| author | nipkow | 
| Sat, 21 Apr 2018 08:41:42 +0200 | |
| changeset 68020 | 6aade817bee5 | 
| parent 67965 | aaa31cd0caef | 
| child 68109 | cebf36c14226 | 
| permissions | -rw-r--r-- | 
| 61640 | 1  | 
(* Author: Tobias Nipkow *)  | 
2  | 
||
| 62130 | 3  | 
section \<open>2-3 Tree Implementation of Sets\<close>  | 
| 61640 | 4  | 
|
5  | 
theory Tree23_Set  | 
|
6  | 
imports  | 
|
7  | 
Tree23  | 
|
8  | 
Cmp  | 
|
| 67965 | 9  | 
Set_Specs  | 
| 61640 | 10  | 
begin  | 
11  | 
||
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
12  | 
fun isin :: "'a::linorder tree23 \<Rightarrow> 'a \<Rightarrow> bool" where  | 
| 61640 | 13  | 
"isin Leaf x = False" |  | 
14  | 
"isin (Node2 l a r) x =  | 
|
| 61678 | 15  | 
(case cmp x a of  | 
16  | 
LT \<Rightarrow> isin l x |  | 
|
17  | 
EQ \<Rightarrow> True |  | 
|
18  | 
GT \<Rightarrow> isin r x)" |  | 
|
| 61640 | 19  | 
"isin (Node3 l a m b r) x =  | 
| 61678 | 20  | 
(case cmp x a of  | 
21  | 
LT \<Rightarrow> isin l x |  | 
|
22  | 
EQ \<Rightarrow> True |  | 
|
23  | 
GT \<Rightarrow>  | 
|
24  | 
(case cmp x b of  | 
|
25  | 
LT \<Rightarrow> isin m x |  | 
|
26  | 
EQ \<Rightarrow> True |  | 
|
27  | 
GT \<Rightarrow> isin r x))"  | 
|
| 61640 | 28  | 
|
29  | 
datatype 'a up\<^sub>i = T\<^sub>i "'a tree23" | Up\<^sub>i "'a tree23" 'a "'a tree23"  | 
|
30  | 
||
31  | 
fun tree\<^sub>i :: "'a up\<^sub>i \<Rightarrow> 'a tree23" where  | 
|
32  | 
"tree\<^sub>i (T\<^sub>i t) = t" |  | 
|
| 61709 | 33  | 
"tree\<^sub>i (Up\<^sub>i l a r) = Node2 l a r"  | 
| 61640 | 34  | 
|
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
35  | 
fun ins :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>i" where  | 
| 61640 | 36  | 
"ins x Leaf = Up\<^sub>i Leaf x Leaf" |  | 
37  | 
"ins x (Node2 l a r) =  | 
|
38  | 
(case cmp x a of  | 
|
| 61678 | 39  | 
LT \<Rightarrow>  | 
40  | 
(case ins x l of  | 
|
41  | 
T\<^sub>i l' => T\<^sub>i (Node2 l' a r) |  | 
|
42  | 
Up\<^sub>i l1 b l2 => T\<^sub>i (Node3 l1 b l2 a r)) |  | 
|
| 61640 | 43  | 
EQ \<Rightarrow> T\<^sub>i (Node2 l x r) |  | 
| 61678 | 44  | 
GT \<Rightarrow>  | 
45  | 
(case ins x r of  | 
|
46  | 
T\<^sub>i r' => T\<^sub>i (Node2 l a r') |  | 
|
47  | 
Up\<^sub>i r1 b r2 => T\<^sub>i (Node3 l a r1 b r2)))" |  | 
|
| 61640 | 48  | 
"ins x (Node3 l a m b r) =  | 
49  | 
(case cmp x a of  | 
|
| 61678 | 50  | 
LT \<Rightarrow>  | 
51  | 
(case ins x l of  | 
|
52  | 
T\<^sub>i l' => T\<^sub>i (Node3 l' a m b r) |  | 
|
53  | 
Up\<^sub>i l1 c l2 => Up\<^sub>i (Node2 l1 c l2) a (Node2 m b r)) |  | 
|
| 61640 | 54  | 
EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) |  | 
| 61678 | 55  | 
GT \<Rightarrow>  | 
56  | 
(case cmp x b of  | 
|
57  | 
GT \<Rightarrow>  | 
|
58  | 
(case ins x r of  | 
|
59  | 
T\<^sub>i r' => T\<^sub>i (Node3 l a m b r') |  | 
|
60  | 
Up\<^sub>i r1 c r2 => Up\<^sub>i (Node2 l a m) b (Node2 r1 c r2)) |  | 
|
61  | 
EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) |  | 
|
62  | 
LT \<Rightarrow>  | 
