| author | wenzelm | 
| Wed, 11 Oct 2023 12:37:11 +0200 | |
| changeset 78761 | 6b3f13d39612 | 
| parent 73932 | fd21b4a93043 | 
| permissions | -rw-r--r-- | 
| 47613 | 1  | 
(* Author: Tobias Nipkow *)  | 
2  | 
||
| 68778 | 3  | 
subsection "Backward Analysis of Expressions"  | 
4  | 
||
| 47613 | 5  | 
theory Abs_Int2  | 
6  | 
imports Abs_Int1  | 
|
7  | 
begin  | 
|
8  | 
||
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51037 
diff
changeset
 | 
9  | 
instantiation prod :: (order,order) order  | 
| 47613 | 10  | 
begin  | 
11  | 
||
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51037 
diff
changeset
 | 
12  | 
definition "less_eq_prod p1 p2 = (fst p1 \<le> fst p2 \<and> snd p1 \<le> snd p2)"  | 
| 
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51037 
diff
changeset
 | 
13  | 
definition "less_prod p1 p2 = (p1 \<le> p2 \<and> \<not> p2 \<le> (p1::'a*'b))"  | 
| 47613 | 14  | 
|
15  | 
instance  | 
|
| 61179 | 16  | 
proof (standard, goal_cases)  | 
17  | 
case 1 show ?case by(rule less_prod_def)  | 
|
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51037 
diff
changeset
 | 
18  | 
next  | 
| 61179 | 19  | 
case 2 show ?case by(simp add: less_eq_prod_def)  | 
| 47613 | 20  | 
next  | 
| 61179 | 21  | 
case 3 thus ?case unfolding less_eq_prod_def by(metis order_trans)  | 
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51037 
diff
changeset
 | 
22  | 
next  | 
| 61179 | 23  | 
case 4 thus ?case by(simp add: less_eq_prod_def)(metis eq_iff surjective_pairing)  | 
| 47613 | 24  | 
qed  | 
25  | 
||
26  | 
end  | 
|
27  | 
||
28  | 
||
| 68778 | 29  | 
subsubsection "Extended Framework"  | 
| 47613 | 30  | 
|
| 51826 | 31  | 
subclass (in bounded_lattice) semilattice_sup_top ..  | 
| 47613 | 32  | 
|
| 52504 | 33  | 
locale Val_lattice_gamma = Gamma_semilattice where \<gamma> = \<gamma>  | 
| 51826 | 34  | 
for \<gamma> :: "'av::bounded_lattice \<Rightarrow> val set" +  | 
| 51390 | 35  | 
assumes inter_gamma_subset_gamma_inf:  | 
| 47613 | 36  | 
"\<gamma> a1 \<inter> \<gamma> a2 \<subseteq> \<gamma>(a1 \<sqinter> a2)"  | 
| 49396 | 37  | 
and gamma_bot[simp]: "\<gamma> \<bottom> = {}"
 | 
| 47613 | 38  | 
begin  | 
39  | 
||
| 67613 | 40  | 
lemma in_gamma_inf: "x \<in> \<gamma> a1 \<Longrightarrow> x \<in> \<gamma> a2 \<Longrightarrow> x \<in> \<gamma>(a1 \<sqinter> a2)"  | 
| 69712 | 41  | 
by (metis IntI inter_gamma_subset_gamma_inf subsetD)  | 
| 47613 | 42  | 
|
| 51848 | 43  | 
lemma gamma_inf: "\<gamma>(a1 \<sqinter> a2) = \<gamma> a1 \<inter> \<gamma> a2"  | 
| 51390 | 44  | 
by(rule equalityI[OF _ inter_gamma_subset_gamma_inf])  | 
| 51389 | 45  | 
(metis inf_le1 inf_le2 le_inf_iff mono_gamma)  | 
| 47613 | 46  | 
|
47  | 
end  | 
|
48  | 
||
49  | 
||
| 52504 | 50  | 
locale Val_inv = Val_lattice_gamma where \<gamma> = \<gamma>  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
51  | 
for \<gamma> :: "'av::bounded_lattice \<Rightarrow> val set" +  | 
| 47613 | 52  | 
fixes test_num' :: "val \<Rightarrow> 'av \<Rightarrow> bool"  | 
| 51974 | 53  | 
and inv_plus' :: "'av \<Rightarrow> 'av \<Rightarrow> 'av \<Rightarrow> 'av * 'av"  | 
54  | 
and inv_less' :: "bool \<Rightarrow> 'av \<Rightarrow> 'av \<Rightarrow> 'av * 'av"  | 
|
| 67613 | 55  | 
assumes test_num': "test_num' i a = (i \<in> \<gamma> a)"  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52504 
diff
changeset
 | 
56  | 
and inv_plus': "inv_plus' a a1 a2 = (a\<^sub>1',a\<^sub>2') \<Longrightarrow>  | 
| 67613 | 57  | 
i1 \<in> \<gamma> a1 \<Longrightarrow> i2 \<in> \<gamma> a2 \<Longrightarrow> i1+i2 \<in> \<gamma> a \<Longrightarrow> i1 \<in> \<gamma> a\<^sub>1' \<and> i2 \<in> \<gamma> a\<^sub>2'"  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52504 
diff
changeset
 | 
58  | 
and inv_less': "inv_less' (i1<i2) a1 a2 = (a\<^sub>1',a\<^sub>2') \<Longrightarrow>  | 
| 67613 | 59  | 
i1 \<in> \<gamma> a1 \<Longrightarrow> i2 \<in> \<gamma> a2 \<Longrightarrow> i1 \<in> \<gamma> a\<^sub>1' \<and> i2 \<in> \<gamma> a\<^sub>2'"  | 
| 47613 | 60  | 
|
61  | 
||
| 52504 | 62  | 
locale Abs_Int_inv = Val_inv where \<gamma> = \<gamma>  | 
| 51826 | 63  | 
for \<gamma> :: "'av::bounded_lattice \<Rightarrow> val set"  | 
| 47613 | 64  | 
begin  | 
65  | 
||
| 51389 | 66  | 
lemma in_gamma_sup_UpI:  | 
| 67613 | 67  | 
"s \<in> \<gamma>\<^sub>o S1 \<or> s \<in> \<gamma>\<^sub>o S2 \<Longrightarrow> s \<in> \<gamma>\<^sub>o(S1 \<squnion> S2)"  | 
| 
73932
 
