_cancel_right1) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 800 | also | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 801 | have "... \<le> (2::real) ^ card ?Ba * real (Suc n) ^ card ?Ba" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 802 | apply (rule mult_left_mono) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 803 | apply (metis DIM_positive One_nat_def less_eq_Suc_le less_imp_le of_nat_le_iff of_nat_power self_le_power zero_less_Suc) | 
| 71172 | 804 | apply (simp) | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 805 | done | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 806 | finally have "real n \<le> (2::real) ^ card ?Ba * real (Suc n) ^ card ?Ba" . | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 807 | } note [intro!] = this | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 808 | show ?thesis | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 809 | unfolding UN_box_eq_UNIV[symmetric] | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 810 | apply (subst SUP_emeasure_incseq[symmetric]) | 
| 71172 | 811 | apply (auto simp: incseq_def subset_box inner_add_left | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 812 | simp del: Sup_eq_top_iff SUP_eq_top_iff | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 813 | intro!: ennreal_SUP_eq_top) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 814 | done | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 815 | qed | 
| 40859 | 816 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 817 | lemma emeasure_lborel_countable: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 818 | fixes A :: "'a::euclidean_space set" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 819 | assumes "countable A" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 820 | shows "emeasure lborel A = 0" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 821 | proof - | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 822 |   have "A \<subseteq> (\<Union>i. {from_nat_into A i})" using from_nat_into_surj assms by force
 | 
| 63262 | 823 |   then have "emeasure lborel A \<le> emeasure lborel (\<Union>i. {from_nat_into A i})"
 | 
| 824 | by (intro emeasure_mono) auto | |
| 825 |   also have "emeasure lborel (\<Union>i. {from_nat_into A i}) = 0"
 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 826 | by (rule emeasure_UN_eq_0) auto | 
| 63262 | 827 | finally show ?thesis | 
| 76786 | 828 | by simp | 
| 40859 | 829 | qed | 
| 830 | ||
| 59425 | 831 | lemma countable_imp_null_set_lborel: "countable A \<Longrightarrow> A \<in> null_sets lborel" | 
| 832 | by (simp add: null_sets_def emeasure_lborel_countable sets.countable) | |
| 833 | ||
| 834 | lemma finite_imp_null_set_lborel: "finite A \<Longrightarrow> A \<in> null_sets lborel" | |
| 835 | by (intro countable_imp_null_set_lborel countable_finite) | |
| 836 | ||
| 70380 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 837 | lemma insert_null_sets_iff [simp]: "insert a N \<in> null_sets lebesgue \<longleftrightarrow> N \<in> null_sets lebesgue" | 
| 76786 | 838 | by (meson completion.complete2 finite.simps finite_imp_null_set_lborel null_sets.insert_in_sets | 
| 839 | null_sets_completionI subset_insertI) | |
| 70380 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 840 | |
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 841 | lemma insert_null_sets_lebesgue_on_iff [simp]: | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 842 | assumes "a \<in> S" "S \<in> sets lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 843 | shows "insert a N \<in> null_sets (lebesgue_on S) \<longleftrightarrow> N \<in> null_sets (lebesgue_on S)" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 844 | by (simp add: assms null_sets_restrict_space) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 845 | |
| 76786 | 846 | lemma lborel_neq_count_space[simp]: | 
| 847 |   fixes A :: "('a::ordered_euclidean_space) set"
 | |
| 848 | shows "lborel \<noteq> count_space A" | |
| 849 | by (metis finite.simps finite_imp_null_set_lborel insert_not_empty null_sets_count_space singleton_iff) | |
| 59425 | 850 | |
| 65204 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 851 | lemma mem_closed_if_AE_lebesgue_open: | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 852 | assumes "open S" "closed C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 853 | assumes "AE x \<in> S in lebesgue. x \<in> C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 854 | assumes "x \<in> S" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 855 | shows "x \<in> C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 856 | proof (rule ccontr) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 857 | assume xC: "x \<notin> C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 858 | with openE[of "S - C"] assms | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 859 | obtain e where e: "0 < e" "ball x e \<subseteq> S - C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 860 | by blast | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 861 | then obtain a b where box: "x \<in> box a b" "box a b \<subseteq> S - C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 862 | by (metis rational_boxes order_trans) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 863 | then have "0 < emeasure lebesgue (box a b)" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 864 | by (auto simp: emeasure_lborel_box_eq mem_box algebra_simps intro!: prod_pos) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 865 | also have "\<dots> \<le> emeasure lebesgue (S - C)" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 866 | using assms box | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 867 | by (auto intro!: emeasure_mono) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 868 | also have "\<dots> = 0" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 869 | using assms | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 870 | by (auto simp: eventually_ae_filter completion.complete2 set_diff_eq null_setsD1) | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 871 | finally show False by simp | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 872 | qed | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 873 | |
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 874 | lemma mem_closed_if_AE_lebesgue: "closed C \<Longrightarrow> (AE x in lebesgue. x \<in> C) \<Longrightarrow> x \<in> C" | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 875 | using mem_closed_if_AE_lebesgue_open[OF open_UNIV] by simp | 
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 876 | |
| 
d23eded35a33
modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
 immler parents: 
64272diff
changeset | 877 | |
| 61808 | 878 | subsection \<open>Affine transformation on the Lebesgue-Borel\<close> | 
| 49777 | 879 | |
| 70136 | 880 | lemma\<^marker>\<open>tag important\<close> lborel_eqI: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 881 | fixes M :: "'a::euclidean_space measure" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 882 | assumes emeasure_eq: "\<And>l u. (\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b) \<Longrightarrow> emeasure M (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)" | 
| 49777 | 883 | assumes sets_eq: "sets M = sets borel" | 
| 884 | shows "lborel = M" | |
| 70136 | 885 | proof (rule measure_eqI_generator_eq) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 886 | let ?E = "range (\<lambda>(a, b). box a b::'a set)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 887 | show "Int_stable ?E" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 888 | by (auto simp: Int_stable_def box_Int_box) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 889 | |
| 49777 | 890 | show "?E \<subseteq> Pow UNIV" "sets lborel = sigma_sets UNIV ?E" "sets M = sigma_sets UNIV ?E" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 891 | by (simp_all add: borel_eq_box sets_eq) | 
| 49777 | 892 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 893 | let ?A = "\<lambda>n::nat. box (- (real n *\<^sub>R One)) (real n *\<^sub>R One) :: 'a set" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 894 | show "range ?A \<subseteq> ?E" "(\<Union>i. ?A i) = UNIV" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 895 | unfolding UN_box_eq_UNIV by auto | 
| 76786 | 896 | show "emeasure lborel (?A i) \<noteq> \<infinity>" for i by auto | 
| 897 | show "emeasure lborel X = emeasure M X" if "X \<in> ?E" for X | |
| 898 | using that box_eq_empty(1) by (fastforce simp: emeasure_eq emeasure_lborel_box_eq) | |
| 49777 | 899 | qed | 
| 900 | ||
| 70136 | 901 | lemma\<^marker>\<open>tag important\<close> lborel_affine_euclidean: | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 902 | fixes c :: "'a::euclidean_space \<Rightarrow> real" and t | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 903 | defines "T x \<equiv> t + (\<Sum>j\<in>Basis. (c j * (x \<bullet> j)) *\<^sub>R j)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 904 | assumes c: "\<And>j. j \<in> Basis \<Longrightarrow> c j \<noteq> 0" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 905 | shows "lborel = density (distr lborel borel T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" (is "_ = ?D") | 
| 70136 | 906 | proof (rule lborel_eqI) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 907 | let ?B = "Basis :: 'a set" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 908 | fix l u assume le: "\<And>b. b \<in> ?B \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b" | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 909 | have [measurable]: "T \<in> borel \<rightarrow>\<^sub>M borel" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 910 | by (simp add: T_def[abs_def]) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 911 | have eq: "T -` box l u = box | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 912 | (\<Sum>j\<in>Basis. (((if 0 < c j then l - t else u - t) \<bullet> j) / c j) *\<^sub>R j) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 913 | (\<Sum>j\<in>Basis. (((if 0 < c j then u - t else l - t) \<bullet> j) / c j) *\<^sub>R j)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 914 | using c by (auto simp: box_def T_def field_simps inner_simps divide_less_eq) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 915 | with le c show "emeasure ?D (box l u) = (\<Prod>b\<in>?B. (u - l) \<bullet> b)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 916 | by (auto simp: emeasure_density emeasure_distr nn_integral_multc emeasure_lborel_box_eq inner_simps | 
| 71172 | 917 | field_split_simps ennreal_mult'[symmetric] prod_nonneg prod.distrib[symmetric] | 
| 64272 | 918 | intro!: prod.cong) | 
| 49777 | 919 | qed simp | 
| 920 | ||
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 921 | lemma lborel_affine: | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 922 | fixes t :: "'a::euclidean_space" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 923 |   shows "c \<noteq> 0 \<Longrightarrow> lborel = density (distr lborel borel (\<lambda>x. t + c *\<^sub>R x)) (\<lambda>_. \<bar>c\<bar>^DIM('a))"
 | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 924 | using lborel_affine_euclidean[where c="\<lambda>_::'a. c" and t=t] | 
| 64272 | 925 | unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation prod_constant by simp | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63627diff
changeset | 926 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 927 | lemma lborel_real_affine: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 928 | "c \<noteq> 0 \<Longrightarrow> lborel = density (distr lborel borel (\<lambda>x. t + c * x)) (\<lambda>_. ennreal (abs c))" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 929 | using lborel_affine[of c t] by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 930 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 931 | lemma AE_borel_affine: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 932 | fixes P :: "real \<Rightarrow> bool" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 933 | shows "c \<noteq> 0 \<Longrightarrow> Measurable.pred borel P \<Longrightarrow> AE x in lborel. P x \<Longrightarrow> AE x in lborel. P (t + c * x)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 934 | by (subst lborel_real_affine[where t="- t / c" and c="1 / c"]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 935 | (simp_all add: AE_density AE_distr_iff field_simps) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 936 | |
| 56996 | 937 | lemma nn_integral_real_affine: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 938 | fixes c :: real assumes [measurable]: "f \<in> borel_measurable borel" and c: "c \<noteq> 0" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 939 | shows "(\<integral>\<^sup>+x. f x \<partial>lborel) = \<bar>c\<bar> * (\<integral>\<^sup>+x. f (t + c * x) \<partial>lborel)" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 940 | by (subst lborel_real_affine[OF c, of t]) | 
| 56996 | 941 | (simp add: nn_integral_density nn_integral_distr nn_integral_cmult) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 942 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 943 | lemma lborel_integrable_real_affine: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 944 |   fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 945 | assumes f: "integrable lborel f" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 946 | shows "c \<noteq> 0 \<Longrightarrow> integrable lborel (\<lambda>x. f (t + c * x))" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 947 | using f f[THEN borel_measurable_integrable] unfolding integrable_iff_bounded | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 948 | by (subst (asm) nn_integral_real_affine[where c=c and t=t]) (auto simp: ennreal_mult_less_top) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 949 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 950 | lemma lborel_integrable_real_affine_iff: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 951 |   fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 952 | shows "c \<noteq> 0 \<Longrightarrow> integrable lborel (\<lambda>x. f (t + c * x)) \<longleftrightarrow> integrable lborel f" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 953 | using | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 954 | lborel_integrable_real_affine[of f c t] | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 955 | lborel_integrable_real_affine[of "\<lambda>x. f (t + c * x)" "1/c" "-t/c"] | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 956 | by (auto simp add: field_simps) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 957 | |
| 70136 | 958 | lemma\<^marker>\<open>tag important\<close> lborel_integral_real_affine: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 959 |   fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}" and c :: real
 | 
| 57166 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 960 | assumes c: "c \<noteq> 0" shows "(\<integral>x. f x \<partial> lborel) = \<bar>c\<bar> *\<^sub>R (\<integral>x. f (t + c * x) \<partial>lborel)" | 
| 70136 | 961 | proof cases | 
| 57166 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 962 | assume f[measurable]: "integrable lborel f" then show ?thesis | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 963 | using c f f[THEN borel_measurable_integrable] f[THEN lborel_integrable_real_affine, of c t] | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 964 | by (subst lborel_real_affine[OF c, of t]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 965 | (simp add: integral_density integral_distr) | 
| 57166 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 966 | next | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 967 | assume "\<not> integrable lborel f" with c show ?thesis | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 968 | by (simp add: lborel_integrable_real_affine_iff not_integrable_integral_eq) | 
| 
5cfcc616d485
use 0 as integral-value for non-integrable functions, simplify a couple of rewrite rules
 hoelzl parents: 
57138diff
changeset | 969 | qed | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 970 | |
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 971 | lemma | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 972 | fixes c :: "'a::euclidean_space \<Rightarrow> real" and t | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 973 | assumes c: "\<And>j. j \<in> Basis \<Longrightarrow> c j \<noteq> 0" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 974 | defines "T == (\<lambda>x. t + (\<Sum>j\<in>Basis. (c j * (x \<bullet> j)) *\<^sub>R j))" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 975 | shows lebesgue_affine_euclidean: "lebesgue = density (distr lebesgue lebesgue T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" (is "_ = ?D") | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 976 | and lebesgue_affine_measurable: "T \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 977 | proof - | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 978 | have T_borel[measurable]: "T \<in> borel \<rightarrow>\<^sub>M borel" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 979 | by (auto simp: T_def[abs_def]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 980 |   { fix A :: "'a set" assume A: "A \<in> sets borel"
 | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 981 | then have "emeasure lborel A = 0 \<longleftrightarrow> emeasure (density (distr lborel borel T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))) A = 0" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 982 | unfolding T_def using c by (subst lborel_affine_euclidean[symmetric]) auto | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 983 | also have "\<dots> \<longleftrightarrow> emeasure (distr lebesgue lborel T) A = 0" | 
| 64272 | 984 | using A c by (simp add: distr_completion emeasure_density nn_integral_cmult prod_nonneg cong: distr_cong) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 985 | finally have "emeasure lborel A = 0 \<longleftrightarrow> emeasure (distr lebesgue lborel T) A = 0" . } | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 986 | then have eq: "null_sets lborel = null_sets (distr lebesgue lborel T)" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 987 | by (auto simp: null_sets_def) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 988 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 989 | show "T \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" | 
| 76786 | 990 | by (simp add: completion.measurable_completion2 eq measurable_completion) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 991 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 992 | have "lebesgue = completion (density (distr lborel borel T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>)))" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 993 | using c by (subst lborel_affine_euclidean[of c t]) (simp_all add: T_def[abs_def]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 994 | also have "\<dots> = density (completion (distr lebesgue lborel T)) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" | 
| 64272 | 995 | using c by (auto intro!: always_eventually prod_pos completion_density_eq simp: distr_completion cong: distr_cong) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 996 | also have "\<dots> = density (distr lebesgue lebesgue T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 997 | by (subst completion.completion_distr_eq) (auto simp: eq measurable_completion) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 998 | finally show "lebesgue = density (distr lebesgue lebesgue T) (\<lambda>_. (\<Prod>j\<in>Basis. \<bar>c j\<bar>))" . | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 999 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1000 | |
| 70547 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1001 | corollary lebesgue_real_affine: | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1002 | "c \<noteq> 0 \<Longrightarrow> lebesgue = density (distr lebesgue lebesgue (\<lambda>x. t + c * x)) (\<lambda>_. ennreal (abs c))" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1003 | using lebesgue_affine_euclidean [where c= "\<lambda>x::real. c"] by simp | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1004 | |
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1005 | lemma nn_integral_real_affine_lebesgue: | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1006 | fixes c :: real assumes f[measurable]: "f \<in> borel_measurable lebesgue" and c: "c \<noteq> 0" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1007 | shows "(\<integral>\<^sup>+x. f x \<partial>lebesgue) = ennreal\<bar>c\<bar> * (\<integral>\<^sup>+x. f(t + c * x) \<partial>lebesgue)" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1008 | proof - | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1009 | have "(\<integral>\<^sup>+x. f x \<partial>lebesgue) = (\<integral>\<^sup>+x. f x \<partial>density (distr lebesgue lebesgue (\<lambda>x. t + c * x)) (\<lambda>x. ennreal \<bar>c\<bar>))" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1010 | using lebesgue_real_affine c by auto | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1011 | also have "\<dots> = \<integral>\<^sup>+ x. ennreal \<bar>c\<bar> * f x \<partial>distr lebesgue lebesgue (\<lambda>x. t + c * x)" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1012 | by (subst nn_integral_density) auto | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1013 | also have "\<dots> = ennreal \<bar>c\<bar> * integral\<^sup>N (distr lebesgue lebesgue (\<lambda>x. t + c * x)) f" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1014 | using f measurable_distr_eq1 nn_integral_cmult by blast | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1015 | also have "\<dots> = \<bar>c\<bar> * (\<integral>\<^sup>+x. f(t + c * x) \<partial>lebesgue)" | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1016 | using lebesgue_affine_measurable[where c= "\<lambda>x::real. c"] | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1017 | by (subst nn_integral_distr) (force+) | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1018 | finally show ?thesis . | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1019 | qed | 
| 
7ce95a5c4aa8
new material on eqiintegrable functions, etc.