|
63  | 
(case ins x m of  | 
|
64  | 
T\<^sub>i m' => T\<^sub>i (Node3 l a m' b r) |  | 
|
65  | 
Up\<^sub>i m1 c m2 => Up\<^sub>i (Node2 l a m1) c (Node2 m2 b r))))"  | 
|
| 61640 | 66  | 
|
67  | 
hide_const insert  | 
|
68  | 
||
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
69  | 
definition insert :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where  | 
| 61640 | 70  | 
"insert x t = tree\<^sub>i(ins x t)"  | 
71  | 
||
72  | 
datatype 'a up\<^sub>d = T\<^sub>d "'a tree23" | Up\<^sub>d "'a tree23"  | 
|
73  | 
||
74  | 
fun tree\<^sub>d :: "'a up\<^sub>d \<Rightarrow> 'a tree23" where  | 
|
| 61709 | 75  | 
"tree\<^sub>d (T\<^sub>d t) = t" |  | 
76  | 
"tree\<^sub>d (Up\<^sub>d t) = t"  | 
|
| 61640 | 77  | 
|
78  | 
(* Variation: return None to signal no-change *)  | 
|
79  | 
||
80  | 
fun node21 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where  | 
|
81  | 
"node21 (T\<^sub>d t1) a t2 = T\<^sub>d(Node2 t1 a t2)" |  | 
|
82  | 
"node21 (Up\<^sub>d t1) a (Node2 t2 b t3) = Up\<^sub>d(Node3 t1 a t2 b t3)" |  | 
|
83  | 
"node21 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) = T\<^sub>d(Node2 (Node2 t1 a t2) b (Node2 t3 c t4))"  | 
|
84  | 
||
85  | 
fun node22 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where  | 
|
86  | 
"node22 t1 a (T\<^sub>d t2) = T\<^sub>d(Node2 t1 a t2)" |  | 
|
87  | 
"node22 (Node2 t1 b t2) a (Up\<^sub>d t3) = Up\<^sub>d(Node3 t1 b t2 a t3)" |  | 
|
88  | 
"node22 (Node3 t1 b t2 c t3) a (Up\<^sub>d t4) = T\<^sub>d(Node2 (Node2 t1 b t2) c (Node2 t3 a t4))"  | 
|
89  | 
||
90  | 
fun node31 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where  | 
|
91  | 
"node31 (T\<^sub>d t1) a t2 b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" |  | 
|
92  | 
"node31 (Up\<^sub>d t1) a (Node2 t2 b t3) c t4 = T\<^sub>d(Node2 (Node3 t1 a t2 b t3) c t4)" |  | 
|
93  | 
"node31 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) d t5 = T\<^sub>d(Node3 (Node2 t1 a t2) b (Node2 t3 c t4) d t5)"  | 
|
94  | 
||
95  | 
fun node32 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where  | 
|
96  | 
"node32 t1 a (T\<^sub>d t2) b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" |  | 
|
97  | 
"node32 t1 a (Up\<^sub>d t2) b (Node2 t3 c t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" |  | 
|
98  | 
"node32 t1 a (Up\<^sub>d t2) b (Node3 t3 c t4 d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))"  | 
|
99  | 
||
100  | 
fun node33 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where  | 
|
101  | 
"node33 l a m b (T\<^sub>d r) = T\<^sub>d(Node3 l a m b r)" |  | 
|
102  | 
"node33 t1 a (Node2 t2 b t3) c (Up\<^sub>d t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" |  | 
|
103  | 
"node33 t1 a (Node3 t2 b t3 c t4) d (Up\<^sub>d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))"  | 
|
104  | 
||
| 68020 | 105  | 
fun split_min :: "'a tree23 \<Rightarrow> 'a * 'a up\<^sub>d" where  | 
106  | 
"split_min (Node2 Leaf a Leaf) = (a, Up\<^sub>d Leaf)" |  | 
|
107  | 