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
 
desharna 
parents: 
69712 
diff
changeset
 | 
68  | 
by (metis (opaque_lifting, no_types) sup_ge1 sup_ge2 mono_gamma_o subsetD)  | 
| 47613 | 69  | 
|
70  | 
fun aval'' :: "aexp \<Rightarrow> 'av st option \<Rightarrow> 'av" where  | 
|
71  | 
"aval'' e None = \<bottom>" |  | 
|
| 51834 | 72  | 
"aval'' e (Some S) = aval' e S"  | 
| 47613 | 73  | 
|
| 67613 | 74  | 
lemma aval''_correct: "s \<in> \<gamma>\<^sub>o S \<Longrightarrow> aval a s \<in> \<gamma>(aval'' a S)"  | 
| 51974 | 75  | 
by(cases S)(auto simp add: aval'_correct split: option.splits)  | 
| 47613 | 76  | 
|
77  | 
subsubsection "Backward analysis"  | 
|
78  | 
||
| 55053 | 79  | 
fun inv_aval' :: "aexp \<Rightarrow> 'av \<Rightarrow> 'av st option \<Rightarrow> 'av st option" where  | 
80  | 
"inv_aval' (N n) a S = (if test_num' n a then S else None)" |  | 
|
81  | 
"inv_aval' (V x) a S = (case S of None \<Rightarrow> None | Some S \<Rightarrow>  | 
|
| 47613 | 82  | 
let a' = fun S x \<sqinter> a in  | 
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51037 
diff
changeset
 | 
83  | 
if a' = \<bottom> then None else Some(update S x a'))" |  | 
| 55053 | 84  | 
"inv_aval' (Plus e1 e2) a S =  | 
| 51974 | 85  | 
(let (a1,a2) = inv_plus' a (aval'' e1 S) (aval'' e2 S)  | 
| 55053 | 86  | 
in inv_aval' e1 a1 (inv_aval' e2 a2 S))"  | 
| 47613 | 87  | 
|
| 69597 | 88  | 
text\<open>The test for \<^const>\<open>bot\<close> in the \<^const>\<open>V\<close>-case is important: \<^const>\<open>bot\<close> indicates that a variable has no possible values, i.e.\ that the current  | 
| 47613 | 89  | 
program point is unreachable. But then the abstract state should collapse to  | 
| 69597 | 90  | 
\<^const>\<open>None\<close>. Put differently, we maintain the invariant that in an abstract  | 
91  | 
state of the form \<^term>\<open>Some s\<close>, all variables are mapped to non-\<^const>\<open>bot\<close> values. Otherwise the (pointwise) sup of two abstract states, one of  | 
|
92  | 
which contains \<^const>\<open>bot\<close> values, may produce too large a result, thus  | 
|
| 67406 | 93  | 
making the analysis less precise.\<close>  | 
| 47613 | 94  | 
|
95  | 
||
| 55053 | 96  | 
fun inv_bval' :: "bexp \<Rightarrow> bool \<Rightarrow> 'av st option \<Rightarrow> 'av st option" where  | 
97  | 
"inv_bval' (Bc v) res S = (if v=res then S else None)" |  | 
|
98  | 
"inv_bval' (Not b) res S = inv_bval' b (\<not> res) S" |  | 
|
99  | 
"inv_bval' (And b1 b2) res S =  | 