 paulson <lp15@cam.ac.uk> parents: 
70532diff
changeset | 1020 | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1021 | lemma lebesgue_measurable_scaling[measurable]: "(*\<^sub>R) x \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1022 | proof cases | 
| 76786 | 1023 | assume "x = 0" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1024 | then have "(*\<^sub>R) x = (\<lambda>x. 0::'a)" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1025 | by (auto simp: fun_eq_iff) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1026 | then show ?thesis by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1027 | next | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1028 | assume "x \<noteq> 0" then show ?thesis | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1029 | using lebesgue_affine_measurable[of "\<lambda>_. x" 0] | 
| 64267 | 1030 | unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1031 | by (auto simp add: ac_simps) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1032 | qed | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1033 | |
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1034 | lemma | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1035 | fixes m :: real and \<delta> :: "'a::euclidean_space" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1036 | defines "T r d x \<equiv> r *\<^sub>R x + d" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1037 |   shows emeasure_lebesgue_affine: "emeasure lebesgue (T m \<delta> ` S) = \<bar>m\<bar> ^ DIM('a) * emeasure lebesgue S" (is ?e)
 | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1038 |     and measure_lebesgue_affine: "measure lebesgue (T m \<delta> ` S) = \<bar>m\<bar> ^ DIM('a) * measure lebesgue S" (is ?m)
 | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1039 | proof - | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1040 | show ?e | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1041 | proof cases | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1042 | assume "m = 0" then show ?thesis | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1043 | by (simp add: image_constant_conv T_def[abs_def]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1044 | next | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1045 | let ?T = "T m \<delta>" and ?T' = "T (1 / m) (- ((1/m) *\<^sub>R \<delta>))" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1046 | assume "m \<noteq> 0" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1047 | then have s_comp_s: "?T' \<circ> ?T = id" "?T \<circ> ?T' = id" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1048 | by (auto simp: T_def[abs_def] fun_eq_iff scaleR_add_right scaleR_diff_right) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1049 | then have "inv ?T' = ?T" "bij ?T'" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1050 | by (auto intro: inv_unique_comp o_bij) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1051 | then have eq: "T m \<delta> ` S = T (1 / m) ((-1/m) *\<^sub>R \<delta>) -` S \<inter> space lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1052 | using bij_vimage_eq_inv_image[OF \<open>bij ?T'\<close>, of S] by auto | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1053 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1054 | have trans_eq_T: "(\<lambda>x. \<delta> + (\<Sum>j\<in>Basis. (m * (x \<bullet> j)) *\<^sub>R j)) = T m \<delta>" for m \<delta> | 
| 64267 | 1055 | unfolding T_def[abs_def] scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1056 | by (auto simp add: euclidean_representation ac_simps) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1057 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1058 | have T[measurable]: "T r d \<in> lebesgue \<rightarrow>\<^sub>M lebesgue" for r d | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1059 | using lebesgue_affine_measurable[of "\<lambda>_. r" d] | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1060 | by (cases "r = 0") (auto simp: trans_eq_T T_def[abs_def]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1061 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1062 | show ?thesis | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1063 | proof cases | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1064 | assume "S \<in> sets lebesgue" with \<open>m \<noteq> 0\<close> show ?thesis | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1065 | unfolding eq | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1066 | apply (subst lebesgue_affine_euclidean[of "\<lambda>_. m" \<delta>]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1067 | apply (simp_all add: emeasure_density trans_eq_T nn_integral_cmult emeasure_distr | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1068 | del: space_completion emeasure_completion) | 
| 71172 | 1069 | apply (simp add: vimage_comp s_comp_s) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1070 | done | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1071 | next | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1072 | assume "S \<notin> sets lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1073 | moreover have "?T ` S \<notin> sets lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1074 | proof | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1075 | assume "?T ` S \<in> sets lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1076 | then have "?T -` (?T ` S) \<inter> space lebesgue \<in> sets lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1077 | by (rule measurable_sets[OF T]) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1078 | also have "?T -` (?T ` S) \<inter> space lebesgue = S" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1079 | by (simp add: vimage_comp s_comp_s eq) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1080 | finally show False using \<open>S \<notin> sets lebesgue\<close> by auto | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1081 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1082 | ultimately show ?thesis | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1083 | by (simp add: emeasure_notin_sets) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1084 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1085 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1086 | show ?m | 
| 64272 | 1087 | unfolding measure_def \<open>?e\<close> by (simp add: enn2real_mult prod_nonneg) | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1088 | qed | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1089 | |
| 67135 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 1090 | lemma lebesgue_real_scale: | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 1091 | assumes "c \<noteq> 0" | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 1092 | shows "lebesgue = density (distr lebesgue lebesgue (\<lambda>x. c * x)) (\<lambda>x. ennreal \<bar>c\<bar>)" | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 1093 | using assms by (subst lebesgue_affine_euclidean[of "\<lambda>_. c" 0]) simp_all | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66164diff
changeset | 1094 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1095 | lemma lborel_has_bochner_integral_real_affine_iff: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1096 |   fixes x :: "'a :: {banach, second_countable_topology}"
 | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1097 | shows "c \<noteq> 0 \<Longrightarrow> | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1098 | has_bochner_integral lborel f x \<longleftrightarrow> | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1099 | has_bochner_integral lborel (\<lambda>x. f (t + c * x)) (x /\<^sub>R \<bar>c\<bar>)" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1100 | unfolding has_bochner_integral_iff lborel_integrable_real_affine_iff | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1101 | by (simp_all add: lborel_integral_real_affine[symmetric] divideR_right cong: conj_cong) | 
| 49777 | 1102 | |
| 59425 | 1103 | lemma lborel_distr_uminus: "distr lborel borel uminus = (lborel :: real measure)" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1104 | by (subst lborel_real_affine[of "-1" 0]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1105 | (auto simp: density_1 one_ennreal_def[symmetric]) | 
| 59425 | 1106 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1107 | lemma lborel_distr_mult: | 
| 59425 | 1108 | assumes "(c::real) \<noteq> 0" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1109 | shows "distr lborel borel ((*) c) = density lborel (\<lambda>_. inverse \<bar>c\<bar>)" | 
| 59425 | 1110 | proof- | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1111 | have "distr lborel borel ((*) c) = distr lborel lborel ((*) c)" by (simp cong: distr_cong) | 
| 59425 | 1112 | also from assms have "... = density lborel (\<lambda>_. inverse \<bar>c\<bar>)" | 
| 1113 | by (subst lborel_real_affine[of "inverse c" 0]) (auto simp: o_def distr_density_distr) | |
| 1114 | finally show ?thesis . | |
| 1115 | qed | |
| 1116 | ||
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1117 | lemma lborel_distr_mult': | 
| 59425 | 1118 | assumes "(c::real) \<noteq> 0" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1119 | shows "lborel = density (distr lborel borel ((*) c)) (\<lambda>_. \<bar>c\<bar>)" | 
| 59425 | 1120 | proof- | 
| 1121 | have "lborel = density lborel (\<lambda>_. 1)" by (rule density_1[symmetric]) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1122 | also from assms have "(\<lambda>_. 1 :: ennreal) = (\<lambda>_. inverse \<bar>c\<bar> * \<bar>c\<bar>)" by (intro ext) simp | 
| 61945 | 1123 | also have "density lborel ... = density (density lborel (\<lambda>_. inverse \<bar>c\<bar>)) (\<lambda>_. \<bar>c\<bar>)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1124 | by (subst density_density_eq) (auto simp: ennreal_mult) | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1125 | also from assms have "density lborel (\<lambda>_. inverse \<bar>c\<bar>) = distr lborel borel ((*) c)" | 
| 59425 | 1126 | by (rule lborel_distr_mult[symmetric]) | 
| 1127 | finally show ?thesis . | |
| 1128 | qed | |
| 1129 | ||
| 70723 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70707diff
changeset | 1130 | lemma lborel_distr_plus: | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70707diff
changeset | 1131 | fixes c :: "'a::euclidean_space" | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70707diff
changeset | 1132 | shows "distr lborel borel ((+) c) = lborel" | 
| 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70707diff
changeset | 1133 | by (subst lborel_affine[of 1 c], auto simp: density_1) | 
| 59425 | 1134 | |
| 61605 | 1135 | interpretation lborel: sigma_finite_measure lborel | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1136 | by (rule sigma_finite_lborel) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1137 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1138 | interpretation lborel_pair: pair_sigma_finite lborel lborel .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1139 | |
