| author | wenzelm | 
| Sat, 10 Jan 2015 11:48:52 +0100 | |
| changeset 59337 | 6adaa4a17cfb | 
| parent 58880 | 0baae4311a9f | 
| child 59659 | 1ce77bca58f8 | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Universal.thy | 
| 27411 | 2 | Author: Brian Huffman | 
| 3 | *) | |
| 4 | ||
| 58880 | 5 | section {* A universal bifinite domain *}
 | 
| 35794 | 6 | |
| 27411 | 7 | theory Universal | 
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
41394diff
changeset | 8 | imports Bifinite Completion "~~/src/HOL/Library/Nat_Bijection" | 
| 27411 | 9 | begin | 
| 10 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 11 | subsection {* Basis for universal domain *}
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 12 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 13 | subsubsection {* Basis datatype *}
 | 
| 27411 | 14 | |
| 41295 | 15 | type_synonym ubasis = nat | 
| 27411 | 16 | |
| 17 | definition | |
| 18 | node :: "nat \<Rightarrow> ubasis \<Rightarrow> ubasis set \<Rightarrow> ubasis" | |
| 19 | where | |
| 35701 | 20 | "node i a S = Suc (prod_encode (i, prod_encode (a, set_encode S)))" | 
| 27411 | 21 | |
| 30505 | 22 | lemma node_not_0 [simp]: "node i a S \<noteq> 0" | 
| 27411 | 23 | unfolding node_def by simp | 
| 24 | ||
| 30505 | 25 | lemma node_gt_0 [simp]: "0 < node i a S" | 
| 27411 | 26 | unfolding node_def by simp | 
| 27 | ||
| 28 | lemma node_inject [simp]: | |
| 30505 | 29 | "\<lbrakk>finite S; finite T\<rbrakk> | 
| 30 | \<Longrightarrow> node i a S = node j b T \<longleftrightarrow> i = j \<and> a = b \<and> S = T" | |
| 35701 | 31 | unfolding node_def by (simp add: prod_encode_eq set_encode_eq) | 
| 27411 | 32 | |
| 30505 | 33 | lemma node_gt0: "i < node i a S" | 
| 27411 | 34 | unfolding node_def less_Suc_eq_le | 
| 35701 | 35 | by (rule le_prod_encode_1) | 
| 27411 | 36 | |
| 30505 | 37 | lemma node_gt1: "a < node i a S" | 
| 27411 | 38 | unfolding node_def less_Suc_eq_le | 
| 35701 | 39 | by (rule order_trans [OF le_prod_encode_1 le_prod_encode_2]) | 
| 27411 | 40 | |
| 41 | lemma nat_less_power2: "n < 2^n" | |
| 42 | by (induct n) simp_all | |
| 43 | ||
| 30505 | 44 | lemma node_gt2: "\<lbrakk>finite S; b \<in> S\<rbrakk> \<Longrightarrow> b < node i a S" | 
| 35701 | 45 | unfolding node_def less_Suc_eq_le set_encode_def | 
| 46 | apply (rule order_trans [OF _ le_prod_encode_2]) | |
| 47 | apply (rule order_trans [OF _ le_prod_encode_2]) | |
| 30505 | 48 | apply (rule order_trans [where y="setsum (op ^ 2) {b}"])
 | 
| 27411 | 49 | apply (simp add: nat_less_power2 [THEN order_less_imp_le]) | 
| 50 | apply (erule setsum_mono2, simp, simp) | |
| 51 | done | |
| 52 | ||
| 35701 | 53 | lemma eq_prod_encode_pairI: | 
| 54 | "\<lbrakk>fst (prod_decode x) = a; snd (prod_decode x) = b\<rbrakk> \<Longrightarrow> x = prod_encode (a, b)" | |
| 27411 | 55 | by (erule subst, erule subst, simp) | 
| 56 | ||
| 57 | lemma node_cases: | |
| 58 | assumes 1: "x = 0 \<Longrightarrow> P" | |
| 30505 | 59 | assumes 2: "\<And>i a S. \<lbrakk>finite S; x = node i a S\<rbrakk> \<Longrightarrow> P" | 
| 27411 | 60 | shows "P" | 
| 61 | apply (cases x) | |
| 62 | apply (erule 1) | |
| 63 | apply (rule 2) | |
| 35701 | 64 | apply (rule finite_set_decode) | 
| 27411 | 65 | apply (simp add: node_def) | 
| 35701 | 66 | apply (rule eq_prod_encode_pairI [OF refl]) | 
| 67 | apply (rule eq_prod_encode_pairI [OF refl refl]) | |
| 27411 | 68 | done | 
| 69 | ||
| 70 | lemma node_induct: | |
| 71 | assumes 1: "P 0" | |
| 30505 | 72 | assumes 2: "\<And>i a S. \<lbrakk>P a; finite S; \<forall>b\<in>S. P b\<rbrakk> \<Longrightarrow> P (node i a S)" | 
| 27411 | 73 | shows "P x" | 
| 74 | apply (induct x rule: nat_less_induct) | |
| 75 | apply (case_tac n rule: node_cases) | |
| 76 | apply (simp add: 1) | |
| 77 | apply (simp add: 2 node_gt1 node_gt2) | |
| 78 | done | |
| 79 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 80 | subsubsection {* Basis ordering *}
 | 
| 27411 | 81 | |
| 82 | inductive | |
| 83 | ubasis_le :: "nat \<Rightarrow> nat \<Rightarrow> bool" | |
| 84 | where | |
| 30505 | 85 | ubasis_le_refl: "ubasis_le a a" | 
| 27411 | 86 | | ubasis_le_trans: | 
| 30505 | 87 | "\<lbrakk>ubasis_le a b; ubasis_le b c\<rbrakk> \<Longrightarrow> ubasis_le a c" | 
| 27411 | 88 | | ubasis_le_lower: | 
| 30505 | 89 | "finite S \<Longrightarrow> ubasis_le a (node i a S)" | 
| 27411 | 90 | | ubasis_le_upper: | 
| 30505 | 91 | "\<lbrakk>finite S; b \<in> S; ubasis_le a b\<rbrakk> \<Longrightarrow> ubasis_le (node i a S) b" | 
| 27411 | 92 | |
| 93 | lemma ubasis_le_minimal: "ubasis_le 0 x" | |
| 94 | apply (induct x rule: node_induct) | |
| 95 | apply (rule ubasis_le_refl) | |
| 96 | apply (erule ubasis_le_trans) | |
| 97 | apply (erule ubasis_le_lower) | |
| 98 | done | |
| 99 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 100 | interpretation udom: preorder ubasis_le | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 101 | apply default | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 102 | apply (rule ubasis_le_refl) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 103 | apply (erule (1) ubasis_le_trans) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 104 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 105 | |
| 27411 | 106 | subsubsection {* Generic take function *}
 | 
| 107 | ||
| 108 | function | |
| 109 | ubasis_until :: "(ubasis \<Rightarrow> bool) \<Rightarrow> ubasis \<Rightarrow> ubasis" | |
| 110 | where | |
| 111 | "ubasis_until P 0 = 0" | |
| 30505 | 112 | | "finite S \<Longrightarrow> ubasis_until P (node i a S) = | 
| 113 | (if P (node i a S) then node i a S else ubasis_until P a)" | |
| 56073 
29e308b56d23
enhanced simplifier solver for preconditions of rewrite rule, can now deal with conjunctions
 nipkow parents: 
54863diff
changeset | 114 | apply clarify | 
| 
29e308b56d23
enhanced simplifier solver for preconditions of rewrite rule, can now deal with conjunctions
 nipkow parents: 
54863diff
changeset | 115 | apply (rule_tac x=b in node_cases) | 
| 27411 | 116 | apply simp | 
| 117 | apply simp | |
| 56073 
29e308b56d23
enhanced simplifier solver for preconditions of rewrite rule, can now deal with conjunctions
 nipkow parents: 
54863diff
changeset | 118 | apply fast | 
| 27411 | 119 | apply simp | 
| 120 | apply simp | |
| 121 | done | |
| 122 | ||
| 123 | termination ubasis_until | |
| 124 | apply (relation "measure snd") | |
| 125 | apply (rule wf_measure) | |
| 126 | apply (simp add: node_gt1) | |
| 127 | done | |
| 128 | ||
| 129 | lemma ubasis_until: "P 0 \<Longrightarrow> P (ubasis_until P x)" | |
| 130 | by (induct x rule: node_induct) simp_all | |
| 131 | ||
| 132 | lemma ubasis_until': "0 < ubasis_until P x \<Longrightarrow> P (ubasis_until P x)" | |
| 133 | by (induct x rule: node_induct) auto | |
| 134 | ||
| 135 | lemma ubasis_until_same: "P x \<Longrightarrow> ubasis_until P x = x" | |
| 136 | by (induct x rule: node_induct) simp_all | |
| 137 | ||
| 138 | lemma ubasis_until_idem: | |
| 139 | "P 0 \<Longrightarrow> ubasis_until P (ubasis_until P x) = ubasis_until P x" | |
| 140 | by (rule ubasis_until_same [OF ubasis_until]) | |
| 141 | ||
| 142 | lemma ubasis_until_0: | |
| 143 | "\<forall>x. x \<noteq> 0 \<longrightarrow> \<not> P x \<Longrightarrow> ubasis_until P x = 0" | |