"split_min (Node3 Leaf a Leaf b Leaf) = (a, T\<^sub>d(Node2 Leaf b Leaf))" |  | 
|
108  | 
"split_min (Node2 l a r) = (let (x,l') = split_min l in (x, node21 l' a r))" |  | 
|
109  | 
"split_min (Node3 l a m b r) = (let (x,l') = split_min l in (x, node31 l' a m b r))"  | 
|
| 61640 | 110  | 
|
| 68020 | 111  | 
text \<open>In the base cases of \<open>split_min\<close> and \<open>del\<close> it is enough to check if one subtree is a \<open>Leaf\<close>,  | 
| 67038 | 112  | 
in which case balancedness implies that so are the others. Exercise.\<close>  | 
113  | 
||
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
114  | 
fun del :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where  | 
| 61640 | 115  | 
"del x Leaf = T\<^sub>d Leaf" |  | 
| 61678 | 116  | 
"del x (Node2 Leaf a Leaf) =  | 
117  | 
(if x = a then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf a Leaf))" |  | 
|
118  | 
"del x (Node3 Leaf a Leaf b Leaf) =  | 
|
119  | 
T\<^sub>d(if x = a then Node2 Leaf b Leaf else  | 
|
120  | 
if x = b then Node2 Leaf a Leaf  | 
|
121  | 
else Node3 Leaf a Leaf b Leaf)" |  | 
|
122  | 
"del x (Node2 l a r) =  | 
|
123  | 
(case cmp x a of  | 
|
124  | 
LT \<Rightarrow> node21 (del x l) a r |  | 
|
125  | 
GT \<Rightarrow> node22 l a (del x r) |  | 
|
| 68020 | 126  | 
EQ \<Rightarrow> let (a',t) = split_min r in node22 l a' t)" |  | 
| 61678 | 127  | 
"del x (Node3 l a m b r) =  | 
128  | 
(case cmp x a of  | 
|
129  | 
LT \<Rightarrow> node31 (del x l) a m b r |  | 
|
| 68020 | 130  | 
EQ \<Rightarrow> let (a',m') = split_min m in node32 l a' m' b r |  | 
| 61678 | 131  | 
GT \<Rightarrow>  | 
132  | 
(case cmp x b of  | 
|
| 61640 | 133  | 
LT \<Rightarrow> node32 l a (del x m) b r |  | 
| 68020 | 134  | 
EQ \<Rightarrow> let (b',r') = split_min r in node33 l a m b' r' |  | 
| 61640 | 135  | 
GT \<Rightarrow> node33 l a m b (del x r)))"  | 
136  | 
||
| 
63411
 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 
nipkow 
parents: 
62130 
diff
changeset
 | 
137  | 
definition delete :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where  | 
| 61640 | 138  | 
"delete x t = tree\<^sub>d(del x t)"  | 
139  | 
||
140  | 
||
141  | 
subsection "Functional Correctness"  | 
|
142  | 
||
143  | 
subsubsection "Proofs for isin"  | 
|
144  | 
||
| 67929 | 145  | 
lemma isin_set: "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> set (inorder t))"  | 
146  | 
by (induction t) (auto simp: isin_simps ball_Un)  | 
|
| 61640 | 147  | 
|
148  | 
||
149  | 
subsubsection "Proofs for insert"  | 
|
150  | 
||
151  | 
lemma inorder_ins:  | 
|
152  | 
"sorted(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(ins x t)) = ins_list x (inorder t)"  | 
|
153  | 
by(induction t) (auto simp: ins_list_simps split: up\<^sub>i.splits)  | 
|
154  | 
||
155  | 
lemma inorder_insert:  | 
|
156  | 
"sorted(inorder t) \<Longrightarrow> inorder(insert a t) = ins_list a (inorder t)"  | 
|
157  | 
by(simp add: insert_def inorder_ins)  | 
|
158  | 
||
159  | 
||
160  | 
