| author | blanchet | 
| Thu, 02 Aug 2012 10:10:29 +0200 | |
| changeset 48653 | 6ac7fd9b3a54 | 
| parent 47579 | 28f6f4ad69bf | 
| child 48891 | c0eafbd55de3 | 
| permissions | -rw-r--r-- | 
| 1475 | 1 | (* Title: HOL/Fun.thy | 
| 2 | Author: Tobias Nipkow, Cambridge University Computer Laboratory | |
| 923 | 3 | Copyright 1994 University of Cambridge | 
| 18154 | 4 | *) | 
| 923 | 5 | |
| 18154 | 6 | header {* Notions about functions *}
 | 
| 923 | 7 | |
| 15510 | 8 | theory Fun | 
| 44860 
56101fa00193
renamed theory Complete_Lattice to Complete_Lattices, in accordance with Lattices, Orderings etc.
 haftmann parents: 
44744diff
changeset | 9 | imports Complete_Lattices | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46586diff
changeset | 10 | keywords "enriched_type" :: thy_goal | 
| 41505 
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
 haftmann parents: 
41229diff
changeset | 11 | uses ("Tools/enriched_type.ML")
 | 
| 15131 | 12 | begin | 
| 2912 | 13 | |
| 26147 | 14 | lemma apply_inverse: | 
| 26357 | 15 | "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u" | 
| 26147 | 16 | by auto | 
| 2912 | 17 | |
| 12258 | 18 | |
| 26147 | 19 | subsection {* The Identity Function @{text id} *}
 | 
| 6171 | 20 | |
| 44277 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 21 | definition id :: "'a \<Rightarrow> 'a" where | 
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 22 | "id = (\<lambda>x. x)" | 
| 13910 | 23 | |
| 26147 | 24 | lemma id_apply [simp]: "id x = x" | 
| 25 | by (simp add: id_def) | |
| 26 | ||
| 47579 | 27 | lemma image_id [simp]: "image id = id" | 
| 28 | by (simp add: id_def fun_eq_iff) | |
| 26147 | 29 | |
| 47579 | 30 | lemma vimage_id [simp]: "vimage id = id" | 
| 31 | by (simp add: id_def fun_eq_iff) | |
| 26147 | 32 | |
| 33 | ||
| 34 | subsection {* The Composition Operator @{text "f \<circ> g"} *}
 | |
| 35 | ||
| 44277 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 36 | definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55) where
 | 
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 37 | "f o g = (\<lambda>x. f (g x))" | 
| 11123 | 38 | |
| 21210 | 39 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 40 | comp (infixl "\<circ>" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 41 | |
| 21210 | 42 | notation (HTML output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 43 | comp (infixl "\<circ>" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 44 | |
| 13585 | 45 | lemma o_apply [simp]: "(f o g) x = f (g x)" | 
| 46 | by (simp add: comp_def) | |
| 47 | ||
| 48 | lemma o_assoc: "f o (g o h) = f o g o h" | |
| 49 | by (simp add: comp_def) | |
| 50 | ||
| 51 | lemma id_o [simp]: "id o g = g" | |
| 52 | by (simp add: comp_def) | |
| 53 | ||
| 54 | lemma o_id [simp]: "f o id = f" | |
| 55 | by (simp add: comp_def) | |
| 56 | ||
| 34150 | 57 | lemma o_eq_dest: | 
| 58 | "a o b = c o d \<Longrightarrow> a (b v) = c (d v)" | |
| 44277 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 59 | by (simp only: comp_def) (fact fun_cong) | 
| 34150 | 60 | |
| 61 | lemma o_eq_elim: | |
| 62 | "a o b = c o d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R" | |
| 63 | by (erule meta_mp) (fact o_eq_dest) | |
| 64 | ||
| 13585 | 65 | lemma image_compose: "(f o g) ` r = f`(g`r)" | 
| 66 | by (simp add: comp_def, blast) | |
| 67 | ||
| 33044 | 68 | lemma vimage_compose: "(g \<circ> f) -` x = f -` (g -` x)" | 
| 69 | by auto | |
| 70 | ||
| 13585 | 71 | lemma UN_o: "UNION A (g o f) = UNION (f`A) g" | 
| 72 | by (unfold comp_def, blast) | |
| 73 | ||
| 74 | ||
| 26588 
d83271bfaba5
removed syntax from monad combinators; renamed mbind to scomp
 haftmann parents: 
26357diff
changeset | 75 | subsection {* The Forward Composition Operator @{text fcomp} *}
 | 
| 26357 | 76 | |
| 44277 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 77 | definition fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>>" 60) where
 | 
| 37751 | 78 | "f \<circ>> g = (\<lambda>x. g (f x))" | 
| 26357 | 79 | |
| 37751 | 80 | lemma fcomp_apply [simp]: "(f \<circ>> g) x = g (f x)" | 
| 26357 | 81 | by (simp add: fcomp_def) | 
| 82 | ||
| 37751 | 83 | lemma fcomp_assoc: "(f \<circ>> g) \<circ>> h = f \<circ>> (g \<circ>> h)" | 
| 26357 | 84 | by (simp add: fcomp_def) | 
| 85 | ||
| 37751 | 86 | lemma id_fcomp [simp]: "id \<circ>> g = g" | 
| 26357 | 87 | by (simp add: fcomp_def) | 
| 88 | ||
| 37751 | 89 | lemma fcomp_id [simp]: "f \<circ>> id = f" | 
| 26357 | 90 | by (simp add: fcomp_def) | 
| 91 | ||
| 31202 
52d332f8f909
pretty printing of functional combinators for evaluation code
 haftmann parents: 
31080diff
changeset | 92 | code_const fcomp | 
| 
52d332f8f909
pretty printing of functional combinators for evaluation code
 haftmann parents: 
31080diff
changeset | 93 | (Eval infixl 1 "#>") | 
| 
52d332f8f909
pretty printing of functional combinators for evaluation code
 haftmann parents: 
31080diff
changeset | 94 | |
| 37751 | 95 | no_notation fcomp (infixl "\<circ>>" 60) | 
| 26588 
d83271bfaba5
removed syntax from monad combinators; renamed mbind to scomp
 haftmann parents: 
26357diff
changeset | 96 | |
| 26357 | 97 | |
| 40602 | 98 | subsection {* Mapping functions *}
 | 
| 99 | ||
| 100 | definition map_fun :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd" where
 | |
| 101 | "map_fun f g h = g \<circ> h \<circ> f" | |
| 102 | ||
| 103 | lemma map_fun_apply [simp]: | |
| 104 | "map_fun f g h x = g (h (f x))" | |
| 105 | by (simp add: map_fun_def) | |
| 106 | ||
| 107 | ||
| 40702 | 108 | subsection {* Injectivity and Bijectivity *}
 | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 109 | |
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 110 | definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool" where -- "injective"
 | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 111 | "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)" | 
| 26147 | 112 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 113 | definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool" where -- "bijective"
 | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 114 | "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B" | 
| 26147 | 115 | |
| 40702 | 116 | text{*A common special case: functions injective, surjective or bijective over
 | 
| 117 | the entire domain type.*} | |
| 26147 | 118 | |
| 119 | abbreviation | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 120 | "inj f \<equiv> inj_on f UNIV" | 
| 26147 | 121 | |
| 40702 | 122 | abbreviation surj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool" where -- "surjective"
 | 
| 123 | "surj f \<equiv> (range f = UNIV)" | |
| 13585 | 124 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 125 | abbreviation | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 126 | "bij f \<equiv> bij_betw f UNIV UNIV" | 
| 26147 | 127 | |
| 43705 
8e421a529a48
added translation to fix critical pair between abbreviations for surj and ~=
 nipkow parents: 
42903diff
changeset | 128 | text{* The negated case: *}
 | 
| 
8e421a529a48
added translation to fix critical pair between abbreviations for surj and ~=
 nipkow parents: 
42903diff
changeset | 129 | translations | 
| 
8e421a529a48
added translation to fix critical pair between abbreviations for surj and ~=
 nipkow parents: 
42903diff
changeset | 130 | "\<not> CONST surj f" <= "CONST range f \<noteq> CONST UNIV" | 
| 
8e421a529a48
added translation to fix critical pair between abbreviations for surj and ~=
 nipkow parents: 
42903diff
changeset | 131 | |
| 26147 | 132 | lemma injI: | 
| 133 | assumes "\<And>x y. f x = f y \<Longrightarrow> x = y" | |
| 134 | shows "inj f" | |
| 135 | using assms unfolding inj_on_def by auto | |
| 13585 | 136 | |
| 13637 | 137 | theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)" | 
| 138 | by (unfold inj_on_def, blast) | |
| 139 | ||
| 13585 | 140 | lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y" | 
| 141 | by (simp add: inj_on_def) | |
| 142 | ||
| 32988 | 143 | lemma inj_on_eq_iff: "inj_on f A ==> x:A ==> y:A ==> (f(x) = f(y)) = (x=y)" | 
| 13585 | 144 | by (force simp add: inj_on_def) | 
| 145 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 146 | lemma inj_on_cong: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 147 | "(\<And> a. a : A \<Longrightarrow> f a = g a) \<Longrightarrow> inj_on f A = inj_on g A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 148 | unfolding inj_on_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 149 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 150 | lemma inj_on_strict_subset: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 151 | "\<lbrakk> inj_on f B; A < B \<rbrakk> \<Longrightarrow> f`A < f`B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 152 | unfolding inj_on_def unfolding image_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 153 | |
| 38620 | 154 | lemma inj_comp: | 
| 155 | "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (f \<circ> g)" | |
| 156 | by (simp add: inj_on_def) | |
| 157 | ||
| 158 | lemma inj_fun: "inj f \<Longrightarrow> inj (\<lambda>x y. f x)" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39213diff
changeset | 159 | by (simp add: inj_on_def fun_eq_iff) | 
| 38620 | 160 | |
| 32988 | 161 | lemma inj_eq: "inj f ==> (f(x) = f(y)) = (x=y)" | 
| 162 | by (simp add: inj_on_eq_iff) | |
| 163 | ||
| 26147 | 164 | lemma inj_on_id[simp]: "inj_on id A" | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 165 | by (simp add: inj_on_def) | 
| 13585 | 166 | |
| 26147 | 167 | lemma inj_on_id2[simp]: "inj_on (%x. x) A" | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 168 | by (simp add: inj_on_def) | 
| 26147 | 169 | |
| 46586 | 170 | lemma inj_on_Int: "inj_on f A \<or> inj_on f B \<Longrightarrow> inj_on f (A \<inter> B)" | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 171 | unfolding inj_on_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 172 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 173 | lemma inj_on_INTER: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 174 |   "\<lbrakk>I \<noteq> {}; \<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)\<rbrakk> \<Longrightarrow> inj_on f (\<Inter> i \<in> I. A i)"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 175 | unfolding inj_on_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 176 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 177 | lemma inj_on_Inter: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 178 |   "\<lbrakk>S \<noteq> {}; \<And> A. A \<in> S \<Longrightarrow> inj_on f A\<rbrakk> \<Longrightarrow> inj_on f (Inter S)"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 179 | unfolding inj_on_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 180 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 181 | lemma inj_on_UNION_chain: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 182 | assumes CH: "\<And> i j. \<lbrakk>i \<in> I; j \<in> I\<rbrakk> \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 183 | INJ: "\<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 184 | shows "inj_on f (\<Union> i \<in> I. A i)" | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44921diff
changeset | 185 | proof(unfold inj_on_def UNION_eq, auto) | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 186 | fix i j x y | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 187 | assume *: "i \<in> I" "j \<in> I" and **: "x \<in> A i" "y \<in> A j" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 188 | and ***: "f x = f y" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 189 | show "x = y" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 190 | proof- | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 191 |     {assume "A i \<le> A j"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 192 | with ** have "x \<in> A j" by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 193 | with INJ * ** *** have ?thesis | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 194 | by(auto simp add: inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 195 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 196 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 197 |     {assume "A j \<le> A i"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 198 | with ** have "y \<in> A i" by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 199 | with INJ * ** *** have ?thesis | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 200 | by(auto simp add: inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 201 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 202 | ultimately show ?thesis using CH * by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 203 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 204 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 205 | |
