author | nipkow |
Sat, 21 Apr 2018 08:41:42 +0200 | |
changeset 68020 | 6aade817bee5 |
parent 67965 | aaa31cd0caef |
child 68431 | b294e095f64c |
permissions | -rw-r--r-- |
61640 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
63411
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
nipkow
parents:
61678
diff
changeset
|
3 |
section \<open>Unbalanced Tree Implementation of Set\<close> |
61640 | 4 |
|
5 |
theory Tree_Set |
|
6 |
imports |
|
66453
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents:
63411
diff
changeset
|
7 |
"HOL-Library.Tree" |
61640 | 8 |
Cmp |
67965 | 9 |
Set_Specs |
61640 | 10 |
begin |
11 |
||
63411
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
nipkow
parents:
61678
diff
changeset
|
12 |
fun isin :: "'a::linorder tree \<Rightarrow> 'a \<Rightarrow> bool" where |
61640 | 13 |
"isin Leaf x = False" | |
14 |
"isin (Node l a r) x = |
|
61678 | 15 |
(case cmp x a of |
16 |
LT \<Rightarrow> isin l x | |
|
17 |
EQ \<Rightarrow> True | |
|
18 |
GT \<Rightarrow> isin r x)" |
|
61640 | 19 |
|
20 |
hide_const (open) insert |
|
21 |
||
63411
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
nipkow
parents:
61678
diff
changeset
|
22 |
fun insert :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where |
61640 | 23 |
"insert x Leaf = Node Leaf x Leaf" | |
61678 | 24 |
"insert x (Node l a r) = |
25 |
(case cmp x a of |
|
26 |
LT \<Rightarrow> Node (insert x l) a r | |
|
27 |
EQ \<Rightarrow> Node l a r | |
|
28 |
GT \<Rightarrow> Node l a (insert x r))" |
|
61640 | 29 |
|
68020 | 30 |
fun split_min :: "'a tree \<Rightarrow> 'a * 'a tree" where |
31 |
"split_min (Node l a r) = |
|
32 |
(if l = Leaf then (a,r) else let (x,l') = split_min l in (x, Node l' a r))" |
|
61640 | 33 |
|
63411
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
nipkow
parents:
61678
diff
changeset
|
34 |
fun delete :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where |
61640 | 35 |
"delete x Leaf = Leaf" | |
61678 | 36 |
"delete x (Node l a r) = |
37 |
(case cmp x a of |
|
38 |
LT \<Rightarrow> Node (delete x l) a r | |
|
39 |
GT \<Rightarrow> Node l a (delete x r) | |
|
68020 | 40 |
EQ \<Rightarrow> if r = Leaf then l else let (a',r') = split_min r in Node l a' r')" |
61640 | 41 |
|
42 |
||
43 |
subsection "Functional Correctness Proofs" |
|
44 |
||
67929 | 45 |
lemma isin_set: "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> set (inorder t))" |
46 |
by (induction t) (auto simp: isin_simps) |
|
61640 | 47 |
|
48 |
lemma inorder_insert: |
|
49 |
"sorted(inorder t) \<Longrightarrow> inorder(insert x t) = ins_list x (inorder t)" |
|
50 |
by(induction t) (auto simp: ins_list_simps) |
|
51 |
||
52 |
||
68020 | 53 |
lemma split_minD: |
54 |
"split_min t = (x,t') \<Longrightarrow> t \<noteq> Leaf \<Longrightarrow> x # inorder t' = inorder t" |
|
55 |
by(induction t arbitrary: t' rule: split_min.induct) |
|
61647 | 56 |
(auto simp: sorted_lems split: prod.splits if_splits) |
61640 | 57 |
|
58 |
lemma inorder_delete: |
|
59 |
"sorted(inorder t) \<Longrightarrow> inorder(delete x t) = del_list x (inorder t)" |
|
68020 | 60 |
by(induction t) (auto simp: del_list_simps split_minD split: prod.splits) |
61640 | 61 |
|
62 |
interpretation Set_by_Ordered |
|
63 |
where empty = Leaf and isin = isin and insert = insert and delete = delete |
|
64 |
and inorder = inorder and inv = "\<lambda>_. True" |
|
65 |
proof (standard, goal_cases) |
|
66 |
case 1 show ?case by simp |
|
67 |
next |
|
68 |
case 2 thus ?case by(simp add: isin_set) |
|
69 |
next |
|
70 |
case 3 thus ?case by(simp add: inorder_insert) |
|
71 |
next |
|
72 |
case 4 thus ?case by(simp add: inorder_delete) |
|
73 |
qed (rule TrueI)+ |
|
74 |
||
75 |
end |