subsubsection "Proofs for delete"  | 
|
161  | 
||
162  | 
lemma inorder_node21: "height r > 0 \<Longrightarrow>  | 
|
163  | 
inorder (tree\<^sub>d (node21 l' a r)) = inorder (tree\<^sub>d l') @ a # inorder r"  | 
|
164  | 
by(induct l' a r rule: node21.induct) auto  | 
|
165  | 
||
166  | 
lemma inorder_node22: "height l > 0 \<Longrightarrow>  | 
|
167  | 
inorder (tree\<^sub>d (node22 l a r')) = inorder l @ a # inorder (tree\<^sub>d r')"  | 
|
168  | 
by(induct l a r' rule: node22.induct) auto  | 
|
169  | 
||
170  | 
lemma inorder_node31: "height m > 0 \<Longrightarrow>  | 
|
171  | 
inorder (tree\<^sub>d (node31 l' a m b r)) = inorder (tree\<^sub>d l') @ a # inorder m @ b # inorder r"  | 
|
172  | 
by(induct l' a m b r rule: node31.induct) auto  | 
|
173  | 
||
174  | 
lemma inorder_node32: "height r > 0 \<Longrightarrow>  | 
|
175  | 
inorder (tree\<^sub>d (node32 l a m' b r)) = inorder l @ a # inorder (tree\<^sub>d m') @ b # inorder r"  | 
|
176  | 
by(induct l a m' b r rule: node32.induct) auto  | 
|
177  | 
||
178  | 
lemma inorder_node33: "height m > 0 \<Longrightarrow>  | 
|
179  | 
inorder (tree\<^sub>d (node33 l a m b r')) = inorder l @ a # inorder m @ b # inorder (tree\<^sub>d r')"  | 
|
180  | 
by(induct l a m b r' rule: node33.induct) auto  | 
|
181  | 
||
182  | 
lemmas inorder_nodes = inorder_node21 inorder_node22  | 
|
183  | 
inorder_node31 inorder_node32 inorder_node33  | 
|
184  | 
||
| 68020 | 185  | 
lemma split_minD:  | 
186  | 
"split_min t = (x,t') \<Longrightarrow> bal t \<Longrightarrow> height t > 0 \<Longrightarrow>  | 
|
| 61640 | 187  | 
x # inorder(tree\<^sub>d t') = inorder t"  | 
| 68020 | 188  | 
by(induction t arbitrary: t' rule: split_min.induct)  | 
| 61640 | 189  | 
(auto simp: inorder_nodes split: prod.splits)  | 
190  | 
||
191  | 
lemma inorder_del: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>  | 
|
192  | 
inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)"  | 
|
193  | 
by(induction t rule: del.induct)  | 
|
| 68020 | 194  | 
(auto simp: del_list_simps inorder_nodes split_minD split!: if_split prod.splits)  | 
| 61640 | 195  | 
|
196  | 
lemma inorder_delete: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>  | 
|
197  | 
inorder(delete x t) = del_list x (inorder t)"  | 
|
198  | 
by(simp add: delete_def inorder_del)  | 
|
199  | 
||
200  | 
||
201  | 
subsection \<open>Balancedness\<close>  | 
|
202  | 
||
203  | 
||
204  | 
subsubsection "Proofs for insert"  | 
|
205  | 
||
| 67406 | 206  | 
text\<open>First a standard proof that @{const ins} preserves @{const bal}.\<close>
 | 
| 61640 | 207  | 
|
208  | 
instantiation up\<^sub>i :: (type)height  | 
|
209  | 
begin  | 
|
210  | 
||
211  | 
fun height_up\<^sub>i :: "'a up\<^sub>i \<Rightarrow> nat" where  | 
|
212  | 
"height (T\<^sub>i t) = height t" |  | 
|
213  | 
"height (Up\<^sub>i l a r) = height l"  | 
|
214  | 
||
215  | 
instance ..  | 
|
216  | 
||
217  | 
end  | 
|
218  | 
||
219  | 