|
100  | 
(if res then inv_bval' b1 True (inv_bval' b2 True S)  | 
|
101  | 
else inv_bval' b1 False S \<squnion> inv_bval' b2 False S)" |  | 
|
102  | 
"inv_bval' (Less e1 e2) res S =  | 
|
| 51974 | 103  | 
(let (a1,a2) = inv_less' res (aval'' e1 S) (aval'' e2 S)  | 
| 55053 | 104  | 
in inv_aval' e1 a1 (inv_aval' e2 a2 S))"  | 
| 47613 | 105  | 
|
| 67613 | 106  | 
lemma inv_aval'_correct: "s \<in> \<gamma>\<^sub>o S \<Longrightarrow> aval e s \<in> \<gamma> a \<Longrightarrow> s \<in> \<gamma>\<^sub>o (inv_aval' e a S)"  | 
| 47613 | 107  | 
proof(induction e arbitrary: a S)  | 
108  | 
case N thus ?case by simp (metis test_num')  | 
|
109  | 
next  | 
|
110  | 
case (V x)  | 
|
| 67613 | 111  | 
obtain S' where "S = Some S'" and "s \<in> \<gamma>\<^sub>s S'" using \<open>s \<in> \<gamma>\<^sub>o S\<close>  | 
| 47613 | 112  | 
by(auto simp: in_gamma_option_iff)  | 
| 67613 | 113  | 
moreover hence "s x \<in> \<gamma> (fun S' x)"  | 
| 51849 | 114  | 
by(simp add: \<gamma>_st_def)  | 
| 67613 | 115  | 
moreover have "s x \<in> \<gamma> a" using V(2) by simp  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
116  | 
ultimately show ?case  | 
| 47613 | 117  | 
by(simp add: Let_def \<gamma>_st_def)  | 
| 51390 | 118  | 
(metis mono_gamma emptyE in_gamma_inf gamma_bot subset_empty)  | 
| 47613 | 119  | 
next  | 
120  | 
case (Plus e1 e2) thus ?case  | 
|
| 51974 | 121  | 
using inv_plus'[OF _ aval''_correct aval''_correct]  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
122  | 
by (auto split: prod.split)  | 
| 47613 | 123  | 
qed  | 
124  | 
||
| 67613 | 125  | 
lemma inv_bval'_correct: "s \<in> \<gamma>\<^sub>o S \<Longrightarrow> bv = bval b s \<Longrightarrow> s \<in> \<gamma>\<^sub>o(inv_bval' b bv S)"  | 
| 47613 | 126  | 
proof(induction b arbitrary: S bv)  | 
127  | 
case Bc thus ?case by simp  | 
|
128  | 
next  | 
|
129  | 
case (Not b) thus ?case by simp  | 
|
130  | 
next  | 
|
131  | 
case (And b1 b2) thus ?case  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
132  | 
by simp (metis And(1) And(2) in_gamma_sup_UpI)  | 
| 47613 | 133  | 
next  | 
134  | 
case (Less e1 e2) thus ?case  | 
|
| 
57492
 
74bf65a1910a
Hypsubst preserves equality hypotheses
 
Thomas Sewell <thomas.sewell@nicta.com.au> 
parents: 
55053 
diff
changeset
 | 
135  | 
apply hypsubst_thin  | 
| 
 
74bf65a1910a
Hypsubst preserves equality hypotheses
 
Thomas Sewell <thomas.sewell@nicta.com.au> 
parents: 
55053 
diff
changeset
 | 
136  | 
apply (auto split: prod.split)  | 
| 
 