| 40702 | 206 | lemma surj_id: "surj id" | 
| 207 | by simp | |
| 26147 | 208 | |
| 39101 
606432dd1896
Revert bij_betw changes to simp set (Problem in afp/Ordinals_and_Cardinals)
 hoelzl parents: 
39076diff
changeset | 209 | lemma bij_id[simp]: "bij id" | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 210 | by (simp add: bij_betw_def) | 
| 13585 | 211 | |
| 212 | lemma inj_onI: | |
| 213 | "(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A" | |
| 214 | by (simp add: inj_on_def) | |
| 215 | ||
| 216 | lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A" | |
| 217 | by (auto dest: arg_cong [of concl: g] simp add: inj_on_def) | |
| 218 | ||
| 219 | lemma inj_onD: "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y" | |
| 220 | by (unfold inj_on_def, blast) | |
| 221 | ||
| 222 | lemma inj_on_iff: "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)" | |
| 223 | by (blast dest!: inj_onD) | |
| 224 | ||
| 225 | lemma comp_inj_on: | |
| 226 | "[| inj_on f A; inj_on g (f`A) |] ==> inj_on (g o f) A" | |
| 227 | by (simp add: comp_def inj_on_def) | |
| 228 | ||
| 15303 | 229 | lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)" | 
| 230 | apply(simp add:inj_on_def image_def) | |
| 231 | apply blast | |
| 232 | done | |
| 233 | ||
| 15439 | 234 | lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y); | 
| 235 | inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A" | |
| 236 | apply(unfold inj_on_def) | |
| 237 | apply blast | |
| 238 | done | |
| 239 | ||
| 13585 | 240 | lemma inj_on_contraD: "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)" | 
| 241 | by (unfold inj_on_def, blast) | |
| 12258 | 242 | |
| 13585 | 243 | lemma inj_singleton: "inj (%s. {s})"
 | 
| 244 | by (simp add: inj_on_def) | |
| 245 | ||
| 15111 | 246 | lemma inj_on_empty[iff]: "inj_on f {}"
 | 
| 247 | by(simp add: inj_on_def) | |
| 248 | ||
| 15303 | 249 | lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A" | 
| 13585 | 250 | by (unfold inj_on_def, blast) | 
| 251 | ||
| 15111 | 252 | lemma inj_on_Un: | 
| 253 | "inj_on f (A Un B) = | |
| 254 |   (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
 | |
| 255 | apply(unfold inj_on_def) | |
| 256 | apply (blast intro:sym) | |
| 257 | done | |
| 258 | ||
| 259 | lemma inj_on_insert[iff]: | |
| 260 |   "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
 | |
| 261 | apply(unfold inj_on_def) | |
| 262 | apply (blast intro:sym) | |
| 263 | done | |
| 264 | ||
| 265 | lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)" | |
| 266 | apply(unfold inj_on_def) | |
| 267 | apply (blast) | |
| 268 | done | |
| 269 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 270 | lemma comp_inj_on_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 271 | "inj_on f A \<Longrightarrow> inj_on f' (f ` A) \<longleftrightarrow> inj_on (f' o f) A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 272 | by(auto simp add: comp_inj_on inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 273 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 274 | lemma inj_on_imageI2: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 275 | "inj_on (f' o f) A \<Longrightarrow> inj_on f A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 276 | by(auto simp add: comp_inj_on inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 277 | |
| 40702 | 278 | lemma surj_def: "surj f \<longleftrightarrow> (\<forall>y. \<exists>x. y = f x)" | 
| 279 | by auto | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 280 | |
| 40702 | 281 | lemma surjI: assumes *: "\<And> x. g (f x) = x" shows "surj g" | 
| 282 | using *[symmetric] by auto | |
| 13585 | 283 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 284 | lemma surjD: "surj f \<Longrightarrow> \<exists>x. y = f x" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 285 | by (simp add: surj_def) | 
| 13585 | 286 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 287 | lemma surjE: "surj f \<Longrightarrow> (\<And>x. y = f x \<Longrightarrow> C) \<Longrightarrow> C" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 288 | by (simp add: surj_def, blast) | 
| 13585 | 289 | |
| 290 | lemma comp_surj: "[| surj f; surj g |] ==> surj (g o f)" | |
| 291 | apply (simp add: comp_def surj_def, clarify) | |
| 292 | apply (drule_tac x = y in spec, clarify) | |
| 293 | apply (drule_tac x = x in spec, blast) | |
| 294 | done | |
| 295 | ||
| 39074 | 296 | lemma bij_betw_imp_surj: "bij_betw f A UNIV \<Longrightarrow> surj f" | 
| 40702 | 297 | unfolding bij_betw_def by auto | 
| 39074 | 298 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 299 | lemma bij_betw_empty1: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 300 |   assumes "bij_betw f {} A"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 301 |   shows "A = {}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 302 | using assms unfolding bij_betw_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 303 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 304 | lemma bij_betw_empty2: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 305 |   assumes "bij_betw f A {}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 306 |   shows "A = {}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 307 | using assms unfolding bij_betw_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 308 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 309 | lemma inj_on_imp_bij_betw: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 310 | "inj_on f A \<Longrightarrow> bij_betw f A (f ` A)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 311 | unfolding bij_betw_def by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 312 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 313 | lemma bij_def: "bij f \<longleftrightarrow> inj f \<and> surj f" | 