| 144 | by (induct x rule: node_induct) simp_all | |
| 145 | ||
| 146 | lemma ubasis_until_less: "ubasis_le (ubasis_until P x) x" | |
| 147 | apply (induct x rule: node_induct) | |
| 148 | apply (simp add: ubasis_le_refl) | |
| 149 | apply (simp add: ubasis_le_refl) | |
| 150 | apply (rule impI) | |
| 151 | apply (erule ubasis_le_trans) | |
| 152 | apply (erule ubasis_le_lower) | |
| 153 | done | |
| 154 | ||
| 155 | lemma ubasis_until_chain: | |
| 156 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | |
| 157 | shows "ubasis_le (ubasis_until P x) (ubasis_until Q x)" | |
| 158 | apply (induct x rule: node_induct) | |
| 159 | apply (simp add: ubasis_le_refl) | |
| 160 | apply (simp add: ubasis_le_refl) | |
| 161 | apply (simp add: PQ) | |
| 162 | apply clarify | |
| 163 | apply (rule ubasis_le_trans) | |
| 164 | apply (rule ubasis_until_less) | |
| 165 | apply (erule ubasis_le_lower) | |
| 166 | done | |
| 167 | ||
| 168 | lemma ubasis_until_mono: | |
| 30505 | 169 | assumes "\<And>i a S b. \<lbrakk>finite S; P (node i a S); b \<in> S; ubasis_le a b\<rbrakk> \<Longrightarrow> P b" | 
| 170 | shows "ubasis_le a b \<Longrightarrow> ubasis_le (ubasis_until P a) (ubasis_until P b)" | |
| 30561 | 171 | proof (induct set: ubasis_le) | 
| 172 | case (ubasis_le_refl a) show ?case by (rule ubasis_le.ubasis_le_refl) | |
| 173 | next | |
| 174 | case (ubasis_le_trans a b c) thus ?case by - (rule ubasis_le.ubasis_le_trans) | |
| 175 | next | |
| 176 | case (ubasis_le_lower S a i) thus ?case | |
| 177 | apply (clarsimp simp add: ubasis_le_refl) | |
| 178 | apply (rule ubasis_le_trans [OF ubasis_until_less]) | |
| 179 | apply (erule ubasis_le.ubasis_le_lower) | |
| 180 | done | |
| 181 | next | |
| 182 | case (ubasis_le_upper S b a i) thus ?case | |
| 183 | apply clarsimp | |
| 184 | apply (subst ubasis_until_same) | |
| 41529 | 185 | apply (erule (3) assms) | 
| 30561 | 186 | apply (erule (2) ubasis_le.ubasis_le_upper) | 
| 187 | done | |
| 188 | qed | |
| 27411 | 189 | |
| 190 | lemma finite_range_ubasis_until: | |
| 191 |   "finite {x. P x} \<Longrightarrow> finite (range (ubasis_until P))"
 | |
| 192 | apply (rule finite_subset [where B="insert 0 {x. P x}"])
 | |
| 193 | apply (clarsimp simp add: ubasis_until') | |
| 194 | apply simp | |
| 195 | done | |
| 196 | ||
| 197 | ||
| 198 | subsection {* Defining the universal domain by ideal completion *}
 | |
| 199 | ||
| 49834 | 200 | typedef udom = "{S. udom.ideal S}"
 | 
| 40888 
28cd51cff70c
reformulate lemma preorder.ex_ideal, and use it for typedefs
 huffman parents: 
40774diff
changeset | 201 | by (rule udom.ex_ideal) | 
| 27411 | 202 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 203 | instantiation udom :: below | 
| 27411 | 204 | begin | 
| 205 | ||
| 206 | definition | |
| 207 | "x \<sqsubseteq> y \<longleftrightarrow> Rep_udom x \<subseteq> Rep_udom y" | |
| 208 | ||
| 209 | instance .. | |
| 210 | end | |
| 211 | ||
| 212 | instance udom :: po | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 213 | using type_definition_udom below_udom_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 214 | by (rule udom.typedef_ideal_po) | 
| 27411 | 215 | |
| 216 | instance udom :: cpo | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 217 | using type_definition_udom below_udom_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 218 | by (rule udom.typedef_ideal_cpo) | 
| 27411 | 219 | |
| 220 | definition | |
| 221 | udom_principal :: "nat \<Rightarrow> udom" where | |
| 222 |   "udom_principal t = Abs_udom {u. ubasis_le u t}"
 | |
| 223 | ||
| 39984 | 224 | lemma ubasis_countable: "\<exists>f::ubasis \<Rightarrow> nat. inj f" | 
| 225 | by (rule exI, rule inj_on_id) | |
| 27411 | 226 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30561diff
changeset | 227 | interpretation udom: | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 228 | ideal_completion ubasis_le udom_principal Rep_udom | 
| 39984 | 229 | using type_definition_udom below_udom_def | 
| 230 | using udom_principal_def ubasis_countable | |
| 231 | by (rule udom.typedef_ideal_completion) | |
| 27411 | 232 | |
| 233 | text {* Universal domain is pointed *}
 | |
| 234 | ||
| 235 | lemma udom_minimal: "udom_principal 0 \<sqsubseteq> x" | |
| 236 | apply (induct x rule: udom.principal_induct) | |
| 237 | apply (simp, simp add: ubasis_le_minimal) | |
| 238 | done | |
| 239 | ||
| 240 | instance udom :: pcpo | |
| 241 | by intro_classes (fast intro: udom_minimal) | |
| 242 | ||
| 243 | lemma inst_udom_pcpo: "\<bottom> = udom_principal 0" | |
| 41430 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 huffman parents: 
41413diff
changeset | 244 | by (rule udom_minimal [THEN bottomI, symmetric]) | 
| 27411 | 245 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 246 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 247 | subsection {* Compact bases of domains *}
 | 
| 27411 | 248 | |
| 49834 | 249 | typedef 'a compact_basis = "{x::'a::pcpo. compact x}"
 | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 250 | by auto | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 251 | |
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 252 | lemma Rep_compact_basis' [simp]: "compact (Rep_compact_basis a)" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 253 | by (rule Rep_compact_basis [unfolded mem_Collect_eq]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 254 | |
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 255 | lemma Abs_compact_basis_inverse' [simp]: | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 256 | "compact x \<Longrightarrow> Rep_compact_basis (Abs_compact_basis x) = x" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 257 | by (rule Abs_compact_basis_inverse [unfolded mem_Collect_eq]) | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 258 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 259 | instantiation compact_basis :: (pcpo) below | 
| 27411 | 260 | begin | 
| 261 | ||
| 262 | definition | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 263 | compact_le_def: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 264 | "(op \<sqsubseteq>) \<equiv> (\<lambda>x y. Rep_compact_basis x \<sqsubseteq> Rep_compact_basis y)" | 
| 27411 | 265 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 266 | instance .. | 
| 27411 | 267 | end | 
| 268 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 269 | instance compact_basis :: (pcpo) po | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 270 | using type_definition_compact_basis compact_le_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 271 | by (rule typedef_po) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 272 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 273 | definition | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 274 | approximants :: "'a \<Rightarrow> 'a compact_basis set" where | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 275 |   "approximants = (\<lambda>x. {a. Rep_compact_basis a \<sqsubseteq> x})"
 | 