lemma bal_ins: "bal t \<Longrightarrow> bal (tree\<^sub>i(ins a t)) \<and> height(ins a t) = height t"  | 
|
| 63636 | 220  | 
by (induct t) (auto split!: if_split up\<^sub>i.split) (* 15 secs in 2015 *)  | 
| 61640 | 221  | 
|
| 67406 | 222  | 
text\<open>Now an alternative proof (by Brian Huffman) that runs faster because  | 
223  | 
two properties (balance and height) are combined in one predicate.\<close>  | 
|
| 61640 | 224  | 
|
225  | 
inductive full :: "nat \<Rightarrow> 'a tree23 \<Rightarrow> bool" where  | 
|
226  | 
"full 0 Leaf" |  | 
|
227  | 
"\<lbrakk>full n l; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node2 l p r)" |  | 
|
228  | 
"\<lbrakk>full n l; full n m; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node3 l p m q r)"  | 
|
229  | 
||
230  | 
inductive_cases full_elims:  | 
|
231  | 
"full n Leaf"  | 
|
232  | 
"full n (Node2 l p r)"  | 
|
233  | 
"full n (Node3 l p m q r)"  | 
|
234  | 
||
235  | 
inductive_cases full_0_elim: "full 0 t"  | 
|
236  | 
inductive_cases full_Suc_elim: "full (Suc n) t"  | 
|
237  | 
||
238  | 
lemma full_0_iff [simp]: "full 0 t \<longleftrightarrow> t = Leaf"  | 
|
239  | 
by (auto elim: full_0_elim intro: full.intros)  | 
|
240  | 
||
241  | 
lemma full_Leaf_iff [simp]: "full n Leaf \<longleftrightarrow> n = 0"  | 
|
242  | 
by (auto elim: full_elims intro: full.intros)  | 
|
243  | 
||
244  | 
lemma full_Suc_Node2_iff [simp]:  | 
|
245  | 
"full (Suc n) (Node2 l p r) \<longleftrightarrow> full n l \<and> full n r"  | 
|
246  | 
by (auto elim: full_elims intro: full.intros)  | 
|
247  | 
||
248  | 
lemma full_Suc_Node3_iff [simp]:  | 
|
249  | 
"full (Suc n) (Node3 l p m q r) \<longleftrightarrow> full n l \<and> full n m \<and> full n r"  | 
|
250  | 
by (auto elim: full_elims intro: full.intros)  | 
|
251  | 
||
252  | 
lemma full_imp_height: "full n t \<Longrightarrow> height t = n"  | 
|
253  | 
by (induct set: full, simp_all)  | 
|
254  | 
||
255  | 
lemma full_imp_bal: "full n t \<Longrightarrow> bal t"  | 
|
256  | 
by (induct set: full, auto dest: full_imp_height)  | 
|
257  | 
||
258  | 
lemma bal_imp_full: "bal t \<Longrightarrow> full (height t) t"  | 
|
259  | 
by (induct t, simp_all)  | 
|
260  | 
||
261  | 
lemma bal_iff_full: "bal t \<longleftrightarrow> (\<exists>n. full n t)"  | 
|
262  | 
by (auto elim!: bal_imp_full full_imp_bal)  | 
|
263  | 
||
| 67406 | 264  | 
text \<open>The @{const "insert"} function either preserves the height of the
 | 
| 61640 | 265  | 
tree, or increases it by one. The constructor returned by the @{term
 | 
266  | 
"insert"} function determines which: A return value of the form @{term
 | 
|
267  | 
"T\<^sub>i t"} indicates that the height will be the same. A value of the  | 
|
| 67406 | 268  | 
form @{term "Up\<^sub>i l p r"} indicates an increase in height.\<close>
 | 
| 61640 | 269  | 
|
270  | 
fun full\<^sub>i :: "nat \<Rightarrow> 'a up\<^sub>i \<Rightarrow> bool" where  | 
|
271  | 
"full\<^sub>i n (T\<^sub>i t) \<longleftrightarrow> full n t" |  | 
|
272  | 