| 70136 | 1140 | lemma\<^marker>\<open>tag important\<close> lborel_prod: | 
| 59425 | 1141 |   "lborel \<Otimes>\<^sub>M lborel = (lborel :: ('a::euclidean_space \<times> 'b::euclidean_space) measure)"
 | 
| 70136 | 1142 | proof (rule lborel_eqI[symmetric], clarify) | 
| 59425 | 1143 | fix la ua :: 'a and lb ub :: 'b | 
| 1144 | assume lu: "\<And>a b. (a, b) \<in> Basis \<Longrightarrow> (la, lb) \<bullet> (a, b) \<le> (ua, ub) \<bullet> (a, b)" | |
| 1145 | have [simp]: | |
| 1146 | "\<And>b. b \<in> Basis \<Longrightarrow> la \<bullet> b \<le> ua \<bullet> b" | |
| 1147 | "\<And>b. b \<in> Basis \<Longrightarrow> lb \<bullet> b \<le> ub \<bullet> b" | |
| 1148 | "inj_on (\<lambda>u. (u, 0)) Basis" "inj_on (\<lambda>u. (0, u)) Basis" | |
| 1149 |     "(\<lambda>u. (u, 0)) ` Basis \<inter> (\<lambda>u. (0, u)) ` Basis = {}"
 | |
| 1150 | "box (la, lb) (ua, ub) = box la ua \<times> box lb ub" | |
| 1151 | using lu[of _ 0] lu[of 0] by (auto intro!: inj_onI simp add: Basis_prod_def ball_Un box_def) | |
| 1152 | show "emeasure (lborel \<Otimes>\<^sub>M lborel) (box (la, lb) (ua, ub)) = | |
| 67399 | 1153 | ennreal (prod ((\<bullet>) ((ua, ub) - (la, lb))) Basis)" | 
| 64272 | 1154 | by (simp add: lborel.emeasure_pair_measure_Times Basis_prod_def prod.union_disjoint | 
| 1155 | prod.reindex ennreal_mult inner_diff_left prod_nonneg) | |
| 59425 | 1156 | qed (simp add: borel_prod[symmetric]) | 
| 1157 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1158 | (* FIXME: conversion in measurable prover *) | 
| 68120 | 1159 | lemma lborelD_Collect[measurable (raw)]: "{x\<in>space borel. P x} \<in> sets borel \<Longrightarrow> {x\<in>space lborel. P x} \<in> sets lborel" 
 | 
| 1160 | by simp | |
| 1161 | ||
| 1162 | lemma lborelD[measurable (raw)]: "A \<in> sets borel \<Longrightarrow> A \<in> sets lborel" | |
| 1163 | by simp | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1164 | |
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1165 | lemma emeasure_bounded_finite: | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1166 | assumes "bounded A" shows "emeasure lborel A < \<infinity>" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1167 | proof - | 
| 68120 | 1168 | obtain a b where "A \<subseteq> cbox a b" | 
| 1169 | by (meson bounded_subset_cbox_symmetric \<open>bounded A\<close>) | |
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1170 | then have "emeasure lborel A \<le> emeasure lborel (cbox a b)" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1171 | by (intro emeasure_mono) auto | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1172 | then show ?thesis | 
| 64272 | 1173 | by (auto simp: emeasure_lborel_cbox_eq prod_nonneg less_top[symmetric] top_unique split: if_split_asm) | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1174 | qed | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1175 | |
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1176 | lemma emeasure_compact_finite: "compact A \<Longrightarrow> emeasure lborel A < \<infinity>" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1177 | using emeasure_bounded_finite[of A] by (auto intro: compact_imp_bounded) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1178 | |
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1179 | lemma borel_integrable_compact: | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1180 |   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::{banach, second_countable_topology}"
 | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1181 | assumes "compact S" "continuous_on S f" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1182 | shows "integrable lborel (\<lambda>x. indicator S x *\<^sub>R f x)" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1183 | proof cases | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1184 |   assume "S \<noteq> {}"
 | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1185 | have "continuous_on S (\<lambda>x. norm (f x))" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1186 | using assms by (intro continuous_intros) | 
| 61808 | 1187 |   from continuous_attains_sup[OF \<open>compact S\<close> \<open>S \<noteq> {}\<close> this]
 | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1188 | obtain M where M: "\<And>x. x \<in> S \<Longrightarrow> norm (f x) \<le> M" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1189 | by auto | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1190 | show ?thesis | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1191 | proof (rule integrable_bound) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1192 | show "integrable lborel (\<lambda>x. indicator S x * M)" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1193 | using assms by (auto intro!: emeasure_compact_finite borel_compact integrable_mult_left) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1194 | show "(\<lambda>x. indicator S x *\<^sub>R f x) \<in> borel_measurable lborel" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1195 | using assms by (auto intro!: borel_measurable_continuous_on_indicator borel_compact) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1196 | show "AE x in lborel. norm (indicator S x *\<^sub>R f x) \<le> norm (indicator S x * M)" | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1197 | by (auto split: split_indicator simp: abs_real_def dest!: M) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1198 | qed | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1199 | qed simp | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1200 | |
| 50418 
bd68cf816dd3
fundamental theorem of calculus for the Lebesgue integral
 hoelzl parents: 
50385diff
changeset | 1201 | lemma borel_integrable_atLeastAtMost: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56218diff
changeset | 1202 | fixes f :: "real \<Rightarrow> real" | 
| 50418 
bd68cf816dd3
fundamental theorem of calculus for the Lebesgue integral
 hoelzl parents: 
50385diff
changeset | 1203 | assumes f: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x" | 
| 
bd68cf816dd3
fundamental theorem of calculus for the Lebesgue integral
 hoelzl parents: 
50385diff
changeset | 1204 |   shows "integrable lborel (\<lambda>x. f x * indicator {a .. b} x)" (is "integrable _ ?f")
 | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1205 | proof - | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1206 |   have "integrable lborel (\<lambda>x. indicator {a .. b} x *\<^sub>R f x)"
 | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1207 | proof (rule borel_integrable_compact) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1208 |     from f show "continuous_on {a..b} f"
 | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1209 | by (auto intro: continuous_at_imp_continuous_on) | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1210 | qed simp | 
| 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1211 | then show ?thesis | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 1212 | by (auto simp: mult.commute) | 
| 57138 
7b3146180291
generalizd measurability on restricted space; rule for integrability on compact sets
 hoelzl parents: 
57137diff
changeset | 1213 | qed | 
| 50418 
bd68cf816dd3
fundamental theorem of calculus for the Lebesgue integral
 hoelzl parents: 
50385diff
changeset | 1214 | |
| 69447 | 1215 | subsection \<open>Lebesgue measurable sets\<close> | 
| 67984 | 1216 | |
| 70136 | 1217 | abbreviation\<^marker>\<open>tag important\<close> lmeasurable :: "'a::euclidean_space set set" | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1218 | where | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1219 | "lmeasurable \<equiv> fmeasurable lebesgue" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1220 | |
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 1221 | lemma not_measurable_UNIV [simp]: "UNIV \<notin> lmeasurable" | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 1222 | by (simp add: fmeasurable_def) | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 1223 | |
| 70136 | 1224 | lemma\<^marker>\<open>tag important\<close> lmeasurable_iff_integrable: | 
| 63958 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1225 | "S \<in> lmeasurable \<longleftrightarrow> integrable lebesgue (indicator S :: 'a::euclidean_space \<Rightarrow> real)" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1226 | by (auto simp: fmeasurable_def integrable_iff_bounded borel_measurable_indicator_iff ennreal_indicator) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1227 | |
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1228 | lemma lmeasurable_cbox [iff]: "cbox a b \<in> lmeasurable" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1229 | and lmeasurable_box [iff]: "box a b \<in> lmeasurable" | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1230 | by (auto simp: fmeasurable_def emeasure_lborel_box_eq emeasure_lborel_cbox_eq) | 
| 
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
 hoelzl parents: 
63918diff
changeset | 1231 | |
| 70532 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 1232 | lemma | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 1233 | fixes a::real | 
| 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 1234 |   shows lmeasurable_interval [iff]: "{a..b} \<in> lmeasurable" "{a<..<b} \<in> lmeasurable"
 | 
| 76786 | 1235 | by (metis box_real lmeasurable_box lmeasurable_cbox)+ | 
| 70532 
fcf3b891ccb1
new material; rotated premises of Lim_transform_eventually
 paulson <lp15@cam.ac.uk> parents: 
70381diff
changeset | 1236 | |
| 67989 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1237 | lemma fmeasurable_compact: "compact S \<Longrightarrow> S \<in> fmeasurable lborel" | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1238 | using emeasure_compact_finite[of S] by (intro fmeasurableI) (auto simp: borel_compact) | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1239 | |
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1240 | lemma lmeasurable_compact: "compact S \<Longrightarrow> S \<in> lmeasurable" | 
| 67989 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1241 | using fmeasurable_compact by (force simp: fmeasurable_def) | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1242 | |
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1243 | lemma measure_frontier: | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1244 | "bounded S \<Longrightarrow> measure lebesgue (frontier S) = measure lebesgue (closure S) - measure lebesgue (interior S)" | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1245 | using closure_subset interior_subset | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1246 | by (auto simp: frontier_def fmeasurable_compact intro!: measurable_measure_Diff) | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1247 | |