| 27411 | 276 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 277 | definition | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 278 | compact_bot :: "'a::pcpo compact_basis" where | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 279 | "compact_bot = Abs_compact_basis \<bottom>" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 280 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 281 | lemma Rep_compact_bot [simp]: "Rep_compact_basis compact_bot = \<bottom>" | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 282 | unfolding compact_bot_def by simp | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 283 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 284 | lemma compact_bot_minimal [simp]: "compact_bot \<sqsubseteq> a" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 285 | unfolding compact_le_def Rep_compact_bot by simp | 
| 27411 | 286 | |
| 287 | ||
| 35900 
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
 huffman parents: 
35794diff
changeset | 288 | subsection {* Universality of \emph{udom} *}
 | 
| 27411 | 289 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 290 | text {* We use a locale to parameterize the construction over a chain
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 291 | of approx functions on the type to be embedded. *} | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 292 | |
| 46868 | 293 | locale bifinite_approx_chain = | 
| 294 | approx_chain approx for approx :: "nat \<Rightarrow> 'a::bifinite \<rightarrow> 'a" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 295 | begin | 
| 27411 | 296 | |
| 297 | subsubsection {* Choosing a maximal element from a finite set *}
 | |
| 298 | ||
| 299 | lemma finite_has_maximal: | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 300 | fixes A :: "'a compact_basis set" | 
| 27411 | 301 |   shows "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> \<exists>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y"
 | 
| 302 | proof (induct rule: finite_ne_induct) | |
| 303 | case (singleton x) | |
| 304 | show ?case by simp | |
| 305 | next | |
| 306 | case (insert a A) | |
| 307 | from `\<exists>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y` | |
| 308 | obtain x where x: "x \<in> A" | |
| 309 | and x_eq: "\<And>y. \<lbrakk>y \<in> A; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> x = y" by fast | |
| 310 | show ?case | |
| 311 | proof (intro bexI ballI impI) | |
| 312 | fix y | |
| 313 | assume "y \<in> insert a A" and "(if x \<sqsubseteq> a then a else x) \<sqsubseteq> y" | |
| 314 | thus "(if x \<sqsubseteq> a then a else x) = y" | |
| 315 | apply auto | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 316 | apply (frule (1) below_trans) | 
| 27411 | 317 | apply (frule (1) x_eq) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 318 | apply (rule below_antisym, assumption) | 
| 27411 | 319 | apply simp | 
| 320 | apply (erule (1) x_eq) | |
| 321 | done | |
| 322 | next | |
| 323 | show "(if x \<sqsubseteq> a then a else x) \<in> insert a A" | |
| 324 | by (simp add: x) | |
| 325 | qed | |
| 326 | qed | |
| 327 | ||
| 328 | definition | |
| 329 | choose :: "'a compact_basis set \<Rightarrow> 'a compact_basis" | |
| 330 | where | |
| 331 |   "choose A = (SOME x. x \<in> {x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y})"
 | |
| 332 | ||
| 333 | lemma choose_lemma: | |
| 334 |   "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> choose A \<in> {x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y}"
 | |
| 335 | unfolding choose_def | |
| 336 | apply (rule someI_ex) | |
| 337 | apply (frule (1) finite_has_maximal, fast) | |
| 338 | done | |
| 339 | ||
| 340 | lemma maximal_choose: | |
| 341 | "\<lbrakk>finite A; y \<in> A; choose A \<sqsubseteq> y\<rbrakk> \<Longrightarrow> choose A = y" | |
| 342 | apply (cases "A = {}", simp)
 | |
| 343 | apply (frule (1) choose_lemma, simp) | |
| 344 | done | |
| 345 | ||
| 346 | lemma choose_in: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> choose A \<in> A"
 | |
| 347 | by (frule (1) choose_lemma, simp) | |
| 348 | ||
| 349 | function | |
| 350 | choose_pos :: "'a compact_basis set \<Rightarrow> 'a compact_basis \<Rightarrow> nat" | |
| 351 | where | |
| 352 | "choose_pos A x = | |
| 353 | (if finite A \<and> x \<in> A \<and> x \<noteq> choose A | |
| 354 |       then Suc (choose_pos (A - {choose A}) x) else 0)"
 | |
| 355 | by auto | |
| 356 | ||
| 357 | termination choose_pos | |
| 358 | apply (relation "measure (card \<circ> fst)", simp) | |
| 359 | apply clarsimp | |
| 360 | apply (rule card_Diff1_less) | |
| 361 | apply assumption | |
| 362 | apply (erule choose_in) | |
| 363 | apply clarsimp | |
| 364 | done | |
| 365 | ||
| 366 | declare choose_pos.simps [simp del] | |
| 367 | ||
| 368 | lemma choose_pos_choose: "finite A \<Longrightarrow> choose_pos A (choose A) = 0" | |
| 369 | by (simp add: choose_pos.simps) | |
| 370 | ||
| 371 | lemma inj_on_choose_pos [OF refl]: | |
| 372 | "\<lbrakk>card A = n; finite A\<rbrakk> \<Longrightarrow> inj_on (choose_pos A) A" | |
| 373 | apply (induct n arbitrary: A) | |
| 374 | apply simp | |
| 375 |  apply (case_tac "A = {}", simp)
 | |
| 376 | apply (frule (1) choose_in) | |
| 377 | apply (rule inj_onI) | |
| 378 |  apply (drule_tac x="A - {choose A}" in meta_spec, simp)
 | |
| 379 | apply (simp add: choose_pos.simps) | |
| 380 | apply (simp split: split_if_asm) | |
| 381 | apply (erule (1) inj_onD, simp, simp) | |
| 382 | done | |
| 383 | ||
| 384 | lemma choose_pos_bounded [OF refl]: | |
| 385 | "\<lbrakk>card A = n; finite A; x \<in> A\<rbrakk> \<Longrightarrow> choose_pos A x < n" | |
| 386 | apply (induct n arbitrary: A) | |
| 387 | apply simp | |
| 388 |  apply (case_tac "A = {}", simp)
 | |
| 389 | apply (frule (1) choose_in) | |
| 390 | apply (subst choose_pos.simps) | |
| 391 | apply simp | |
| 392 | done | |
| 393 | ||
| 394 | lemma choose_pos_lessD: | |
| 41182 | 395 | "\<lbrakk>choose_pos A x < choose_pos A y; finite A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> x \<notsqsubseteq> y" | 
| 27411 | 396 | apply (induct A x arbitrary: y rule: choose_pos.induct) | 
| 397 | apply simp | |
| 398 | apply (case_tac "x = choose A") | |
| 399 | apply simp | |
| 400 | apply (rule notI) | |
| 401 | apply (frule (2) maximal_choose) | |
| 402 | apply simp | |
| 403 | apply (case_tac "y = choose A") | |
| 404 | apply (simp add: choose_pos_choose) | |
| 405 | apply (drule_tac x=y in meta_spec) | |
| 406 | apply simp | |
| 407 | apply (erule meta_mp) | |
| 408 | apply (simp add: choose_pos.simps) | |
| 409 | done | |
| 410 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 411 | subsubsection {* Compact basis take function *}
 | 
| 27411 | 412 | |
| 413 | primrec | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 414 | cb_take :: "nat \<Rightarrow> 'a compact_basis \<Rightarrow> 'a compact_basis" where | 