| 40702 | 314 | unfolding bij_betw_def .. | 
| 39074 | 315 | |
| 13585 | 316 | lemma bijI: "[| inj f; surj f |] ==> bij f" | 
| 317 | by (simp add: bij_def) | |
| 318 | ||
| 319 | lemma bij_is_inj: "bij f ==> inj f" | |
| 320 | by (simp add: bij_def) | |
| 321 | ||
| 322 | lemma bij_is_surj: "bij f ==> surj f" | |
| 323 | by (simp add: bij_def) | |
| 324 | ||
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 325 | lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 326 | by (simp add: bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 327 | |
| 31438 | 328 | lemma bij_betw_trans: | 
| 329 | "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g o f) A C" | |
| 330 | by(auto simp add:bij_betw_def comp_inj_on) | |
| 331 | ||
| 40702 | 332 | lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g o f)" | 
| 333 | by (rule bij_betw_trans) | |
| 334 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 335 | lemma bij_betw_comp_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 336 | "bij_betw f A A' \<Longrightarrow> bij_betw f' A' A'' \<longleftrightarrow> bij_betw (f' o f) A A''" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 337 | by(auto simp add: bij_betw_def inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 338 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 339 | lemma bij_betw_comp_iff2: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 340 | assumes BIJ: "bij_betw f' A' A''" and IM: "f ` A \<le> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 341 | shows "bij_betw f A A' \<longleftrightarrow> bij_betw (f' o f) A A''" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 342 | using assms | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 343 | proof(auto simp add: bij_betw_comp_iff) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 344 | assume *: "bij_betw (f' \<circ> f) A A''" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 345 | thus "bij_betw f A A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 346 | using IM | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 347 | proof(auto simp add: bij_betw_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 348 | assume "inj_on (f' \<circ> f) A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 349 | thus "inj_on f A" using inj_on_imageI2 by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 350 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 351 | fix a' assume **: "a' \<in> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 352 | hence "f' a' \<in> A''" using BIJ unfolding bij_betw_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 353 | then obtain a where 1: "a \<in> A \<and> f'(f a) = f' a'" using * | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 354 | unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 355 | hence "f a \<in> A'" using IM by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 356 | hence "f a = a'" using BIJ ** 1 unfolding bij_betw_def inj_on_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 357 | thus "a' \<in> f ` A" using 1 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 358 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 359 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 360 | |
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 361 | lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 362 | proof - | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 363 | have i: "inj_on f A" and s: "f ` A = B" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 364 | using assms by(auto simp:bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 365 | let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 366 |   { fix a b assume P: "?P b a"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 367 | hence ex1: "\<exists>a. ?P b a" using s unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 368 | hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i]) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 369 | hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 370 | } note g = this | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 371 | have "inj_on ?g B" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 372 | proof(rule inj_onI) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 373 | fix x y assume "x:B" "y:B" "?g x = ?g y" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 374 | from s `x:B` obtain a1 where a1: "?P x a1" unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 375 | from s `y:B` obtain a2 where a2: "?P y a2" unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 376 | from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 377 | qed | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 378 | moreover have "?g ` B = A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 379 | proof(auto simp:image_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 380 | fix b assume "b:B" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 381 | with s obtain a where P: "?P b a" unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 382 | thus "?g b \<in> A" using g[OF P] by auto | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 383 | next | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 384 | fix a assume "a:A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 385 | then obtain b where P: "?P b a" using s unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 386 | then have "b:B" using s unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 387 | with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 