| author | nipkow | 
| Sat, 21 Apr 2018 08:41:42 +0200 | |
| changeset 68020 | 6aade817bee5 | 
| parent 67965 | aaa31cd0caef | 
| child 68431 | b294e095f64c | 
| permissions | -rw-r--r-- | 
| 61640 | 1 | (* Author: Tobias Nipkow *) | 
| 2 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
61678diff
changeset | 3 | section \<open>Unbalanced Tree Implementation of Set\<close> | 
| 61640 | 4 | |
| 5 | theory Tree_Set | |
| 6 | imports | |
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
63411diff
changeset | 7 | "HOL-Library.Tree" | 
| 61640 | 8 | Cmp | 
| 67965 | 9 | Set_Specs | 
| 61640 | 10 | begin | 
| 11 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
61678diff
changeset | 12 | fun isin :: "'a::linorder tree \<Rightarrow> 'a \<Rightarrow> bool" where | 
| 61640 | 13 | "isin Leaf x = False" | | 
| 14 | "isin (Node l a r) x = | |
| 61678 | 15 | (case cmp x a of | 
| 16 | LT \<Rightarrow> isin l x | | |
| 17 | EQ \<Rightarrow> True | | |
| 18 | GT \<Rightarrow> isin r x)" | |
| 61640 | 19 | |
| 20 | hide_const (open) insert | |
| 21 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
61678diff
changeset | 22 | fun insert :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where | 
| 61640 | 23 | "insert x Leaf = Node Leaf x Leaf" | | 
| 61678 | 24 | "insert x (Node l a r) = | 
| 25 | (case cmp x a of | |
| 26 | LT \<Rightarrow> Node (insert x l) a r | | |
| 27 | EQ \<Rightarrow> Node l a r | | |
| 28 | GT \<Rightarrow> Node l a (insert x r))" | |
| 61640 | 29 | |
| 68020 | 30 | fun split_min :: "'a tree \<Rightarrow> 'a * 'a tree" where | 
| 31 | "split_min (Node l a r) = | |
| 32 | (if l = Leaf then (a,r) else let (x,l') = split_min l in (x, Node l' a r))" | |
| 61640 | 33 | |
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
61678diff
changeset | 34 | fun delete :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where | 
| 61640 | 35 | "delete x Leaf = Leaf" | | 
| 61678 | 36 | "delete x (Node l a r) = | 
| 37 | (case cmp x a of | |
| 38 | LT \<Rightarrow> Node (delete x l) a r | | |
| 39 | GT \<Rightarrow> Node l a (delete x r) | | |
| 68020 | 40 | EQ \<Rightarrow> if r = Leaf then l else let (a',r') = split_min r in Node l a' r')" | 
| 61640 | 41 | |
| 42 | ||
| 43 | subsection "Functional Correctness Proofs" | |
| 44 | ||
| 67929 | 45 | lemma isin_set: "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> set (inorder t))" | 
| 46 | by (induction t) (auto simp: isin_simps) | |
| 61640 | 47 | |
| 48 | lemma inorder_insert: | |
| 49 | "sorted(inorder t) \<Longrightarrow> inorder(insert x t) = ins_list x (inorder t)" | |
| 50 | by(induction t) (auto simp: ins_list_simps) | |
| 51 | ||
| 52 | ||
| 68020 | 53 | lemma split_minD: | 
| 54 | "split_min t = (x,t') \<Longrightarrow> t \<noteq> Leaf \<Longrightarrow> x # inorder t' = inorder t" | |
| 55 | by(induction t arbitrary: t' rule: split_min.induct) | |
| 61647 | 56 | (auto simp: sorted_lems split: prod.splits if_splits) | 
| 61640 | 57 | |
| 58 | lemma inorder_delete: | |
| 59 | "sorted(inorder t) \<Longrightarrow> inorder(delete x t) = del_list x (inorder t)" | |
| 68020 | 60 | by(induction t) (auto simp: del_list_simps split_minD split: prod.splits) | 
| 61640 | 61 | |
| 62 | interpretation Set_by_Ordered | |
| 63 | where empty = Leaf and isin = isin and insert = insert and delete = delete | |
| 64 | and inorder = inorder and inv = "\<lambda>_. True" | |
| 65 | proof (standard, goal_cases) | |
| 66 | case 1 show ?case by simp | |
| 67 | next | |
| 68 | case 2 thus ?case by(simp add: isin_set) | |
| 69 | next | |
| 70 | case 3 thus ?case by(simp add: inorder_insert) | |
| 71 | next | |
| 72 | case 4 thus ?case by(simp add: inorder_delete) | |
| 73 | qed (rule TrueI)+ | |
| 74 | ||
| 75 | end |