| 27411 | 415 | "cb_take 0 = (\<lambda>x. compact_bot)" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 416 | | "cb_take (Suc n) = (\<lambda>a. Abs_compact_basis (approx n\<cdot>(Rep_compact_basis a)))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 417 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 418 | declare cb_take.simps [simp del] | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 419 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 420 | lemma cb_take_zero [simp]: "cb_take 0 a = compact_bot" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 421 | by (simp only: cb_take.simps) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 422 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 423 | lemma Rep_cb_take: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 424 | "Rep_compact_basis (cb_take (Suc n) a) = approx n\<cdot>(Rep_compact_basis a)" | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 425 | by (simp add: cb_take.simps(2)) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 426 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 427 | lemmas approx_Rep_compact_basis = Rep_cb_take [symmetric] | 
| 27411 | 428 | |
| 429 | lemma cb_take_covers: "\<exists>n. cb_take n x = x" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 430 | apply (subgoal_tac "\<exists>n. cb_take (Suc n) x = x", fast) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 431 | apply (simp add: Rep_compact_basis_inject [symmetric]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 432 | apply (simp add: Rep_cb_take) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 433 | apply (rule compact_eq_approx) | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 434 | apply (rule Rep_compact_basis') | 
| 27411 | 435 | done | 
| 436 | ||
| 437 | lemma cb_take_less: "cb_take n x \<sqsubseteq> x" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 438 | unfolding compact_le_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 439 | by (cases n, simp, simp add: Rep_cb_take approx_below) | 
| 27411 | 440 | |
| 441 | lemma cb_take_idem: "cb_take n (cb_take n x) = cb_take n x" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 442 | unfolding Rep_compact_basis_inject [symmetric] | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 443 | by (cases n, simp, simp add: Rep_cb_take approx_idem) | 
| 27411 | 444 | |
| 445 | lemma cb_take_mono: "x \<sqsubseteq> y \<Longrightarrow> cb_take n x \<sqsubseteq> cb_take n y" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 446 | unfolding compact_le_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 447 | by (cases n, simp, simp add: Rep_cb_take monofun_cfun_arg) | 
| 27411 | 448 | |
| 449 | lemma cb_take_chain_le: "m \<le> n \<Longrightarrow> cb_take m x \<sqsubseteq> cb_take n x" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 450 | unfolding compact_le_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 451 | apply (cases m, simp, cases n, simp) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 452 | apply (simp add: Rep_cb_take, rule chain_mono, simp, simp) | 
| 27411 | 453 | done | 
| 454 | ||
| 455 | lemma finite_range_cb_take: "finite (range (cb_take n))" | |
| 456 | apply (cases n) | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 457 | apply (subgoal_tac "range (cb_take 0) = {compact_bot}", simp, force)
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 458 | apply (rule finite_imageD [where f="Rep_compact_basis"]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 459 | apply (rule finite_subset [where B="range (\<lambda>x. approx (n - 1)\<cdot>x)"]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 460 | apply (clarsimp simp add: Rep_cb_take) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 461 | apply (rule finite_range_approx) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 462 | apply (rule inj_onI, simp add: Rep_compact_basis_inject) | 
| 27411 | 463 | done | 
| 464 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 465 | subsubsection {* Rank of basis elements *}
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 466 | |
| 27411 | 467 | definition | 
| 468 | rank :: "'a compact_basis \<Rightarrow> nat" | |
| 469 | where | |
| 470 | "rank x = (LEAST n. cb_take n x = x)" | |
| 471 | ||
| 472 | lemma compact_approx_rank: "cb_take (rank x) x = x" | |
| 473 | unfolding rank_def | |
| 474 | apply (rule LeastI_ex) | |
| 475 | apply (rule cb_take_covers) | |
| 476 | done | |
| 477 | ||
| 478 | lemma rank_leD: "rank x \<le> n \<Longrightarrow> cb_take n x = x" | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 479 | apply (rule below_antisym [OF cb_take_less]) | 
| 27411 | 480 | apply (subst compact_approx_rank [symmetric]) | 
| 481 | apply (erule cb_take_chain_le) | |
| 482 | done | |
| 483 | ||
| 484 | lemma rank_leI: "cb_take n x = x \<Longrightarrow> rank x \<le> n" | |
| 485 | unfolding rank_def by (rule Least_le) | |
| 486 | ||
| 487 | lemma rank_le_iff: "rank x \<le> n \<longleftrightarrow> cb_take n x = x" | |
| 488 | by (rule iffI [OF rank_leD rank_leI]) | |
| 489 | ||
| 30505 | 490 | lemma rank_compact_bot [simp]: "rank compact_bot = 0" | 
| 491 | using rank_leI [of 0 compact_bot] by simp | |
| 492 | ||
| 493 | lemma rank_eq_0_iff [simp]: "rank x = 0 \<longleftrightarrow> x = compact_bot" | |
| 494 | using rank_le_iff [of x 0] by auto | |
| 495 | ||
| 27411 | 496 | definition | 
| 497 | rank_le :: "'a compact_basis \<Rightarrow> 'a compact_basis set" | |
| 498 | where | |
| 499 |   "rank_le x = {y. rank y \<le> rank x}"
 | |
| 500 | ||
| 501 | definition | |
| 502 | rank_lt :: "'a compact_basis \<Rightarrow> 'a compact_basis set" | |
| 503 | where | |
| 504 |   "rank_lt x = {y. rank y < rank x}"
 | |
| 505 | ||
| 506 | definition | |
| 507 | rank_eq :: "'a compact_basis \<Rightarrow> 'a compact_basis set" | |
| 508 | where | |
| 509 |   "rank_eq x = {y. rank y = rank x}"
 | |
| 510 | ||
| 511 | lemma rank_eq_cong: "rank x = rank y \<Longrightarrow> rank_eq x = rank_eq y" | |
| 512 | unfolding rank_eq_def by simp | |
| 513 | ||
| 514 | lemma rank_lt_cong: "rank x = rank y \<Longrightarrow> rank_lt x = rank_lt y" | |
| 515 | unfolding rank_lt_def by simp | |
| 516 | ||
| 517 | lemma rank_eq_subset: "rank_eq x \<subseteq> rank_le x" | |
| 518 | unfolding rank_eq_def rank_le_def by auto | |
| 519 | ||
| 520 | lemma rank_lt_subset: "rank_lt x \<subseteq> rank_le x" | |
| 521 | unfolding rank_lt_def rank_le_def by auto | |
| 522 | ||
| 523 | lemma finite_rank_le: "finite (rank_le x)" | |
| 524 | unfolding rank_le_def | |
| 525 | apply (rule finite_subset [where B="range (cb_take (rank x))"]) | |
| 526 | apply clarify | |
| 527 | apply (rule range_eqI) | |
| 528 | apply (erule rank_leD [symmetric]) | |
| 529 | apply (rule finite_range_cb_take) | |
| 530 | done | |
| 531 | ||
| 532 | lemma finite_rank_eq: "finite (rank_eq x)" | |
| 533 | by (rule finite_subset [OF rank_eq_subset finite_rank_le]) | |
| 534 | ||
| 535 | lemma finite_rank_lt: "finite (rank_lt x)" | |
| 536 | by (rule finite_subset [OF rank_lt_subset finite_rank_le]) | |
| 537 | ||
| 538 | lemma rank_lt_Int_rank_eq: "rank_lt x \<inter> rank_eq x = {}"
 | |
| 539 | unfolding rank_lt_def rank_eq_def rank_le_def by auto | |
| 540 | ||
| 541 | lemma rank_lt_Un_rank_eq: "rank_lt x \<union> rank_eq x = rank_le x" | |
| 542 | unfolding rank_lt_def rank_eq_def rank_le_def by auto | |
| 543 | ||
| 30505 | 544 | subsubsection {* Sequencing basis elements *}
 | 
| 27411 | 545 | |
| 546 | definition | |
| 30505 | 547 | place :: "'a compact_basis \<Rightarrow> nat" | 
| 27411 | 548 | where | 
| 30505 | 549 | "place x = card (rank_lt x) + choose_pos (rank_eq x) x" | 
| 27411 | 550 | |
| 30505 | 551 | lemma place_bounded: "place x < card (rank_le x)" | 