388 | qed | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 389 | ultimately show ?thesis by(auto simp:bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 390 | qed | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 391 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 392 | lemma bij_betw_cong: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 393 | "(\<And> a. a \<in> A \<Longrightarrow> f a = g a) \<Longrightarrow> bij_betw f A A' = bij_betw g A A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 394 | unfolding bij_betw_def inj_on_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 395 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 396 | lemma bij_betw_id[intro, simp]: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 397 | "bij_betw id A A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 398 | unfolding bij_betw_def id_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 399 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 400 | lemma bij_betw_id_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 401 | "bij_betw id A B \<longleftrightarrow> A = B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 402 | by(auto simp add: bij_betw_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 403 | |
| 39075 | 404 | lemma bij_betw_combine: | 
| 405 |   assumes "bij_betw f A B" "bij_betw f C D" "B \<inter> D = {}"
 | |
| 406 | shows "bij_betw f (A \<union> C) (B \<union> D)" | |
| 407 | using assms unfolding bij_betw_def inj_on_Un image_Un by auto | |
| 408 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 409 | lemma bij_betw_UNION_chain: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 410 | assumes CH: "\<And> i j. \<lbrakk>i \<in> I; j \<in> I\<rbrakk> \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 411 | BIJ: "\<And> i. i \<in> I \<Longrightarrow> bij_betw f (A i) (A' i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 412 | shows "bij_betw f (\<Union> i \<in> I. A i) (\<Union> i \<in> I. A' i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 413 | proof(unfold bij_betw_def, auto simp add: image_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 414 | have "\<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 415 | using BIJ bij_betw_def[of f] by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 416 | thus "inj_on f (\<Union> i \<in> I. A i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 417 | using CH inj_on_UNION_chain[of I A f] by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 418 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 419 | fix i x | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 420 | assume *: "i \<in> I" "x \<in> A i" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 421 | hence "f x \<in> A' i" using BIJ bij_betw_def[of f] by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 422 | thus "\<exists>j \<in> I. f x \<in> A' j" using * by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 423 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 424 | fix i x' | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 425 | assume *: "i \<in> I" "x' \<in> A' i" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 426 | hence "\<exists>x \<in> A i. x' = f x" using BIJ bij_betw_def[of f] by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 427 | thus "\<exists>j \<in> I. \<exists>x \<in> A j. x' = f x" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 428 | using * by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 429 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 430 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 431 | lemma bij_betw_subset: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 432 | assumes BIJ: "bij_betw f A A'" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 433 | SUB: "B \<le> A" and IM: "f ` B = B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 434 | shows "bij_betw f B B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 435 | using assms | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 436 | by(unfold bij_betw_def inj_on_def, auto simp add: inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 437 | |
| 13585 | 438 | lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A" | 
| 40702 | 439 | by simp | 
| 13585 | 440 | |
| 42903 | 441 | lemma surj_vimage_empty: | 
| 442 |   assumes "surj f" shows "f -` A = {} \<longleftrightarrow> A = {}"
 | |
| 443 | using surj_image_vimage_eq[OF `surj f`, of A] | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44860diff
changeset | 444 | by (intro iffI) fastforce+ | 
| 42903 | 445 | |
| 13585 | 446 | lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A" | 
| 447 | by (simp add: inj_on_def, blast) | |
| 448 | ||
| 449 | lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A" | |
| 40702 | 450 | by (blast intro: sym) | 
| 13585 | 451 | |
| 452 | lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A" | |
| 453 | by (unfold inj_on_def, blast) | |
| 454 | ||
| 455 | lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)" | |
| 456 | apply (unfold bij_def) | |
| 457 | apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD) | |
| 458 | done | |
| 459 | ||
| 31438 | 460 | lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B" | 
| 461 | by(blast dest: inj_onD) | |
| 462 | ||
| 13585 | 463 | lemma inj_on_image_Int: | 
| 464 | "[| inj_on f C; A<=C; B<=C |] ==> f`(A Int B) = f`A Int f`B" | |
| 465 | apply (simp add: inj_on_def, blast) | |
| 466 | done | |
| 467 | ||
| 468 | lemma inj_on_image_set_diff: | |
| 469 | "[| inj_on f C; A<=C; B<=C |] ==> f`(A-B) = f`A - f`B" | |
| 470 | apply (simp add: inj_on_def, blast) | |
| 471 | done | |
| 472 | ||
| 473 | lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B" | |
| 474 | by (simp add: inj_on_def, blast) | |
| 475 | ||
| 476 | lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B" | |
| 477 | by (simp add: inj_on_def, blast) | |
| 478 | ||
| 479 | lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)" | |
| 480 | by (blast dest: injD) | |
| 481 | ||