"full\<^sub>i n (Up\<^sub>i l p r) \<longleftrightarrow> full n l \<and> full n r"  | 
|
273  | 
||
274  | 
lemma full\<^sub>i_ins: "full n t \<Longrightarrow> full\<^sub>i n (ins a t)"  | 
|
275  | 
by (induct rule: full.induct) (auto split: up\<^sub>i.split)  | 
|
276  | 
||
| 67406 | 277  | 
text \<open>The @{const insert} operation preserves balance.\<close>
 | 
| 61640 | 278  | 
|
279  | 
lemma bal_insert: "bal t \<Longrightarrow> bal (insert a t)"  | 
|
280  | 
unfolding bal_iff_full insert_def  | 
|
281  | 
apply (erule exE)  | 
|
282  | 
apply (drule full\<^sub>i_ins [of _ _ a])  | 
|
283  | 
apply (cases "ins a t")  | 
|
284  | 
apply (auto intro: full.intros)  | 
|
285  | 
done  | 
|
286  | 
||
287  | 
||
288  | 
subsection "Proofs for delete"  | 
|
289  | 
||
290  | 
instantiation up\<^sub>d :: (type)height  | 
|
291  | 
begin  | 
|
292  | 
||
293  | 
fun height_up\<^sub>d :: "'a up\<^sub>d \<Rightarrow> nat" where  | 
|
294  | 
"height (T\<^sub>d t) = height t" |  | 
|
295  | 
"height (Up\<^sub>d t) = height t + 1"  | 
|
296  | 
||
297  | 
instance ..  | 
|
298  | 
||
299  | 
end  | 
|
300  | 
||
301  | 
lemma bal_tree\<^sub>d_node21:  | 
|
302  | 
"\<lbrakk>bal r; bal (tree\<^sub>d l'); height r = height l' \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node21 l' a r))"  | 
|
303  | 
by(induct l' a r rule: node21.induct) auto  | 
|
304  | 
||
305  | 
lemma bal_tree\<^sub>d_node22:  | 
|
306  | 
"\<lbrakk>bal(tree\<^sub>d r'); bal l; height r' = height l \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node22 l a r'))"  | 
|
307  | 
by(induct l a r' rule: node22.induct) auto  | 
|
308  | 
||
309  | 
lemma bal_tree\<^sub>d_node31:  | 
|
310  | 
"\<lbrakk> bal (tree\<^sub>d l'); bal m; bal r; height l' = height r; height m = height r \<rbrakk>  | 
|
311  | 
\<Longrightarrow> bal (tree\<^sub>d (node31 l' a m b r))"  | 
|
312  | 
by(induct l' a m b r rule: node31.induct) auto  | 
|
313  | 
||
314  | 
lemma bal_tree\<^sub>d_node32:  | 
|
315  | 
"\<lbrakk> bal l; bal (tree\<^sub>d m'); bal r; height l = height r; height m' = height r \<rbrakk>  | 
|
316  | 
\<Longrightarrow> bal (tree\<^sub>d (node32 l a m' b r))"  | 
|
317  | 
by(induct l a m' b r rule: node32.induct) auto  | 
|
318  | 
||
319  | 
lemma bal_tree\<^sub>d_node33:  | 
|
320  | 
"\<lbrakk> bal l; bal m; bal(tree\<^sub>d r'); height l = height r'; height m = height r' \<rbrakk>  | 
|
321  | 
\<Longrightarrow> bal (tree\<^sub>d (node33 l a m b r'))"  | 
|
322  | 
by(induct l a m b r' rule: node33.induct) auto  | 
|
323  | 
||
324  | 
lemmas bals = bal_tree\<^sub>d_node21 bal_tree\<^sub>d_node22  | 
|
325  | 
bal_tree\<^sub>d_node31 bal_tree\<^sub>d_node32 bal_tree\<^sub>d_node33  | 
|
326  | 
||
327  | 
lemma height'_node21:  | 
|
328  | 
"height r > 0 \<Longrightarrow> height(node21 l' a r) = max (height l') (height r) + 1"  | 
|
329  | 
by(induct l' a r rule: node21.induct)(simp_all)  | 
|
330  | 
||
331  | 
lemma height'_node22:  | 
|
332  | 
"height l > 0 \<Longrightarrow> height(node22 l a r') = max (height l) (height r') + 1"  | 