74bf65a1910a
Hypsubst preserves equality hypotheses
 
Thomas Sewell <thomas.sewell@nicta.com.au> 
parents: 
55053 
diff
changeset
 | 
137  | 
apply (metis (lifting) inv_aval'_correct aval''_correct inv_less')  | 
| 
 
74bf65a1910a
Hypsubst preserves equality hypotheses
 
Thomas Sewell <thomas.sewell@nicta.com.au> 
parents: 
55053 
diff
changeset
 | 
138  | 
done  | 
| 47613 | 139  | 
qed  | 
140  | 
||
| 51390 | 141  | 
definition "step' = Step  | 
| 51389 | 142  | 
(\<lambda>x e S. case S of None \<Rightarrow> None | Some S \<Rightarrow> Some(update S x (aval' e S)))  | 
| 55053 | 143  | 
(\<lambda>b S. inv_bval' b True S)"  | 
| 47613 | 144  | 
|
145  | 
definition AI :: "com \<Rightarrow> 'av st option acom option" where  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
146  | 
"AI c = pfp (step' \<top>) (bot c)"  | 
| 47613 | 147  | 
|
148  | 
lemma strip_step'[simp]: "strip(step' S c) = strip c"  | 
|
| 51390 | 149  | 
by(simp add: step'_def)  | 
| 47613 | 150  | 
|
| 55053 | 151  | 
lemma top_on_inv_aval': "\<lbrakk> top_on_opt S X; vars e \<subseteq> -X \<rbrakk> \<Longrightarrow> top_on_opt (inv_aval' e a S) X"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
152  | 
by(induction e arbitrary: a S) (auto simp: Let_def split: option.splits prod.split)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
153  | 
|
| 55053 | 154  | 
lemma top_on_inv_bval': "\<lbrakk>top_on_opt S X; vars b \<subseteq> -X\<rbrakk> \<Longrightarrow> top_on_opt (inv_bval' b r S) X"  | 
155  | 
by(induction b arbitrary: r S) (auto simp: top_on_inv_aval' top_on_sup split: prod.split)  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
156  | 
|
| 51785 | 157  | 
lemma top_on_step': "top_on_acom C (- vars C) \<Longrightarrow> top_on_acom (step' \<top> C) (- vars C)"  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
158  | 
unfolding step'_def  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
159  | 
by(rule top_on_Step)  | 
| 55053 | 160  | 
(auto simp add: top_on_top top_on_inv_bval' split: option.split)  | 
| 47613 | 161  | 
|
| 51974 | 162  | 
subsubsection "Correctness"  | 
| 47613 | 163  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52504 
diff
changeset
 | 
164  | 
lemma step_step': "step (\<gamma>\<^sub>o S) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (step' S C)"  | 
| 51390 | 165  | 
unfolding step_def step'_def  | 
166  | 
by(rule gamma_Step_subcomm)  | 
|
| 55053 | 167  | 
(auto simp: intro!: aval'_correct inv_bval'_correct in_gamma_update split: option.splits)  | 
| 47613 | 168  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52504 
diff
changeset
 | 
169  | 
lemma AI_correct: "AI c = Some C \<Longrightarrow> CS c \<le> \<gamma>\<^sub>c C"  | 
| 47613 | 170  | 
proof(simp add: CS_def AI_def)  | 
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
171  | 
assume 1: "pfp (step' \<top>) (bot c) = Some C"  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
172  | 
have pfp': "step' \<top> C \<le> C" by(rule pfp_pfp[OF 1])  | 
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
67406 
diff
changeset
 | 
173  | 
have 2: "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c C" \<comment> \<open>transfer the pfp'\<close>  | 
| 50986 | 174  | 
proof(rule order_trans)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52504 
diff
changeset
 | 
175  | 
show "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (step' \<top> C)" by(rule step_step')  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52504 
diff
changeset
 | 
176  | 
show "... \<le> \<gamma>\<^sub>c C" by (metis mono_gamma_c[OF pfp'])  | 
| 47613 | 177  | 
qed  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52504 
diff
changeset
 | 
178  | 
have 3: "strip (\<gamma>\<^sub>c C) = c" by(simp add: strip_pfp[OF _ 1] step'_def)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52504 
diff
changeset