| 482 | lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)" | |
| 483 | by (simp add: inj_on_def, blast) | |
| 484 | ||
| 485 | lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)" | |
| 486 | by (blast dest: injD) | |
| 487 | ||
| 488 | (*injectivity's required. Left-to-right inclusion holds even if A is empty*) | |
| 489 | lemma image_INT: | |
| 490 | "[| inj_on f C; ALL x:A. B x <= C; j:A |] | |
| 491 | ==> f ` (INTER A B) = (INT x:A. f ` B x)" | |
| 492 | apply (simp add: inj_on_def, blast) | |
| 493 | done | |
| 494 | ||
| 495 | (*Compare with image_INT: no use of inj_on, and if f is surjective then | |
| 496 | it doesn't matter whether A is empty*) | |
| 497 | lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)" | |
| 498 | apply (simp add: bij_def) | |
| 499 | apply (simp add: inj_on_def surj_def, blast) | |
| 500 | done | |
| 501 | ||
| 502 | lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)" | |
| 40702 | 503 | by auto | 
| 13585 | 504 | |
| 505 | lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)" | |
| 506 | by (auto simp add: inj_on_def) | |
| 5852 | 507 | |
| 13585 | 508 | lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)" | 
| 509 | apply (simp add: bij_def) | |
| 510 | apply (rule equalityI) | |
| 511 | apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset) | |
| 512 | done | |
| 513 | ||
| 41657 | 514 | lemma inj_vimage_singleton: "inj f \<Longrightarrow> f -` {a} \<subseteq> {THE x. f x = a}"
 | 
| 515 |   -- {* The inverse image of a singleton under an injective function
 | |
| 516 | is included in a singleton. *} | |
| 517 | apply (auto simp add: inj_on_def) | |
| 518 | apply (blast intro: the_equality [symmetric]) | |
| 519 | done | |
| 520 | ||
| 43991 | 521 | lemma inj_on_vimage_singleton: | 
| 522 |   "inj_on f A \<Longrightarrow> f -` {a} \<inter> A \<subseteq> {THE x. x \<in> A \<and> f x = a}"
 | |
| 523 | by (auto simp add: inj_on_def intro: the_equality [symmetric]) | |
| 524 | ||
| 35584 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 hoelzl parents: 
35580diff
changeset | 525 | lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A" | 
| 35580 | 526 | by (auto intro!: inj_onI) | 
| 13585 | 527 | |
| 35584 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 hoelzl parents: 
35580diff
changeset | 528 | lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \<Longrightarrow> inj_on f A" | 
| 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 hoelzl parents: 
35580diff
changeset | 529 | by (auto intro!: inj_onI dest: strict_mono_eq) | 
| 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 hoelzl parents: 
35580diff
changeset | 530 | |
| 41657 | 531 | |
| 13585 | 532 | subsection{*Function Updating*}
 | 
| 533 | ||
| 44277 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 534 | definition fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" where
 | 
| 26147 | 535 | "fun_upd f a b == % x. if x=a then b else f x" | 
| 536 | ||
| 41229 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 wenzelm parents: 
40969diff
changeset | 537 | nonterminal updbinds and updbind | 
| 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 wenzelm parents: 
40969diff
changeset | 538 | |
| 26147 | 539 | syntax | 
| 540 |   "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
 | |
| 541 |   ""         :: "updbind => updbinds"             ("_")
 | |
| 542 |   "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
 | |
| 35115 | 543 |   "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000, 0] 900)
 | 
| 26147 | 544 | |
| 545 | translations | |
| 35115 | 546 | "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs" | 
| 547 | "f(x:=y)" == "CONST fun_upd f x y" | |
| 26147 | 548 | |
| 549 | (* Hint: to define the sum of two functions (or maps), use sum_case. | |
| 550 | A nice infix syntax could be defined (in Datatype.thy or below) by | |
| 35115 | 551 | notation | 
| 552 | sum_case (infixr "'(+')"80) | |
| 26147 | 553 | *) | 
| 554 | ||
| 13585 | 555 | lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)" | 
| 556 | apply (simp add: fun_upd_def, safe) | |
| 557 | apply (erule subst) | |
| 558 | apply (rule_tac [2] ext, auto) | |
| 559 | done | |
| 560 | ||
| 45603 | 561 | lemma fun_upd_idem: "f x = y ==> f(x:=y) = f" | 
| 562 | by (simp only: fun_upd_idem_iff) | |
| 13585 | 563 | |
| 45603 | 564 | lemma fun_upd_triv [iff]: "f(x := f x) = f" | 
| 565 | by (simp only: fun_upd_idem) | |
| 13585 | 566 | |
| 567 | lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)" | |
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
16973diff
changeset | 568 | by (simp add: fun_upd_def) | 
| 13585 | 569 | |
| 570 | (* fun_upd_apply supersedes these two, but they are useful | |
| 571 | if fun_upd_apply is intentionally removed from the simpset *) | |
| 572 | lemma fun_upd_same: "(f(x:=y)) x = y" | |
| 573 | by simp | |
| 574 | ||
| 575 | lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z" | |
| 576 | by simp | |
| 577 | ||
| 578 | lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39213diff
changeset | 579 | by (simp add: fun_eq_iff) | 
| 13585 | 580 | |
| 581 | lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)" | |
| 582 | by (rule ext, auto) | |
| 583 | ||
| 15303 | 584 | lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44860diff
changeset | 585 | by (fastforce simp:inj_on_def image_def) | 
| 15303 | 586 | |
| 15510 | 587 | lemma fun_upd_image: | 
| 588 |      "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
 | |
| 589 | by auto | |
| 590 | ||
| 31080 | 591 | lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)" | 
| 44921 | 592 | by auto | 
| 31080 | 593 | |
| 44744 | 594 | lemma UNION_fun_upd: | 
| 595 |   "UNION J (A(i:=B)) = (UNION (J-{i}) A \<union> (if i\<in>J then B else {}))"
 | |
| 596 | by (auto split: if_splits) | |
| 597 | ||
| 26147 | 598 | |
| 599 | subsection {* @{text override_on} *}
 | |
| 600 | ||
| 44277 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 601 | definition override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b" where