| 552 | unfolding place_def | |
| 27411 | 553 | apply (rule ord_less_eq_trans) | 
| 554 | apply (rule add_strict_left_mono) | |
| 555 | apply (rule choose_pos_bounded) | |
| 556 | apply (rule finite_rank_eq) | |
| 557 | apply (simp add: rank_eq_def) | |
| 558 | apply (subst card_Un_disjoint [symmetric]) | |
| 559 | apply (rule finite_rank_lt) | |
| 560 | apply (rule finite_rank_eq) | |
| 561 | apply (rule rank_lt_Int_rank_eq) | |
| 562 | apply (simp add: rank_lt_Un_rank_eq) | |
| 563 | done | |
| 564 | ||
| 30505 | 565 | lemma place_ge: "card (rank_lt x) \<le> place x" | 
| 566 | unfolding place_def by simp | |
| 27411 | 567 | |
| 30505 | 568 | lemma place_rank_mono: | 
| 27411 | 569 | fixes x y :: "'a compact_basis" | 
| 30505 | 570 | shows "rank x < rank y \<Longrightarrow> place x < place y" | 
| 571 | apply (rule less_le_trans [OF place_bounded]) | |
| 572 | apply (rule order_trans [OF _ place_ge]) | |
| 27411 | 573 | apply (rule card_mono) | 
| 574 | apply (rule finite_rank_lt) | |
| 575 | apply (simp add: rank_le_def rank_lt_def subset_eq) | |
| 576 | done | |
| 577 | ||
| 30505 | 578 | lemma place_eqD: "place x = place y \<Longrightarrow> x = y" | 
| 27411 | 579 | apply (rule linorder_cases [where x="rank x" and y="rank y"]) | 
| 30505 | 580 | apply (drule place_rank_mono, simp) | 
| 581 | apply (simp add: place_def) | |
| 27411 | 582 | apply (rule inj_on_choose_pos [where A="rank_eq x", THEN inj_onD]) | 
| 583 | apply (rule finite_rank_eq) | |
| 584 | apply (simp cong: rank_lt_cong rank_eq_cong) | |
| 585 | apply (simp add: rank_eq_def) | |
| 586 | apply (simp add: rank_eq_def) | |
| 30505 | 587 | apply (drule place_rank_mono, simp) | 
| 27411 | 588 | done | 
| 589 | ||
| 30505 | 590 | lemma inj_place: "inj place" | 
| 591 | by (rule inj_onI, erule place_eqD) | |
| 27411 | 592 | |
| 593 | subsubsection {* Embedding and projection on basis elements *}
 | |
| 594 | ||
| 30505 | 595 | definition | 
| 596 | sub :: "'a compact_basis \<Rightarrow> 'a compact_basis" | |
| 597 | where | |
| 598 | "sub x = (case rank x of 0 \<Rightarrow> compact_bot | Suc k \<Rightarrow> cb_take k x)" | |
| 599 | ||
| 600 | lemma rank_sub_less: "x \<noteq> compact_bot \<Longrightarrow> rank (sub x) < rank x" | |
| 601 | unfolding sub_def | |
| 602 | apply (cases "rank x", simp) | |
| 603 | apply (simp add: less_Suc_eq_le) | |
| 604 | apply (rule rank_leI) | |
| 605 | apply (rule cb_take_idem) | |
| 606 | done | |
| 607 | ||
| 608 | lemma place_sub_less: "x \<noteq> compact_bot \<Longrightarrow> place (sub x) < place x" | |
| 609 | apply (rule place_rank_mono) | |
| 610 | apply (erule rank_sub_less) | |
| 611 | done | |
| 612 | ||
| 613 | lemma sub_below: "sub x \<sqsubseteq> x" | |
| 614 | unfolding sub_def by (cases "rank x", simp_all add: cb_take_less) | |
| 615 | ||
| 616 | lemma rank_less_imp_below_sub: "\<lbrakk>x \<sqsubseteq> y; rank x < rank y\<rbrakk> \<Longrightarrow> x \<sqsubseteq> sub y" | |
| 617 | unfolding sub_def | |
| 618 | apply (cases "rank y", simp) | |
| 619 | apply (simp add: less_Suc_eq_le) | |
| 620 | apply (subgoal_tac "cb_take nat x \<sqsubseteq> cb_take nat y") | |
| 621 | apply (simp add: rank_leD) | |
| 622 | apply (erule cb_take_mono) | |
| 623 | done | |
| 624 | ||
| 27411 | 625 | function | 
| 626 | basis_emb :: "'a compact_basis \<Rightarrow> ubasis" | |
| 627 | where | |
| 628 | "basis_emb x = (if x = compact_bot then 0 else | |
| 30505 | 629 | node (place x) (basis_emb (sub x)) | 
| 630 |       (basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y}))"
 | |
| 27411 | 631 | by auto | 
| 632 | ||
| 633 | termination basis_emb | |
| 30505 | 634 | apply (relation "measure place", simp) | 
| 635 | apply (simp add: place_sub_less) | |
| 27411 | 636 | apply simp | 
| 637 | done | |
| 638 | ||
| 639 | declare basis_emb.simps [simp del] | |
| 640 | ||
| 641 | lemma basis_emb_compact_bot [simp]: "basis_emb compact_bot = 0" | |
| 642 | by (simp add: basis_emb.simps) | |
| 643 | ||
| 30505 | 644 | lemma fin1: "finite {y. place y < place x \<and> x \<sqsubseteq> y}"
 | 
| 27411 | 645 | apply (subst Collect_conj_eq) | 
| 646 | apply (rule finite_Int) | |
| 647 | apply (rule disjI1) | |
| 30505 | 648 | apply (subgoal_tac "finite (place -` {n. n < place x})", simp)
 | 
| 649 | apply (rule finite_vimageI [OF _ inj_place]) | |
| 27411 | 650 | apply (simp add: lessThan_def [symmetric]) | 
| 651 | done | |
| 652 | ||
| 30505 | 653 | lemma fin2: "finite (basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y})"
 | 
| 27411 | 654 | by (rule finite_imageI [OF fin1]) | 
| 655 | ||
| 30505 | 656 | lemma rank_place_mono: | 
| 657 | "\<lbrakk>place x < place y; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> rank x < rank y" | |
| 658 | apply (rule linorder_cases, assumption) | |
| 659 | apply (simp add: place_def cong: rank_lt_cong rank_eq_cong) | |
| 660 | apply (drule choose_pos_lessD) | |
| 661 | apply (rule finite_rank_eq) | |
| 662 | apply (simp add: rank_eq_def) | |
| 663 | apply (simp add: rank_eq_def) | |
| 664 | apply simp | |
| 665 | apply (drule place_rank_mono, simp) | |
| 666 | done | |
| 667 | ||
| 668 | lemma basis_emb_mono: | |
| 669 | "x \<sqsubseteq> y \<Longrightarrow> ubasis_le (basis_emb x) (basis_emb y)" | |
| 34915 | 670 | proof (induct "max (place x) (place y)" arbitrary: x y rule: less_induct) | 
| 671 | case less | |
| 30505 | 672 | show ?case proof (rule linorder_cases) | 
| 673 | assume "place x < place y" | |
| 674 | then have "rank x < rank y" | |
| 675 | using `x \<sqsubseteq> y` by (rule rank_place_mono) | |
| 676 | with `place x < place y` show ?case | |
| 677 | apply (case_tac "y = compact_bot", simp) | |
| 678 | apply (simp add: basis_emb.simps [of y]) | |
| 679 | apply (rule ubasis_le_trans [OF _ ubasis_le_lower [OF fin2]]) | |
| 34915 | 680 | apply (rule less) | 
| 30505 | 681 | apply (simp add: less_max_iff_disj) | 
| 682 | apply (erule place_sub_less) | |
| 683 | apply (erule rank_less_imp_below_sub [OF `x \<sqsubseteq> y`]) | |
| 27411 | 684 | done | 
| 30505 | 685 | next | 
| 686 | assume "place x = place y" | |
| 687 | hence "x = y" by (rule place_eqD) | |
| 688 | thus ?case by (simp add: ubasis_le_refl) | |
| 689 | next | |
| 690 | assume "place x > place y" | |
| 691 | with `x \<sqsubseteq> y` show ?case | |
| 692 | apply (case_tac "x = compact_bot", simp add: ubasis_le_minimal) | |
| 693 | apply (simp add: basis_emb.simps [of x]) | |
| 694 | apply (rule ubasis_le_upper [OF fin2], simp) | |
| 34915 | 695 | apply (rule less) | 
| 30505 | 696 | apply (simp add: less_max_iff_disj) | 
| 697 | apply (erule place_sub_less) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 698 | apply (erule rev_below_trans) | 
| 30505 | 699 | apply (rule sub_below) | 
| 700 | done | |
| 27411 | 701 | qed | 
| 702 | qed | |
| 703 | ||
| 704 | lemma inj_basis_emb: "inj basis_emb" | |
| 705 | apply (rule inj_onI) | |
| 706 | apply (case_tac "x = compact_bot") | |
| 707 | apply (case_tac [!] "y = compact_bot") | |
| 708 | apply simp | |
| 709 | apply (simp add: basis_emb.simps) | |
| 710 | apply (simp add: basis_emb.simps) | |
| 711 | apply (simp add: basis_emb.simps) | |
| 30505 | 712 | apply (simp add: fin2 inj_eq [OF inj_place]) | 