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1248 | lemma lmeasurable_closure: | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1249 | "bounded S \<Longrightarrow> closure S \<in> lmeasurable" | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1250 | by (simp add: lmeasurable_compact) | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1251 | |
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1252 | lemma lmeasurable_frontier: | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1253 | "bounded S \<Longrightarrow> frontier S \<in> lmeasurable" | 
| 
706f86afff43
more results about measure and negligibility
 paulson <lp15@cam.ac.uk> parents: 
67986diff
changeset | 1254 | by (simp add: compact_frontier_bounded lmeasurable_compact) | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1255 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1256 | lemma lmeasurable_open: "bounded S \<Longrightarrow> open S \<Longrightarrow> S \<in> lmeasurable" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1257 | using emeasure_bounded_finite[of S] by (intro fmeasurableI) (auto simp: borel_open) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1258 | |
| 67990 | 1259 | lemma lmeasurable_ball [simp]: "ball a r \<in> lmeasurable" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1260 | by (simp add: lmeasurable_open) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1261 | |
| 67990 | 1262 | lemma lmeasurable_cball [simp]: "cball a r \<in> lmeasurable" | 
| 1263 | by (simp add: lmeasurable_compact) | |
| 1264 | ||
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1265 | lemma lmeasurable_interior: "bounded S \<Longrightarrow> interior S \<in> lmeasurable" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1266 | by (simp add: bounded_interior lmeasurable_open) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1267 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1268 | lemma null_sets_cbox_Diff_box: "cbox a b - box a b \<in> null_sets lborel" | 
| 76786 | 1269 | by (simp add: emeasure_Diff emeasure_lborel_box_eq emeasure_lborel_cbox_eq null_setsI subset_box) | 
| 67968 | 1270 | |
| 67984 | 1271 | lemma bounded_set_imp_lmeasurable: | 
| 1272 | assumes "bounded S" "S \<in> sets lebesgue" shows "S \<in> lmeasurable" | |
| 1273 | by (metis assms bounded_Un emeasure_bounded_finite emeasure_completion fmeasurableI main_part_null_part_Un) | |
| 1274 | ||
| 70381 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1275 | lemma finite_measure_lebesgue_on: "S \<in> lmeasurable \<Longrightarrow> finite_measure (lebesgue_on S)" | 
| 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1276 | by (auto simp: finite_measureI fmeasurable_def emeasure_restrict_space) | 
| 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1277 | |
| 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1278 | lemma integrable_const_ivl [iff]: | 
| 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1279 | fixes a::"'a::ordered_euclidean_space" | 
| 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1280 |   shows "integrable (lebesgue_on {a..b}) (\<lambda>x. c)"
 | 
| 
b151d1f00204
More results about measure and integration theory
 paulson <lp15@cam.ac.uk> parents: 
70380diff
changeset | 1281 | by (metis cbox_interval finite_measure.integrable_const finite_measure_lebesgue_on lmeasurable_cbox) | 
| 67986 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1282 | |
| 70136 | 1283 | subsection\<^marker>\<open>tag unimportant\<close>\<open>Translation preserves Lebesgue measure\<close> | 
| 67986 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1284 | |
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1285 | lemma sigma_sets_image: | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1286 | assumes S: "S \<in> sigma_sets \<Omega> M" and "M \<subseteq> Pow \<Omega>" "f ` \<Omega> = \<Omega>" "inj_on f \<Omega>" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1287 | and M: "\<And>y. y \<in> M \<Longrightarrow> f ` y \<in> M" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1288 | shows "(f ` S) \<in> sigma_sets \<Omega> M" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1289 | using S | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1290 | proof (induct S rule: sigma_sets.induct) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1291 | case (Basic a) then show ?case | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1292 | by (simp add: M) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1293 | next | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1294 | case Empty then show ?case | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1295 | by (simp add: sigma_sets.Empty) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1296 | next | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1297 | case (Compl a) | 
| 76786 | 1298 | with assms show ?case | 
| 1299 | by (metis inj_on_image_set_diff sigma_sets.Compl sigma_sets_into_sp) | |
| 67986 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1300 | next | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1301 | case (Union a) then show ?case | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1302 | by (metis image_UN sigma_sets.simps) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1303 | qed | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1304 | |
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1305 | lemma null_sets_translation: | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1306 |   assumes "N \<in> null_sets lborel" shows "{x. x - a \<in> N} \<in> null_sets lborel"
 | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1307 | proof - | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1308 |   have [simp]: "(\<lambda>x. x + a) ` N = {x. x - a \<in> N}"
 | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1309 | by force | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1310 | show ?thesis | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1311 | using assms emeasure_lebesgue_affine [of 1 a N] by (auto simp: null_sets_def) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1312 | qed | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1313 | |
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1314 | lemma lebesgue_sets_translation: | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1315 | fixes f :: "'a \<Rightarrow> 'a::euclidean_space" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1316 | assumes S: "S \<in> sets lebesgue" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1317 | shows "((\<lambda>x. a + x) ` S) \<in> sets lebesgue" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1318 | proof - | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1319 |   have im_eq: "(+) a ` A = {x. x - a \<in> A}" for A
 | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1320 | by force | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1321 | have "((\<lambda>x. a + x) ` S) = ((\<lambda>x. -a + x) -` S) \<inter> (space lebesgue)" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1322 | using image_iff by fastforce | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1323 | also have "\<dots> \<in> sets lebesgue" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1324 | proof (rule measurable_sets [OF measurableI assms]) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1325 | fix A :: "'b set" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1326 | assume A: "A \<in> sets lebesgue" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1327 | have vim_eq: "(\<lambda>x. x - a) -` A = (+) a ` A" for A | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1328 | by force | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1329 | have "\<exists>s n N'. (+) a ` (S \<union> N) = s \<union> n \<and> s \<in> sets borel \<and> N' \<in> null_sets lborel \<and> n \<subseteq> N'" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1330 | if "S \<in> sets borel" and "N' \<in> null_sets lborel" and "N \<subseteq> N'" for S N N' | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1331 | proof (intro exI conjI) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1332 | show "(+) a ` (S \<union> N) = (\<lambda>x. a + x) ` S \<union> (\<lambda>x. a + x) ` N" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1333 | by auto | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1334 | show "(\<lambda>x. a + x) ` N' \<in> null_sets lborel" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1335 | using that by (auto simp: null_sets_translation im_eq) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1336 | qed (use that im_eq in auto) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1337 | with A have "(\<lambda>x. x - a) -` A \<in> sets lebesgue" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1338 | by (force simp: vim_eq completion_def intro!: sigma_sets_image) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1339 | then show "(+) (- a) -` A \<inter> space lebesgue \<in> sets lebesgue" | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1340 | by (auto simp: vimage_def im_eq) | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1341 | qed auto | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1342 | finally show ?thesis . | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1343 | qed | 
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1344 | |
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1345 | lemma measurable_translation: | 
| 69661 | 1346 | "S \<in> lmeasurable \<Longrightarrow> ((+) a ` S) \<in> lmeasurable" | 
| 1347 | using emeasure_lebesgue_affine [of 1 a S] | |
| 76786 | 1348 | by (smt (verit, best) add.commute ennreal_1 fmeasurable_def image_cong lambda_one | 
| 1349 | lebesgue_sets_translation mem_Collect_eq power_one scaleR_one) | |
| 69661 | 1350 | |
| 1351 | lemma measurable_translation_subtract: | |
| 1352 | "S \<in> lmeasurable \<Longrightarrow> ((\<lambda>x. x - a) ` S) \<in> lmeasurable" | |
| 1353 | using measurable_translation [of S "- a"] by (simp cong: image_cong_simp) | |
| 67986 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1354 | |
| 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1355 | lemma measure_translation: | 
| 69661 | 1356 | "measure lebesgue ((+) a ` S) = measure lebesgue S" | 
| 1357 | using measure_lebesgue_affine [of 1 a S] by (simp add: ac_simps cong: image_cong_simp) | |
| 1358 | ||
| 1359 | lemma measure_translation_subtract: | |
| 1360 | "measure lebesgue ((\<lambda>x. x - a) ` S) = measure lebesgue S" | |
| 1361 | using measure_translation [of "- a"] by (simp cong: image_cong_simp) | |
| 1362 | ||
| 67986 
b65c4a6a015e
quite a few more results about negligibility, etc., and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
67984diff
changeset | 1363 | |