 | 
| 26147 | 602 | "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)" | 
| 13910 | 603 | |
| 15691 | 604 | lemma override_on_emptyset[simp]: "override_on f g {} = f"
 | 
| 605 | by(simp add:override_on_def) | |
| 13910 | 606 | |
| 15691 | 607 | lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a" | 
| 608 | by(simp add:override_on_def) | |
| 13910 | 609 | |
| 15691 | 610 | lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a" | 
| 611 | by(simp add:override_on_def) | |
| 13910 | 612 | |
| 26147 | 613 | |
| 614 | subsection {* @{text swap} *}
 | |
| 15510 | 615 | |
| 44277 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 616 | definition swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)" where
 | 
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 617 | "swap a b f = f (a := f b, b:= f a)" | 
| 15510 | 618 | |
| 34101 | 619 | lemma swap_self [simp]: "swap a a f = f" | 
| 15691 | 620 | by (simp add: swap_def) | 
| 15510 | 621 | |
| 622 | lemma swap_commute: "swap a b f = swap b a f" | |
| 623 | by (rule ext, simp add: fun_upd_def swap_def) | |
| 624 | ||
| 625 | lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f" | |
| 626 | by (rule ext, simp add: fun_upd_def swap_def) | |
| 627 | ||
| 34145 | 628 | lemma swap_triple: | 
| 629 | assumes "a \<noteq> c" and "b \<noteq> c" | |
| 630 | shows "swap a b (swap b c (swap a b f)) = swap a c f" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39213diff
changeset | 631 | using assms by (simp add: fun_eq_iff swap_def) | 
| 34145 | 632 | |
| 34101 | 633 | lemma comp_swap: "f \<circ> swap a b g = swap a b (f \<circ> g)" | 
| 634 | by (rule ext, simp add: fun_upd_def swap_def) | |
| 635 | ||
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 636 | lemma swap_image_eq [simp]: | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 637 | assumes "a \<in> A" "b \<in> A" shows "swap a b f ` A = f ` A" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 638 | proof - | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 639 | have subset: "\<And>f. swap a b f ` A \<subseteq> f ` A" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 640 | using assms by (auto simp: image_iff swap_def) | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 641 | then have "swap a b (swap a b f) ` A \<subseteq> (swap a b f) ` A" . | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 642 | with subset[of f] show ?thesis by auto | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 643 | qed | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 644 | |
| 15510 | 645 | lemma inj_on_imp_inj_on_swap: | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 646 | "\<lbrakk>inj_on f A; a \<in> A; b \<in> A\<rbrakk> \<Longrightarrow> inj_on (swap a b f) A" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 647 | by (simp add: inj_on_def swap_def, blast) | 
| 15510 | 648 | |
| 649 | lemma inj_on_swap_iff [simp]: | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 650 | assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A \<longleftrightarrow> inj_on f A" | 
| 39075 | 651 | proof | 
| 15510 | 652 | assume "inj_on (swap a b f) A" | 
| 39075 | 653 | with A have "inj_on (swap a b (swap a b f)) A" | 
| 654 | by (iprover intro: inj_on_imp_inj_on_swap) | |
| 655 | thus "inj_on f A" by simp | |
| 15510 | 656 | next | 
| 657 | assume "inj_on f A" | |
| 34209 | 658 | with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap) | 
| 15510 | 659 | qed | 
| 660 | ||
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 661 | lemma surj_imp_surj_swap: "surj f \<Longrightarrow> surj (swap a b f)" | 
| 40702 | 662 | by simp | 
| 15510 | 663 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 664 | lemma surj_swap_iff [simp]: "surj (swap a b f) \<longleftrightarrow> surj f" | 
| 40702 | 665 | by simp | 
| 21547 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21327diff
changeset | 666 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 667 | lemma bij_betw_swap_iff [simp]: | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 668 | "\<lbrakk> x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> bij_betw (swap x y f) A B \<longleftrightarrow> bij_betw f A B" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 669 | by (auto simp: bij_betw_def) | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 670 | |
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 671 | lemma bij_swap_iff [simp]: "bij (swap a b f) \<longleftrightarrow> bij f" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 672 | by simp | 
| 39075 | 673 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35584diff
changeset | 674 | hide_const (open) swap | 
| 21547 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21327diff
changeset | 675 | |
| 31949 | 676 | subsection {* Inversion of injective functions *}
 | 
| 677 | ||
| 33057 | 678 | definition the_inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
 | 
| 44277 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 679 | "the_inv_into A f == %x. THE y. y : A & f y = x" | 
| 32961 | 680 | |
| 33057 | 681 | lemma the_inv_into_f_f: | 
| 682 | "[| inj_on f A; x : A |] ==> the_inv_into A f (f x) = x" | |
| 683 | apply (simp add: the_inv_into_def inj_on_def) | |
| 34209 | 684 | apply blast | 
| 32961 | 685 | done | 
| 686 | ||
| 33057 | 687 | lemma f_the_inv_into_f: | 
| 688 | "inj_on f A ==> y : f`A ==> f (the_inv_into A f y) = y" | |
| 689 | apply (simp add: the_inv_into_def) | |
| 32961 | 690 | apply (rule the1I2) | 
| 691 | apply(blast dest: inj_onD) | |
| 692 | apply blast | |
| 693 | done | |
| 694 | ||
| 33057 | 695 | lemma the_inv_into_into: | 
| 696 | "[| inj_on f A; x : f ` A; A <= B |] ==> the_inv_into A f x : B" | |
| 697 | apply (simp add: the_inv_into_def) | |
| 32961 | 698 | apply (rule the1I2) | 
| 699 | apply(blast dest: inj_onD) | |
| 700 | apply blast | |
| 701 | done | |
| 702 | ||
| 33057 | 703 | lemma the_inv_into_onto[simp]: | 
| 704 | "inj_on f A ==> the_inv_into A f ` (f ` A) = A" | |
| 705 | by (fast intro:the_inv_into_into the_inv_into_f_f[symmetric]) | |