| 27411 | 713 | done | 
| 714 | ||
| 715 | definition | |
| 30505 | 716 | basis_prj :: "ubasis \<Rightarrow> 'a compact_basis" | 
| 27411 | 717 | where | 
| 718 | "basis_prj x = inv basis_emb | |
| 30505 | 719 | (ubasis_until (\<lambda>x. x \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> ubasis)) x)" | 
| 27411 | 720 | |
| 721 | lemma basis_prj_basis_emb: "\<And>x. basis_prj (basis_emb x) = x" | |
| 722 | unfolding basis_prj_def | |
| 723 | apply (subst ubasis_until_same) | |
| 724 | apply (rule rangeI) | |
| 725 | apply (rule inv_f_f) | |
| 726 | apply (rule inj_basis_emb) | |
| 727 | done | |
| 728 | ||
| 729 | lemma basis_prj_node: | |
| 30505 | 730 | "\<lbrakk>finite S; node i a S \<notin> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)\<rbrakk> | 
| 731 | \<Longrightarrow> basis_prj (node i a S) = (basis_prj a :: 'a compact_basis)" | |
| 27411 | 732 | unfolding basis_prj_def by simp | 
| 733 | ||
| 734 | lemma basis_prj_0: "basis_prj 0 = compact_bot" | |
| 735 | apply (subst basis_emb_compact_bot [symmetric]) | |
| 736 | apply (rule basis_prj_basis_emb) | |
| 737 | done | |
| 738 | ||
| 30505 | 739 | lemma node_eq_basis_emb_iff: | 
| 740 | "finite S \<Longrightarrow> node i a S = basis_emb x \<longleftrightarrow> | |
| 741 | x \<noteq> compact_bot \<and> i = place x \<and> a = basis_emb (sub x) \<and> | |
| 742 |         S = basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y}"
 | |
| 743 | apply (cases "x = compact_bot", simp) | |
| 744 | apply (simp add: basis_emb.simps [of x]) | |
| 745 | apply (simp add: fin2) | |
| 27411 | 746 | done | 
| 747 | ||
| 30505 | 748 | lemma basis_prj_mono: "ubasis_le a b \<Longrightarrow> basis_prj a \<sqsubseteq> basis_prj b" | 
| 749 | proof (induct a b rule: ubasis_le.induct) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 750 | case (ubasis_le_refl a) show ?case by (rule below_refl) | 
| 30505 | 751 | next | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 752 | case (ubasis_le_trans a b c) thus ?case by - (rule below_trans) | 
| 30505 | 753 | next | 
| 754 | case (ubasis_le_lower S a i) thus ?case | |
| 30561 | 755 | apply (cases "node i a S \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)") | 
| 30505 | 756 | apply (erule rangeE, rename_tac x) | 
| 757 | apply (simp add: basis_prj_basis_emb) | |
| 758 | apply (simp add: node_eq_basis_emb_iff) | |
| 759 | apply (simp add: basis_prj_basis_emb) | |
| 760 | apply (rule sub_below) | |
| 761 | apply (simp add: basis_prj_node) | |
| 762 | done | |
| 763 | next | |
| 764 | case (ubasis_le_upper S b a i) thus ?case | |
| 30561 | 765 | apply (cases "node i a S \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)") | 
| 30505 | 766 | apply (erule rangeE, rename_tac x) | 
| 767 | apply (simp add: basis_prj_basis_emb) | |
| 768 | apply (clarsimp simp add: node_eq_basis_emb_iff) | |
| 769 | apply (simp add: basis_prj_basis_emb) | |
| 770 | apply (simp add: basis_prj_node) | |
| 771 | done | |
| 772 | qed | |
| 773 | ||
| 27411 | 774 | lemma basis_emb_prj_less: "ubasis_le (basis_emb (basis_prj x)) x" | 
| 775 | unfolding basis_prj_def | |
| 33071 
362f59fe5092
renamed f_inv_onto_f to f_inv_into_f (cf. 764547b68538);
 wenzelm parents: 
32997diff
changeset | 776 | apply (subst f_inv_into_f [where f=basis_emb]) | 
| 27411 | 777 | apply (rule ubasis_until) | 
| 778 | apply (rule range_eqI [where x=compact_bot]) | |
| 779 | apply simp | |
| 780 | apply (rule ubasis_until_less) | |
| 781 | done | |
| 782 | ||
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 783 | lemma ideal_completion: | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 784 | "ideal_completion below Rep_compact_basis (approximants :: 'a \<Rightarrow> _)" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 785 | proof | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 786 | fix w :: "'a" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 787 | show "below.ideal (approximants w)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 788 | proof (rule below.idealI) | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 789 | have "Abs_compact_basis (approx 0\<cdot>w) \<in> approximants w" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 790 | by (simp add: approximants_def approx_below) | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 791 | thus "\<exists>x. x \<in> approximants w" .. | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 792 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 793 | fix x y :: "'a compact_basis" | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 794 | assume x: "x \<in> approximants w" and y: "y \<in> approximants w" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 795 | obtain i where i: "approx i\<cdot>(Rep_compact_basis x) = Rep_compact_basis x" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 796 | using compact_eq_approx Rep_compact_basis' by fast | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 797 | obtain j where j: "approx j\<cdot>(Rep_compact_basis y) = Rep_compact_basis y" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 798 | using compact_eq_approx Rep_compact_basis' by fast | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 799 | let ?z = "Abs_compact_basis (approx (max i j)\<cdot>w)" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 800 | have "?z \<in> approximants w" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 801 | by (simp add: approximants_def approx_below) | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 802 | moreover from x y have "x \<sqsubseteq> ?z \<and> y \<sqsubseteq> ?z" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 803 | by (simp add: approximants_def compact_le_def) | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
49834diff
changeset | 804 | (metis i j monofun_cfun chain_mono chain_approx max.cobounded1 max.cobounded2) | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 805 | ultimately show "\<exists>z \<in> approximants w. x \<sqsubseteq> z \<and> y \<sqsubseteq> z" .. | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 806 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 807 | fix x y :: "'a compact_basis" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 808 | assume "x \<sqsubseteq> y" "y \<in> approximants w" thus "x \<in> approximants w" | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 809 | unfolding approximants_def compact_le_def | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 810 | by (auto elim: below_trans) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 811 | qed | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 812 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 813 | fix Y :: "nat \<Rightarrow> 'a" | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 814 | assume "chain Y" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 815 | thus "approximants (\<Squnion>i. Y i) = (\<Union>i. approximants (Y i))" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 816 | unfolding approximants_def | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 817 | by (auto simp add: compact_below_lub_iff) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 818 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 819 | fix a :: "'a compact_basis" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 820 |   show "approximants (Rep_compact_basis a) = {b. b \<sqsubseteq> a}"