| 67968 | 1364 | subsection \<open>A nice lemma for negligibility proofs\<close> | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1365 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1366 | lemma summable_iff_suminf_neq_top: "(\<And>n. f n \<ge> 0) \<Longrightarrow> \<not> summable f \<Longrightarrow> (\<Sum>i. ennreal (f i)) = top" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1367 | by (metis summable_suminf_not_top) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1368 | |
| 70136 | 1369 | proposition\<^marker>\<open>tag important\<close> starlike_negligible_bounded_gmeasurable: | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1370 | fixes S :: "'a :: euclidean_space set" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1371 | assumes S: "S \<in> sets lebesgue" and "bounded S" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1372 | and eq1: "\<And>c x. \<lbrakk>(c *\<^sub>R x) \<in> S; 0 \<le> c; x \<in> S\<rbrakk> \<Longrightarrow> c = 1" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1373 | shows "S \<in> null_sets lebesgue" | 
| 70136 | 1374 | proof - | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1375 | obtain M where "0 < M" "S \<subseteq> ball 0 M" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1376 | using \<open>bounded S\<close> by (auto dest: bounded_subset_ballD) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1377 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1378 |   let ?f = "\<lambda>n. root DIM('a) (Suc n)"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1379 | |
| 76786 | 1380 | have "?f n *\<^sub>R x \<in> S \<Longrightarrow> x \<in> (*\<^sub>R) (1 / ?f n) ` S" for x n | 
| 1381 | by (rule image_eqI[of _ _ "?f n *\<^sub>R x"]) auto | |
| 1382 | then have vimage_eq_image: "(*\<^sub>R) (?f n) -` S = (*\<^sub>R) (1 / ?f n) ` S" for n | |
| 1383 | by auto | |
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1384 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1385 |   have eq: "(1 / ?f n) ^ DIM('a) = 1 / Suc n" for n
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1386 | by (simp add: field_simps) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1387 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1388 |   { fix n x assume x: "root DIM('a) (1 + real n) *\<^sub>R x \<in> S"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1389 |     have "1 * norm x \<le> root DIM('a) (1 + real n) * norm x"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1390 | by (rule mult_mono) auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1391 | also have "\<dots> < M" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1392 | using x \<open>S \<subseteq> ball 0 M\<close> by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1393 | finally have "norm x < M" by simp } | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1394 | note less_M = this | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1395 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1396 | have "(\<Sum>n. ennreal (1 / Suc n)) = top" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1397 | using not_summable_harmonic[where 'a=real] summable_Suc_iff[where f="\<lambda>n. 1 / (real n)"] | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1398 | by (intro summable_iff_suminf_neq_top) (auto simp add: inverse_eq_divide) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1399 |   then have "top * emeasure lebesgue S = (\<Sum>n. (1 / ?f n)^DIM('a) * emeasure lebesgue S)"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1400 | unfolding ennreal_suminf_multc eq by simp | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1401 | also have "\<dots> = (\<Sum>n. emeasure lebesgue ((*\<^sub>R) (?f n) -` S))" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1402 | unfolding vimage_eq_image using emeasure_lebesgue_affine[of "1 / ?f n" 0 S for n] by simp | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1403 | also have "\<dots> = emeasure lebesgue (\<Union>n. (*\<^sub>R) (?f n) -` S)" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1404 | proof (intro suminf_emeasure) | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1405 | show "disjoint_family (\<lambda>n. (*\<^sub>R) (?f n) -` S)" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1406 | unfolding disjoint_family_on_def | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1407 | proof safe | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1408 | fix m n :: nat and x assume "m \<noteq> n" "?f m *\<^sub>R x \<in> S" "?f n *\<^sub>R x \<in> S" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1409 |       with eq1[of "?f m / ?f n" "?f n *\<^sub>R x"] show "x \<in> {}"
 | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1410 | by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1411 | qed | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1412 | have "(*\<^sub>R) (?f i) -` S \<in> sets lebesgue" for i | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1413 | using measurable_sets[OF lebesgue_measurable_scaling[of "?f i"] S] by auto | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68403diff
changeset | 1414 | then show "range (\<lambda>i. (*\<^sub>R) (?f i) -` S) \<subseteq> sets lebesgue" | 
| 63959 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1415 | by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1416 | qed | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1417 | also have "\<dots> \<le> emeasure lebesgue (ball 0 M :: 'a set)" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1418 | using less_M by (intro emeasure_mono) auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1419 | also have "\<dots> < top" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1420 | using lmeasurable_ball by (auto simp: fmeasurable_def) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1421 | finally have "emeasure lebesgue S = 0" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1422 | by (simp add: ennreal_top_mult split: if_split_asm) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1423 | then show "S \<in> null_sets lebesgue" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1424 | unfolding null_sets_def using \<open>S \<in> sets lebesgue\<close> by auto | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1425 | qed | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1426 | |
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1427 | corollary starlike_negligible_compact: | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1428 | "compact S \<Longrightarrow> (\<And>c x. \<lbrakk>(c *\<^sub>R x) \<in> S; 0 \<le> c; x \<in> S\<rbrakk> \<Longrightarrow> c = 1) \<Longrightarrow> S \<in> null_sets lebesgue" | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1429 | using starlike_negligible_bounded_gmeasurable[of S] by (auto simp: compact_eq_bounded_closed) | 
| 
f77dca1abf1b
HOL-Analysis: prove that a starlike set is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63958diff
changeset | 1430 | |
| 67998 | 1431 | proposition outer_regular_lborel_le: | 
| 1432 | assumes B[measurable]: "B \<in> sets borel" and "0 < (e::real)" | |
| 1433 | obtains U where "open U" "B \<subseteq> U" and "emeasure lborel (U - B) \<le> e" | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1434 | proof - | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1435 | let ?\<mu> = "emeasure lborel" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1436 | let ?B = "\<lambda>n::nat. ball 0 n :: 'a set" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1437 | let ?e = "\<lambda>n. e*((1/2)^Suc n)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1438 | have "\<forall>n. \<exists>U. open U \<and> ?B n \<inter> B \<subseteq> U \<and> ?\<mu> (U - B) < ?e n" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1439 | proof | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1440 | fix n :: nat | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1441 | let ?A = "density lborel (indicator (?B n))" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1442 | have emeasure_A: "X \<in> sets borel \<Longrightarrow> emeasure ?A X = ?\<mu> (?B n \<inter> X)" for X | 
| 67998 | 1443 | by (auto simp: emeasure_density borel_measurable_indicator indicator_inter_arith[symmetric]) | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1444 | |
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1445 | have finite_A: "emeasure ?A (space ?A) \<noteq> \<infinity>" | 
| 67998 | 1446 | using emeasure_bounded_finite[of "?B n"] by (auto simp: emeasure_A) | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1447 | interpret A: finite_measure ?A | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1448 | by rule fact | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69064diff
changeset | 1449 |     have "emeasure ?A B + ?e n > (INF U\<in>{U. B \<subseteq> U \<and> open U}. emeasure ?A U)"
 | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1450 | using \<open>0<e\<close> by (auto simp: outer_regular[OF _ finite_A B, symmetric]) | 
| 67998 | 1451 | then obtain U where U: "B \<subseteq> U" "open U" and muU: "?\<mu> (?B n \<inter> B) + ?e n > ?\<mu> (?B n \<inter> U)" | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1452 | unfolding INF_less_iff by (auto simp: emeasure_A) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1453 | moreover | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1454 |     { have "?\<mu> ((?B n \<inter> U) - B) = ?\<mu> ((?B n \<inter> U) - (?B n \<inter> B))"
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1455 | using U by (intro arg_cong[where f="?\<mu>"]) auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1456 | also have "\<dots> = ?\<mu> (?B n \<inter> U) - ?\<mu> (?B n \<inter> B)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1457 | using U A.emeasure_finite[of B] | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1458 | by (intro emeasure_Diff) (auto simp del: A.emeasure_finite simp: emeasure_A) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1459 | also have "\<dots> < ?e n" | 
| 67998 | 1460 | using U muU A.emeasure_finite[of B] | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1461 | by (subst minus_less_iff_ennreal) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1462 | (auto simp del: A.emeasure_finite simp: emeasure_A less_top ac_simps intro!: emeasure_mono) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1463 | finally have "?\<mu> ((?B n \<inter> U) - B) < ?e n" . } | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1464 | ultimately show "\<exists>U. open U \<and> ?B n \<inter> B \<subseteq> U \<and> ?\<mu> (U - B) < ?e n" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1465 | by (intro exI[of _ "?B n \<inter> U"]) auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1466 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1467 | then obtain U | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1468 | where U: "\<And>n. open (U n)" "\<And>n. ?B n \<inter> B \<subseteq> U n" "\<And>n. ?\<mu> (U n - B) < ?e n" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1469 | by metis | 