| 32961 | 706 | |
| 33057 | 707 | lemma the_inv_into_f_eq: | 
| 708 | "[| inj_on f A; f x = y; x : A |] ==> the_inv_into A f y = x" | |
| 32961 | 709 | apply (erule subst) | 
| 33057 | 710 | apply (erule the_inv_into_f_f, assumption) | 
| 32961 | 711 | done | 
| 712 | ||
| 33057 | 713 | lemma the_inv_into_comp: | 
| 32961 | 714 | "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==> | 
| 33057 | 715 | the_inv_into A (f o g) x = (the_inv_into A g o the_inv_into (g ` A) f) x" | 
| 716 | apply (rule the_inv_into_f_eq) | |
| 32961 | 717 | apply (fast intro: comp_inj_on) | 
| 33057 | 718 | apply (simp add: f_the_inv_into_f the_inv_into_into) | 
| 719 | apply (simp add: the_inv_into_into) | |
| 32961 | 720 | done | 
| 721 | ||
| 33057 | 722 | lemma inj_on_the_inv_into: | 
| 723 | "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)" | |
| 724 | by (auto intro: inj_onI simp: image_def the_inv_into_f_f) | |
| 32961 | 725 | |
| 33057 | 726 | lemma bij_betw_the_inv_into: | 
| 727 | "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A" | |
| 728 | by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into) | |
| 32961 | 729 | |
| 32998 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 730 | abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
 | 
| 33057 | 731 | "the_inv f \<equiv> the_inv_into UNIV f" | 
| 32998 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 732 | |
| 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 733 | lemma the_inv_f_f: | 
| 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 734 | assumes "inj f" | 
| 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 735 | shows "the_inv f (f x) = x" using assms UNIV_I | 
| 33057 | 736 | by (rule the_inv_into_f_f) | 
| 32998 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 737 | |
| 44277 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 738 | |
| 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 739 | text{*compatibility*}
 | 
| 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 740 | lemmas o_def = comp_def | 
| 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 741 | |
| 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
43991diff
changeset | 742 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 743 | subsection {* Cantor's Paradox *}
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 744 | |
| 42238 | 745 | lemma Cantors_paradox [no_atp]: | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 746 | "\<not>(\<exists>f. f ` A = Pow A)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 747 | proof clarify | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 748 | fix f assume "f ` A = Pow A" hence *: "Pow A \<le> f ` A" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 749 |   let ?X = "{a \<in> A. a \<notin> f a}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 750 | have "?X \<in> Pow A" unfolding Pow_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 751 | with * obtain x where "x \<in> A \<and> f x = ?X" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 752 | thus False by best | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 753 | qed | 
| 31949 | 754 | |
| 40969 | 755 | subsection {* Setup *} 
 | 
| 756 | ||
| 757 | subsubsection {* Proof tools *}
 | |
| 22845 | 758 | |
| 759 | text {* simplifies terms of the form
 | |
| 760 | f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *} | |
| 761 | ||
| 24017 | 762 | simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ =>
 | 
| 22845 | 763 | let | 
| 764 | fun gen_fun_upd NONE T _ _ = NONE | |
| 24017 | 765 |     | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
 | 
| 22845 | 766 | fun dest_fun_T1 (Type (_, T :: Ts)) = T | 
| 767 |   fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
 | |
| 768 | let | |
| 769 |       fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
 | |
| 770 | if v aconv x then SOME g else gen_fun_upd (find g) T v w | |
| 771 | | find t = NONE | |
| 772 | in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end | |
| 24017 | 773 | |
| 774 | fun proc ss ct = | |
| 775 | let | |
| 776 | val ctxt = Simplifier.the_context ss | |
| 777 | val t = Thm.term_of ct | |
| 778 | in | |
| 779 | case find_double t of | |
| 780 | (T, NONE) => NONE | |
| 781 | | (T, SOME rhs) => | |
| 27330 | 782 | SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs)) | 
| 24017 | 783 | (fn _ => | 
| 784 | rtac eq_reflection 1 THEN | |
| 785 | rtac ext 1 THEN | |
| 786 |               simp_tac (Simplifier.inherit_context ss @{simpset}) 1))
 | |
| 787 | end | |
| 788 | in proc end | |
| 22845 | 789 | *} | 
| 790 | ||
| 791 | ||
| 40969 | 792 | subsubsection {* Code generator *}
 | 
| 21870 | 793 | |
| 794 | code_const "op \<circ>" | |
| 795 | (SML infixl 5 "o") | |
| 796 | (Haskell infixr 9 ".") | |
| 797 | ||
| 21906 | 798 | code_const "id" | 
| 799 | (Haskell "id") | |
| 800 | ||
| 40969 | 801 | |
| 802 | subsubsection {* Functorial structure of types *}
 | |
| 803 | ||
| 41505 
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
 haftmann parents: 
41229diff
changeset | 804 | use "Tools/enriched_type.ML" | 
| 40969 | 805 | |
| 47488 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 haftmann parents: 
46950diff
changeset | 806 | enriched_type map_fun: map_fun | 
| 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 haftmann parents: 
46950diff
changeset | 807 | by (simp_all add: fun_eq_iff) | 
| 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 haftmann parents: 
46950diff
changeset | 808 | |
| 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 haftmann parents: 
46950diff
changeset | 809 | enriched_type vimage | 
| 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 haftmann parents: 
46950diff
changeset | 810 | by (simp_all add: fun_eq_iff vimage_compose) | 
| 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 haftmann parents: 
46950diff
changeset | 811 | |
| 2912 | 812 | end | 
| 47488 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 haftmann parents: 
46950diff
changeset | 813 |