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 821 | unfolding approximants_def compact_le_def .. | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 822 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 823 | fix x y :: "'a" | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 824 | assume "approximants x \<subseteq> approximants y" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 825 | hence "\<forall>z. compact z \<longrightarrow> z \<sqsubseteq> x \<longrightarrow> z \<sqsubseteq> y" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 826 | by (simp add: approximants_def subset_eq) | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 827 | (metis Abs_compact_basis_inverse') | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 828 | hence "(\<Squnion>i. approx i\<cdot>x) \<sqsubseteq> y" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 829 | by (simp add: lub_below approx_below) | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 830 | thus "x \<sqsubseteq> y" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 831 | by (simp add: lub_distribs) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 832 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 833 | show "\<exists>f::'a compact_basis \<Rightarrow> nat. inj f" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 834 | by (rule exI, rule inj_place) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 835 | qed | 
| 27411 | 836 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 837 | end | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 838 | |
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 839 | interpretation compact_basis!: | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 840 | ideal_completion below Rep_compact_basis | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 841 | "approximants :: 'a::bifinite \<Rightarrow> 'a compact_basis set" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 842 | proof - | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 843 | obtain a :: "nat \<Rightarrow> 'a \<rightarrow> 'a" where "approx_chain a" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 844 | using bifinite .. | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 845 | hence "bifinite_approx_chain a" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 846 | unfolding bifinite_approx_chain_def . | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 847 | thus "ideal_completion below Rep_compact_basis (approximants :: 'a \<Rightarrow> _)" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 848 | by (rule bifinite_approx_chain.ideal_completion) | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 849 | qed | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 850 | |
| 35900 
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
 huffman parents: 
35794diff
changeset | 851 | subsubsection {* EP-pair from any bifinite domain into \emph{udom} *}
 | 
| 27411 | 852 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 853 | context bifinite_approx_chain begin | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 854 | |
| 27411 | 855 | definition | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 856 | udom_emb :: "'a \<rightarrow> udom" | 
| 27411 | 857 | where | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 858 | "udom_emb = compact_basis.extension (\<lambda>x. udom_principal (basis_emb x))" | 
| 27411 | 859 | |
| 860 | definition | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 861 | udom_prj :: "udom \<rightarrow> 'a" | 
| 27411 | 862 | where | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 863 | "udom_prj = udom.extension (\<lambda>x. Rep_compact_basis (basis_prj x))" | 
| 27411 | 864 | |
| 865 | lemma udom_emb_principal: | |
| 866 | "udom_emb\<cdot>(Rep_compact_basis x) = udom_principal (basis_emb x)" | |
| 867 | unfolding udom_emb_def | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 868 | apply (rule compact_basis.extension_principal) | 
| 27411 | 869 | apply (rule udom.principal_mono) | 
| 870 | apply (erule basis_emb_mono) | |
| 871 | done | |
| 872 | ||
| 873 | lemma udom_prj_principal: | |
| 874 | "udom_prj\<cdot>(udom_principal x) = Rep_compact_basis (basis_prj x)" | |
| 875 | unfolding udom_prj_def | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 876 | apply (rule udom.extension_principal) | 
| 27411 | 877 | apply (rule compact_basis.principal_mono) | 
| 878 | apply (erule basis_prj_mono) | |
| 879 | done | |
| 880 | ||
| 881 | lemma ep_pair_udom: "ep_pair udom_emb udom_prj" | |
| 882 | apply default | |
| 883 | apply (rule compact_basis.principal_induct, simp) | |
| 884 | apply (simp add: udom_emb_principal udom_prj_principal) | |
| 885 | apply (simp add: basis_prj_basis_emb) | |
| 886 | apply (rule udom.principal_induct, simp) | |
| 887 | apply (simp add: udom_emb_principal udom_prj_principal) | |
| 888 | apply (rule basis_emb_prj_less) | |
| 889 | done | |
| 890 | ||
| 891 | end | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 892 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 893 | abbreviation "udom_emb \<equiv> bifinite_approx_chain.udom_emb" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 894 | abbreviation "udom_prj \<equiv> bifinite_approx_chain.udom_prj" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 895 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 896 | lemmas ep_pair_udom = | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 897 | bifinite_approx_chain.ep_pair_udom [unfolded bifinite_approx_chain_def] | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 898 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 899 | subsection {* Chain of approx functions for type \emph{udom} *}
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 900 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 901 | definition | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 902 | udom_approx :: "nat \<Rightarrow> udom \<rightarrow> udom" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 903 | where | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 904 | "udom_approx i = | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 905 | udom.extension (\<lambda>x. udom_principal (ubasis_until (\<lambda>y. y \<le> i) x))" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 906 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 907 | lemma udom_approx_mono: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 908 | "ubasis_le a b \<Longrightarrow> | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 909 | udom_principal (ubasis_until (\<lambda>y. y \<le> i) a) \<sqsubseteq> | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 910 | udom_principal (ubasis_until (\<lambda>y. y \<le> i) b)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 911 | apply (rule udom.principal_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 912 | apply (rule ubasis_until_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 913 | apply (frule (2) order_less_le_trans [OF node_gt2]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 914 | apply (erule