author | wenzelm |
Fri, 19 Jun 2020 16:12:32 +0200 | |
changeset 71960 | 6a64205b491a |
parent 66453 | cc19f7ca2ed6 |
child 73809 | ce9529a616fd |
permissions | -rw-r--r-- |
28952
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
haftmann
parents:
28001
diff
changeset
|
1 |
(* Title: HOL/ex/Sqrt.thy |
45917 | 2 |
Author: Markus Wenzel, Tobias Nipkow, TU Muenchen |
13957 | 3 |
*) |
4 |
||
59031 | 5 |
section \<open>Square roots of primes are irrational\<close> |
13957 | 6 |
|
15149 | 7 |
theory Sqrt |
66453
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents:
65417
diff
changeset
|
8 |
imports Complex_Main "HOL-Computational_Algebra.Primes" |
15149 | 9 |
begin |
13957 | 10 |
|
59031 | 11 |
text \<open>The square root of any prime number (including 2) is irrational.\<close> |
13957 | 12 |
|
19086 | 13 |
theorem sqrt_prime_irrational: |
31712 | 14 |
assumes "prime (p::nat)" |
51708 | 15 |
shows "sqrt p \<notin> \<rat>" |
13957 | 16 |
proof |
63635 | 17 |
from \<open>prime p\<close> have p: "1 < p" by (simp add: prime_nat_iff) |
51708 | 18 |
assume "sqrt p \<in> \<rat>" |
31712 | 19 |
then obtain m n :: nat where |
51708 | 20 |
n: "n \<noteq> 0" and sqrt_rat: "\<bar>sqrt p\<bar> = m / n" |
60690 | 21 |
and "coprime m n" by (rule Rats_abs_nat_div_natE) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
22 |
have eq: "m\<^sup>2 = p * n\<^sup>2" |
13957 | 23 |
proof - |
51708 | 24 |
from n and sqrt_rat have "m = \<bar>sqrt p\<bar> * n" by simp |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
25 |
then have "m\<^sup>2 = (sqrt p)\<^sup>2 * n\<^sup>2" |
14353
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
14305
diff
changeset
|
26 |
by (auto simp add: power2_eq_square) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
27 |
also have "(sqrt p)\<^sup>2 = p" by simp |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
28 |
also have "\<dots> * n\<^sup>2 = p * n\<^sup>2" by simp |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
60690
diff
changeset
|
29 |
finally show ?thesis using of_nat_eq_iff by blast |
13957 | 30 |
qed |
31 |
have "p dvd m \<and> p dvd n" |
|
32 |
proof |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
33 |
from eq have "p dvd m\<^sup>2" .. |
59031 | 34 |
with \<open>prime p\<close> show "p dvd m" by (rule prime_dvd_power_nat) |
13957 | 35 |
then obtain k where "m = p * k" .. |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
53598
diff
changeset
|
36 |
with eq have "p * n\<^sup>2 = p\<^sup>2 * k\<^sup>2" by (auto simp add: power2_eq_square ac_simps) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
37 |
with p have "n\<^sup>2 = p * k\<^sup>2" by (simp add: power2_eq_square) |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
38 |
then have "p dvd n\<^sup>2" .. |
59031 | 39 |
with \<open>prime p\<close> show "p dvd n" by (rule prime_dvd_power_nat) |
13957 | 40 |
qed |
60690 | 41 |
then have "p dvd gcd m n" by simp |
42 |
with \<open>coprime m n\<close> have "p = 1" by simp |
|
13957 | 43 |
with p show False by simp |
44 |
qed |
|
45 |
||
51708 | 46 |
corollary sqrt_2_not_rat: "sqrt 2 \<notin> \<rat>" |
47 |
using sqrt_prime_irrational[of 2] by simp |
|
13957 | 48 |
|
49 |
||
59031 | 50 |
subsection \<open>Variations\<close> |
51 |
||
52 |
text \<open> |
|