 | 
179  | 
have "lfp c (step (\<gamma>\<^sub>o \<top>)) \<le> \<gamma>\<^sub>c C"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52504 
diff
changeset
 | 
180  | 
by(rule lfp_lowerbound[simplified,where f="step (\<gamma>\<^sub>o \<top>)", OF 3 2])  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52504 
diff
changeset
 | 
181  | 
thus "lfp c (step UNIV) \<le> \<gamma>\<^sub>c C" by simp  | 
| 47613 | 182  | 
qed  | 
183  | 
||
184  | 
end  | 
|
185  | 
||
186  | 
||
187  | 
subsubsection "Monotonicity"  | 
|
188  | 
||
| 52504 | 189  | 
locale Abs_Int_inv_mono = Abs_Int_inv +  | 
| 
51359
 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 
nipkow 
parents: 
51037 
diff
changeset
 | 
190  | 
assumes mono_plus': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> plus' a1 a2 \<le> plus' b1 b2"  | 
| 51974 | 191  | 
and mono_inv_plus': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> r \<le> r' \<Longrightarrow>  | 
192  | 
inv_plus' r a1 a2 \<le> inv_plus' r' b1 b2"  | 
|
193  | 
and mono_inv_less': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow>  | 
|
194  | 
inv_less' bv a1 a2 \<le> inv_less' bv b1 b2"  | 
|
| 47613 | 195  | 
begin  | 
196  | 
||
197  | 
lemma mono_aval':  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
198  | 
"S1 \<le> S2 \<Longrightarrow> aval' e S1 \<le> aval' e S2"  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
199  | 
by(induction e) (auto simp: mono_plus' mono_fun)  | 
| 47613 | 200  | 
|
201  | 
lemma mono_aval'':  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
202  | 
"S1 \<le> S2 \<Longrightarrow> aval'' e S1 \<le> aval'' e S2"  | 
| 47613 | 203  | 
apply(cases S1)  | 
204  | 
apply simp  | 
|
205  | 
apply(cases S2)  | 
|
206  | 
apply simp  | 
|
207  | 
by (simp add: mono_aval')  | 
|
208  | 
||
| 55053 | 209  | 
lemma mono_inv_aval': "r1 \<le> r2 \<Longrightarrow> S1 \<le> S2 \<Longrightarrow> inv_aval' e r1 S1 \<le> inv_aval' e r2 S2"  | 
| 47613 | 210  | 
apply(induction e arbitrary: r1 r2 S1 S2)  | 
| 51390 | 211  | 
apply(auto simp: test_num' Let_def inf_mono split: option.splits prod.splits)  | 
212  | 
apply (metis mono_gamma subsetD)  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
213  | 
apply (metis le_bot inf_mono le_st_iff)  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
214  | 
apply (metis inf_mono mono_update le_st_iff)  | 
| 51974 | 215  | 
apply(metis mono_aval'' mono_inv_plus'[simplified less_eq_prod_def] fst_conv snd_conv)  | 
| 47613 | 216  | 
done  | 
217  | 
||
| 55053 | 218  | 
lemma mono_inv_bval': "S1 \<le> S2 \<Longrightarrow> inv_bval' b bv S1 \<le> inv_bval' b bv S2"  | 
| 47613 | 219  | 
apply(induction b arbitrary: bv S1 S2)  | 
| 51390 | 220  | 
apply(simp)  | 
221  | 
apply(simp)  | 
|
222  | 
apply simp  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
223  | 
apply(metis order_trans[OF _ sup_ge1] order_trans[OF _ sup_ge2])  | 
| 47613 | 224  | 
apply (simp split: prod.splits)  | 
| 55053 | 225  | 
apply(metis mono_aval'' mono_inv_aval' mono_inv_less'[simplified less_eq_prod_def] fst_conv snd_conv)  | 
| 47613 | 226  | 
done  | 
227  | 
||
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
228  | 
theorem mono_step': "S1 \<le> S2 \<Longrightarrow> C1 \<le> C2 \<Longrightarrow> step' S1 C1 \<le> step' S2 C2"  | 
| 51390 | 229  | 
unfolding step'_def  | 
| 55053 | 230  | 
by(rule mono2_Step) (auto simp: mono_aval' mono_inv_bval' split: option.split)  | 
| 47613 | 231  | 
|
| 
51711
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
232  | 
lemma mono_step'_top: "C1 \<le> C2 \<Longrightarrow> step' \<top> C1 \<le> step' \<top> C2"  | 
| 
 
df3426139651
complete revision: finally got rid of annoying L-predicate
 
nipkow 
parents: 
51390 
diff
changeset
 | 
233  | 
by (metis mono_step' order_refl)  | 
| 47613 | 234  | 
|
235  | 
end  | 
|
236  | 
||
237  | 
end  |