| 67998 | 1470 | show ?thesis | 
| 1471 | proof | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1472 |     { fix x assume "x \<in> B"
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1473 | moreover | 
| 67998 | 1474 | obtain n where "norm x < real n" | 
| 1475 | using reals_Archimedean2 by blast | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1476 | ultimately have "x \<in> (\<Union>n. U n)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1477 | using U(2)[of n] by auto } | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1478 | note * = this | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1479 | then show "open (\<Union>n. U n)" "B \<subseteq> (\<Union>n. U n)" | 
| 67998 | 1480 | using U by auto | 
| 1481 | have "?\<mu> (\<Union>n. U n - B) \<le> (\<Sum>n. ?\<mu> (U n - B))" | |
| 1482 | using U(1) by (intro emeasure_subadditive_countably) auto | |
| 1483 | also have "\<dots> \<le> (\<Sum>n. ennreal (?e n))" | |
| 1484 | using U(3) by (intro suminf_le) (auto intro: less_imp_le) | |
| 1485 | also have "\<dots> = ennreal (e * 1)" | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1486 | using \<open>0<e\<close> by (intro suminf_ennreal_eq sums_mult power_half_series) auto | 
| 67998 | 1487 | finally show "emeasure lborel ((\<Union>n. U n) - B) \<le> ennreal e" | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1488 | by simp | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1489 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1490 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1491 | |
| 70136 | 1492 | lemma\<^marker>\<open>tag important\<close> outer_regular_lborel: | 
| 67998 | 1493 | assumes B: "B \<in> sets borel" and "0 < (e::real)" | 
| 1494 | obtains U where "open U" "B \<subseteq> U" "emeasure lborel (U - B) < e" | |
| 70136 | 1495 | proof - | 
| 67998 | 1496 | obtain U where U: "open U" "B \<subseteq> U" and "emeasure lborel (U-B) \<le> e/2" | 
| 1497 | using outer_regular_lborel_le [OF B, of "e/2"] \<open>e > 0\<close> | |
| 1498 | by force | |
| 1499 | moreover have "ennreal (e/2) < ennreal e" | |
| 1500 | using \<open>e > 0\<close> by (simp add: ennreal_lessI) | |
| 1501 | ultimately have "emeasure lborel (U-B) < e" | |
| 1502 | by auto | |
| 1503 | with U show ?thesis | |
| 1504 | using that by auto | |
| 1505 | qed | |
| 1506 | ||
| 1507 | lemma completion_upper: | |
| 1508 | assumes A: "A \<in> sets (completion M)" | |
| 1509 | obtains A' where "A \<subseteq> A'" "A' \<in> sets M" "A' - A \<in> null_sets (completion M)" | |
| 1510 | "emeasure (completion M) A = emeasure M A'" | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1511 | proof - | 
| 67998 | 1512 | from AE_notin_null_part[OF A] obtain N where N: "N \<in> null_sets M" "null_part M A \<subseteq> N" | 
| 76786 | 1513 | by (meson assms null_part) | 
| 67998 | 1514 | let ?A' = "main_part M A \<union> N" | 
| 1515 | show ?thesis | |
| 1516 | proof | |
| 1517 | show "A \<subseteq> ?A'" | |
| 76786 | 1518 | using \<open>null_part M A \<subseteq> N\<close> assms main_part_null_part_Un by blast | 
| 67998 | 1519 | have "main_part M A \<subseteq> A" | 
| 1520 | using assms main_part_null_part_Un by auto | |
| 1521 | then have "?A' - A \<subseteq> N" | |
| 1522 | by blast | |
| 1523 | with N show "?A' - A \<in> null_sets (completion M)" | |
| 1524 | by (blast intro: null_sets_completionI completion.complete_measure_axioms complete_measure.complete2) | |
| 1525 | show "emeasure (completion M) A = emeasure M (main_part M A \<union> N)" | |
| 1526 | using A \<open>N \<in> null_sets M\<close> by (simp add: emeasure_Un_null_set) | |
| 1527 | qed (use A N in auto) | |
| 1528 | qed | |
| 1529 | ||
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1530 | lemma sets_lebesgue_outer_open: | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1531 | fixes e::real | 
| 67998 | 1532 | assumes S: "S \<in> sets lebesgue" and "e > 0" | 
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1533 | obtains T where "open T" "S \<subseteq> T" "(T - S) \<in> lmeasurable" "emeasure lebesgue (T - S) < ennreal e" | 
| 67998 | 1534 | proof - | 
| 1535 | obtain S' where S': "S \<subseteq> S'" "S' \<in> sets borel" | |
| 1536 | and null: "S' - S \<in> null_sets lebesgue" | |
| 1537 | and em: "emeasure lebesgue S = emeasure lborel S'" | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1538 | using completion_upper[of S lborel] S by auto | 
| 67998 | 1539 | then have f_S': "S' \<in> sets borel" | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1540 | using S by (auto simp: fmeasurable_def) | 
| 67998 | 1541 | with outer_regular_lborel[OF _ \<open>0<e\<close>] | 
| 1542 | obtain U where U: "open U" "S' \<subseteq> U" "emeasure lborel (U - S') < e" | |
| 1543 | by blast | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1544 | show thesis | 
| 67998 | 1545 | proof | 
| 1546 | show "open U" "S \<subseteq> U" | |
| 1547 | using f_S' U S' by auto | |
| 1548 | have "(U - S) = (U - S') \<union> (S' - S)" | |
| 1549 | using S' U by auto | |
| 1550 | then have eq: "emeasure lebesgue (U - S) = emeasure lborel (U - S')" | |
| 1551 | using null by (simp add: U(1) emeasure_Un_null_set f_S' sets.Diff) | |
| 1552 | have "(U - S) \<in> sets lebesgue" | |
| 1553 | by (simp add: S U(1) sets.Diff) | |
| 1554 | then show "(U - S) \<in> lmeasurable" | |
| 1555 | unfolding fmeasurable_def using U(3) eq less_le_trans by fastforce | |
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1556 | with eq U show "emeasure lebesgue (U - S) < e" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1557 | by (simp add: eq) | 
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1558 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1559 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63959diff
changeset | 1560 | |
| 67999 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1561 | lemma sets_lebesgue_inner_closed: | 
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1562 | fixes e::real | 
| 67999 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1563 | assumes "S \<in> sets lebesgue" "e > 0" | 
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1564 | obtains T where "closed T" "T \<subseteq> S" "S-T \<in> lmeasurable" "emeasure lebesgue (S - T) < ennreal e" | 
| 67999 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1565 | proof - | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1566 | have "-S \<in> sets lebesgue" | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1567 | using assms by (simp add: Compl_in_sets_lebesgue) | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1568 | then obtain T where "open T" "-S \<subseteq> T" | 
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1569 | and T: "(T - -S) \<in> lmeasurable" "emeasure lebesgue (T - -S) < e" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1570 | using sets_lebesgue_outer_open assms by blast | 
| 67999 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1571 | show thesis | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1572 | proof | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1573 | show "closed (-T)" | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1574 | using \<open>open T\<close> by blast | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1575 | show "-T \<subseteq> S" | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1576 | using \<open>- S \<subseteq> T\<close> by auto | 
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1577 | show "S - ( -T) \<in> lmeasurable" "emeasure lebesgue (S - (- T)) < e" | 
| 67999 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1578 | using T by (auto simp: Int_commute) | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1579 | qed | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1580 | qed | 
| 
1b05f74f2e5f
tidying up including contributions from Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
67998diff
changeset | 1581 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1582 | lemma lebesgue_openin: | 
| 69922 
4a9167f377b0
new material about topology, etc.; also fixes for yesterday's
 paulson <lp15@cam.ac.uk> parents: 
69661diff
changeset | 1583 | "\<lbrakk>openin (top_of_set S) T; S \<in> sets lebesgue\<rbrakk> \<Longrightarrow> T \<in> sets lebesgue" | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1584 | by (metis borel_open openin_open sets.Int sets_completionI_sets sets_lborel) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1585 | |
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1586 | lemma lebesgue_closedin: | 
| 69922 
4a9167f377b0
new material about topology, etc.; also fixes for yesterday's
 paulson <lp15@cam.ac.uk> parents: 
69661diff
changeset | 1587 | "\<lbrakk>closedin (top_of_set S) T; S \<in> sets lebesgue\<rbrakk> \<Longrightarrow> T \<in> sets lebesgue" | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1588 | by (metis borel_closed closedin_closed sets.Int sets_completionI_sets sets_lborel) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 1589 | |
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1590 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1591 | subsection\<open>\<open>F_sigma\<close> and \<open>G_delta\<close> sets.\<close> | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1592 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1593 | \<comment> \<open>\<^url>\<open>https://en.wikipedia.org/wiki/F-sigma_set\<close>\<close> | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1594 | inductive\<^marker>\<open>tag important\<close> fsigma :: "'a::topological_space set \<Rightarrow> bool" where | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1595 | "(\<And>n::nat. closed (F n)) \<Longrightarrow> fsigma (\<Union>(F ` UNIV))" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1596 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1597 | inductive\<^marker>\<open>tag important\<close> gdelta :: "'a::topological_space set \<Rightarrow> bool" where | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1598 | "(\<And>n::nat. open (F n)) \<Longrightarrow> gdelta (\<Inter>(F ` UNIV))" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1599 | |
| 75078 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
71192diff
changeset | 1600 | lemma fsigma_UNIV [iff]: "fsigma (UNIV :: 'a::real_inner set)" | 
| 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
71192diff
changeset | 1601 | proof - | 
| 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
71192diff
changeset | 1602 | have "(UNIV ::'a set) = (\<Union>i. cball 0 (of_nat i))" | 
| 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
71192diff
changeset | 1603 | by (auto simp: real_arch_simple) | 
| 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
71192diff
changeset | 1604 | then show ?thesis | 
| 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
71192diff
changeset | 1605 | by (metis closed_cball fsigma.intros) | 
| 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