order_less_imp_le) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 915 | apply assumption | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 916 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 917 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 918 | lemma adm_mem_finite: "\<lbrakk>cont f; finite S\<rbrakk> \<Longrightarrow> adm (\<lambda>x. f x \<in> S)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 919 | by (erule adm_subst, induct set: finite, simp_all) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 920 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 921 | lemma udom_approx_principal: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 922 | "udom_approx i\<cdot>(udom_principal x) = | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 923 | udom_principal (ubasis_until (\<lambda>y. y \<le> i) x)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 924 | unfolding udom_approx_def | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 925 | apply (rule udom.extension_principal) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 926 | apply (erule udom_approx_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 927 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 928 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 929 | lemma finite_deflation_udom_approx: "finite_deflation (udom_approx i)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 930 | proof | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 931 | fix x show "udom_approx i\<cdot>(udom_approx i\<cdot>x) = udom_approx i\<cdot>x" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 932 | by (induct x rule: udom.principal_induct, simp) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 933 | (simp add: udom_approx_principal ubasis_until_idem) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 934 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 935 | fix x show "udom_approx i\<cdot>x \<sqsubseteq> x" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 936 | by (induct x rule: udom.principal_induct, simp) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 937 | (simp add: udom_approx_principal ubasis_until_less) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 938 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 939 | have *: "finite (range (\<lambda>x. udom_principal (ubasis_until (\<lambda>y. y \<le> i) x)))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 940 | apply (subst range_composition [where f=udom_principal]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 941 | apply (simp add: finite_range_ubasis_until) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 942 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 943 |   show "finite {x. udom_approx i\<cdot>x = x}"
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 944 | apply (rule finite_range_imp_finite_fixes) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 945 | apply (rule rev_finite_subset [OF *]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 946 | apply (clarsimp, rename_tac x) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 947 | apply (induct_tac x rule: udom.principal_induct) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 948 | apply (simp add: adm_mem_finite *) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 949 | apply (simp add: udom_approx_principal) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 950 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 951 | qed | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 952 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 953 | interpretation udom_approx: finite_deflation "udom_approx i" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 954 | by (rule finite_deflation_udom_approx) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 955 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 956 | lemma chain_udom_approx [simp]: "chain (\<lambda>i. udom_approx i)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 957 | unfolding udom_approx_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 958 | apply (rule chainI) | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 959 | apply (rule udom.extension_mono) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 960 | apply (erule udom_approx_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 961 | apply (erule udom_approx_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 962 | apply (rule udom.principal_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 963 | apply (rule ubasis_until_chain, simp) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 964 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 965 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 966 | lemma lub_udom_approx [simp]: "(\<Squnion>i. udom_approx i) = ID" | 
| 40002 
c5b5f7a3a3b1
new theorem names: fun_below_iff, fun_belowI, cfun_eq_iff, cfun_eqI, cfun_below_iff, cfun_belowI
 huffman parents: 
39984diff
changeset | 967 | apply (rule cfun_eqI, simp add: contlub_cfun_fun) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 968 | apply (rule below_antisym) | 
| 40500 
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
 huffman parents: 
40002diff
changeset | 969 | apply (rule lub_below) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 970 | apply (simp) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 971 | apply (rule udom_approx.below) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 972 | apply (rule_tac x=x in udom.principal_induct) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 973 | apply (simp add: lub_distribs) | 
| 40500 
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
 huffman parents: 
40002diff
changeset | 974 | apply (rule_tac i=a in below_lub) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 975 | apply simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 976 | apply (simp add: udom_approx_principal) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 977 | apply (simp add: ubasis_until_same ubasis_le_refl) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 978 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 979 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 980 | lemma udom_approx [simp]: "approx_chain udom_approx" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 981 | proof | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 982 | show "chain (\<lambda>i. udom_approx i)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 983 | by (rule chain_udom_approx) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 984 | show "(\<Squnion>i. udom_approx i) = ID" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 985 | by (rule lub_udom_approx) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 986 | qed | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 987 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 988 | instance udom :: bifinite | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 989 | by default (fast intro: udom_approx) | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 990 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 991 | hide_const (open) node | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 992 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 993 | end |