13957 | 53 |
Here is an alternative version of the main proof, using mostly |
54 |
linear forward-reasoning. While this results in less top-down |
|
55 |
structure, it is probably closer to proofs seen in mathematics. |
|
59031 | 56 |
\<close> |
13957 | 57 |
|
19086 | 58 |
theorem |
31712 | 59 |
assumes "prime (p::nat)" |
51708 | 60 |
shows "sqrt p \<notin> \<rat>" |
13957 | 61 |
proof |
63635 | 62 |
from \<open>prime p\<close> have p: "1 < p" by (simp add: prime_nat_iff) |
51708 | 63 |
assume "sqrt p \<in> \<rat>" |
31712 | 64 |
then obtain m n :: nat where |
51708 | 65 |
n: "n \<noteq> 0" and sqrt_rat: "\<bar>sqrt p\<bar> = m / n" |
60690 | 66 |
and "coprime m n" by (rule Rats_abs_nat_div_natE) |
51708 | 67 |
from n and sqrt_rat have "m = \<bar>sqrt p\<bar> * n" by simp |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
68 |
then have "m\<^sup>2 = (sqrt p)\<^sup>2 * n\<^sup>2" |
14353
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
14305
diff
changeset
|
69 |
by (auto simp add: power2_eq_square) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
70 |
also have "(sqrt p)\<^sup>2 = p" by simp |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
71 |
also have "\<dots> * n\<^sup>2 = p * n\<^sup>2" by simp |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
60690
diff
changeset
|
72 |
finally have eq: "m\<^sup>2 = p * n\<^sup>2" using of_nat_eq_iff by blast |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
73 |
then have "p dvd m\<^sup>2" .. |
59031 | 74 |
with \<open>prime p\<close> have dvd_m: "p dvd m" by (rule prime_dvd_power_nat) |
13957 | 75 |
then obtain k where "m = p * k" .. |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
53598
diff
changeset
|
76 |
with eq have "p * n\<^sup>2 = p\<^sup>2 * k\<^sup>2" by (auto simp add: power2_eq_square ac_simps) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
77 |
with p have "n\<^sup>2 = p * k\<^sup>2" by (simp add: power2_eq_square) |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51708
diff
changeset
|
78 |
then have "p dvd n\<^sup>2" .. |
59031 | 79 |
with \<open>prime p\<close> have "p dvd n" by (rule prime_dvd_power_nat) |
62348 | 80 |
with dvd_m have "p dvd gcd m n" by (rule gcd_greatest) |
60690 | 81 |
with \<open>coprime m n\<close> have "p = 1" by simp |
13957 | 82 |
with p show False by simp |
83 |
qed |
|
84 |
||
45917 | 85 |
|
59031 | 86 |
text \<open>Another old chestnut, which is a consequence of the irrationality of 2.\<close> |
45917 | 87 |
|
59031 | 88 |
lemma "\<exists>a b::real. a \<notin> \<rat> \<and> b \<notin> \<rat> \<and> a powr b \<in> \<rat>" (is "\<exists>a b. ?P a b") |
45917 | 89 |
proof cases |
90 |
assume "sqrt 2 powr sqrt 2 \<in> \<rat>" |
|
46495 | 91 |
then have "?P (sqrt 2) (sqrt 2)" |
51708 | 92 |
by (metis sqrt_2_not_rat) |
46495 | 93 |
then show ?thesis by blast |
45917 | 94 |
next |
95 |
assume 1: "sqrt 2 powr sqrt 2 \<notin> \<rat>" |
|
96 |
have "(sqrt 2 powr sqrt 2) powr sqrt 2 = 2" |
|
46495 | 97 |
using powr_realpow [of _ 2] |
98 |
by (simp add: powr_powr power2_eq_square [symmetric]) |
|
99 |
then have "?P (sqrt 2 powr sqrt 2) (sqrt 2)" |
|
51708 | 100 |
by (metis 1 Rats_number_of sqrt_2_not_rat) |
46495 | 101 |
then show ?thesis by blast |
45917 | 102 |
qed |
103 |
||
13957 | 104 |
end |