|
333  | 
by(induct l a r' rule: node22.induct)(simp_all)  | 
|
334  | 
||
335  | 
lemma height'_node31:  | 
|
336  | 
"height m > 0 \<Longrightarrow> height(node31 l a m b r) =  | 
|
337  | 
max (height l) (max (height m) (height r)) + 1"  | 
|
338  | 
by(induct l a m b r rule: node31.induct)(simp_all add: max_def)  | 
|
339  | 
||
340  | 
lemma height'_node32:  | 
|
341  | 
"height r > 0 \<Longrightarrow> height(node32 l a m b r) =  | 
|
342  | 
max (height l) (max (height m) (height r)) + 1"  | 
|
343  | 
by(induct l a m b r rule: node32.induct)(simp_all add: max_def)  | 
|
344  | 
||
345  | 
lemma height'_node33:  | 
|
346  | 
"height m > 0 \<Longrightarrow> height(node33 l a m b r) =  | 
|
347  | 
max (height l) (max (height m) (height r)) + 1"  | 
|
348  | 
by(induct l a m b r rule: node33.induct)(simp_all add: max_def)  | 
|
349  | 
||
350  | 
lemmas heights = height'_node21 height'_node22  | 
|
351  | 
height'_node31 height'_node32 height'_node33  | 
|
352  | 
||
| 68020 | 353  | 
lemma height_split_min:  | 
354  | 
"split_min t = (x, t') \<Longrightarrow> height t > 0 \<Longrightarrow> bal t \<Longrightarrow> height t' = height t"  | 
|
355  | 
by(induct t arbitrary: x t' rule: split_min.induct)  | 
|
| 61640 | 356  | 
(auto simp: heights split: prod.splits)  | 
357  | 
||
358  | 
lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t"  | 
|
359  | 
by(induction x t rule: del.induct)  | 
|
| 68020 | 360  | 
(auto simp: heights max_def height_split_min split: prod.splits)  | 
| 61640 | 361  | 
|
| 68020 | 362  | 
lemma bal_split_min:  | 
363  | 
"\<lbrakk> split_min t = (x, t'); bal t; height t > 0 \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d t')"  | 
|
364  | 
by(induct t arbitrary: x t' rule: split_min.induct)  | 
|
365  | 
(auto simp: heights height_split_min bals split: prod.splits)  | 
|
| 61640 | 366  | 
|
367  | 
lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))"  | 
|
368  | 
by(induction x t rule: del.induct)  | 
|
| 68020 | 369  | 
(auto simp: bals bal_split_min height_del height_split_min split: prod.splits)  | 
| 61640 | 370  | 
|
371  | 
corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)"  | 
|
372  | 
by(simp add: delete_def bal_tree\<^sub>d_del)  | 
|
373  | 
||
374  | 
||
375  | 
subsection \<open>Overall Correctness\<close>  | 
|
376  | 
||
377  | 
interpretation Set_by_Ordered  | 
|
378  | 
where empty = Leaf and isin = isin and insert = insert and delete = delete  | 
|
379  | 
and inorder = inorder and inv = bal  | 
|
380  | 
proof (standard, goal_cases)  | 
|
381  | 
case 2 thus ?case by(simp add: isin_set)  | 
|
382  | 
next  | 
|
383  | 
case 3 thus ?case by(simp add: inorder_insert)  | 
|
384  | 
next  | 
|
385  | 
case 4 thus ?case by(simp add: inorder_delete)  | 
|
386  | 
next  | 
|
387  | 
case 6 thus ?case by(simp add: bal_insert)  | 
|
388  | 
next  | 
|
389  | 
case 7 thus ?case by(simp add: bal_delete)  | 
|
390  | 
qed simp+  | 
|
391  | 
||
392  | 
end  |