71192diff
changeset | 1606 | qed | 
| 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
71192diff
changeset | 1607 | |
| 70378 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1608 | lemma fsigma_Union_compact: | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1609 |   fixes S :: "'a::{real_normed_vector,heine_borel} set"
 | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1610 | shows "fsigma S \<longleftrightarrow> (\<exists>F::nat \<Rightarrow> 'a set. range F \<subseteq> Collect compact \<and> S = \<Union>(F ` UNIV))" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1611 | proof safe | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1612 | assume "fsigma S" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1613 | then obtain F :: "nat \<Rightarrow> 'a set" where F: "range F \<subseteq> Collect closed" "S = \<Union>(F ` UNIV)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1614 | by (meson fsigma.cases image_subsetI mem_Collect_eq) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1615 | then have "\<exists>D::nat \<Rightarrow> 'a set. range D \<subseteq> Collect compact \<and> \<Union>(D ` UNIV) = F i" for i | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1616 | using closed_Union_compact_subsets [of "F i"] | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1617 | by (metis image_subsetI mem_Collect_eq range_subsetD) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1618 | then obtain D :: "nat \<Rightarrow> nat \<Rightarrow> 'a set" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1619 | where D: "\<And>i. range (D i) \<subseteq> Collect compact \<and> \<Union>((D i) ` UNIV) = F i" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1620 | by metis | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1621 | let ?DD = "\<lambda>n. (\<lambda>(i,j). D i j) (prod_decode n)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1622 | show "\<exists>F::nat \<Rightarrow> 'a set. range F \<subseteq> Collect compact \<and> S = \<Union>(F ` UNIV)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1623 | proof (intro exI conjI) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1624 | show "range ?DD \<subseteq> Collect compact" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1625 | using D by clarsimp (metis mem_Collect_eq rangeI split_conv subsetCE surj_pair) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1626 | show "S = \<Union> (range ?DD)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1627 | proof | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1628 | show "S \<subseteq> \<Union> (range ?DD)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1629 | using D F | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1630 | by clarsimp (metis UN_iff old.prod.case prod_decode_inverse prod_encode_eq) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1631 | show "\<Union> (range ?DD) \<subseteq> S" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1632 | using D F by fastforce | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1633 | qed | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1634 | qed | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1635 | next | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1636 | fix F :: "nat \<Rightarrow> 'a set" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1637 | assume "range F \<subseteq> Collect compact" and "S = \<Union>(F ` UNIV)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1638 | then show "fsigma (\<Union>(F ` UNIV))" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1639 | by (simp add: compact_imp_closed fsigma.intros image_subset_iff) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1640 | qed | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1641 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1642 | lemma gdelta_imp_fsigma: "gdelta S \<Longrightarrow> fsigma (- S)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1643 | proof (induction rule: gdelta.induct) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1644 | case (1 F) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1645 | have "- \<Inter>(F ` UNIV) = (\<Union>i. -(F i))" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1646 | by auto | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1647 | then show ?case | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1648 | by (simp add: fsigma.intros closed_Compl 1) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1649 | qed | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1650 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1651 | lemma fsigma_imp_gdelta: "fsigma S \<Longrightarrow> gdelta (- S)" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1652 | proof (induction rule: fsigma.induct) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1653 | case (1 F) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1654 | have "- \<Union>(F ` UNIV) = (\<Inter>i. -(F i))" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1655 | by auto | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1656 | then show ?case | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1657 | by (simp add: 1 gdelta.intros open_closed) | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1658 | qed | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1659 | |
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1660 | lemma gdelta_complement: "gdelta(- S) \<longleftrightarrow> fsigma S" | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1661 | using fsigma_imp_gdelta gdelta_imp_fsigma by force | 
| 
ebd108578ab1
more new material about analysis
 paulson <lp15@cam.ac.uk> parents: 
70271diff
changeset | 1662 | |
| 70380 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1663 | lemma lebesgue_set_almost_fsigma: | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1664 | assumes "S \<in> sets lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1665 | obtains C T where "fsigma C" "T \<in> null_sets lebesgue" "C \<union> T = S" "disjnt C T" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1666 | proof - | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1667 |   { fix n::nat
 | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1668 | obtain T where "closed T" "T \<subseteq> S" "S-T \<in> lmeasurable" "emeasure lebesgue (S - T) < ennreal (1 / Suc n)" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1669 | using sets_lebesgue_inner_closed [OF assms] | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1670 | by (metis of_nat_0_less_iff zero_less_Suc zero_less_divide_1_iff) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1671 | then have "\<exists>T. closed T \<and> T \<subseteq> S \<and> S - T \<in> lmeasurable \<and> measure lebesgue (S-T) < 1 / Suc n" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1672 | by (metis emeasure_eq_measure2 ennreal_leI not_le) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1673 | } | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1674 | then obtain F where F: "\<And>n::nat. closed (F n) \<and> F n \<subseteq> S \<and> S - F n \<in> lmeasurable \<and> measure lebesgue (S - F n) < 1 / Suc n" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1675 | by metis | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1676 | let ?C = "\<Union>(F ` UNIV)" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1677 | show thesis | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1678 | proof | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1679 | show "fsigma ?C" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1680 | using F by (simp add: fsigma.intros) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1681 | show "(S - ?C) \<in> null_sets lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1682 | proof (clarsimp simp add: completion.null_sets_outer_le) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1683 | fix e :: "real" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1684 | assume "0 < e" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1685 | then obtain n where n: "1 / Suc n < e" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1686 | using nat_approx_posE by metis | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1687 | show "\<exists>T \<in> lmeasurable. S - (\<Union>x. F x) \<subseteq> T \<and> measure lebesgue T \<le> e" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1688 | proof (intro bexI conjI) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1689 | show "measure lebesgue (S - F n) \<le> e" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1690 | by (meson F n less_trans not_le order.asym) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1691 | qed (use F in auto) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1692 | qed | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1693 | show "?C \<union> (S - ?C) = S" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1694 | using F by blast | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1695 | show "disjnt ?C (S - ?C)" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1696 | by (auto simp: disjnt_def) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1697 | qed | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1698 | qed | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1699 | |
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1700 | lemma lebesgue_set_almost_gdelta: | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1701 | assumes "S \<in> sets lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1702 | obtains C T where "gdelta C" "T \<in> null_sets lebesgue" "S \<union> T = C" "disjnt S T" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1703 | proof - | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1704 | have "-S \<in> sets lebesgue" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1705 | using assms Compl_in_sets_lebesgue by blast | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1706 | then obtain C T where C: "fsigma C" "T \<in> null_sets lebesgue" "C \<union> T = -S" "disjnt C T" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1707 | using lebesgue_set_almost_fsigma by metis | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1708 | show thesis | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1709 | proof | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1710 | show "gdelta (-C)" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1711 | by (simp add: \<open>fsigma C\<close> fsigma_imp_gdelta) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1712 | show "S \<union> T = -C" "disjnt S T" | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1713 | using C by (auto simp: disjnt_def) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1714 | qed (use C in auto) | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1715 | qed | 
| 
2b0dca68c3ee
More analysis / measure theory material
 paulson <lp15@cam.ac.uk> parents: 
70378diff
changeset | 1716 | |
| 38656 | 1717 | end |