author | wenzelm |
Tue, 27 Apr 1999 15:10:36 +0200 | |
changeset 6526 | 6b64d1454ee3 |
parent 6433 | 228237ec56e5 |
child 6814 | d96d4977f94e |
permissions | -rw-r--r-- |
1475 | 1 |
(* Title: HOL/wf.ML |
923 | 2 |
ID: $Id$ |
1475 | 3 |
Author: Tobias Nipkow, with minor changes by Konrad Slind |
4 |
Copyright 1992 University of Cambridge/1995 TU Munich |
|
923 | 5 |
|
3198 | 6 |
Wellfoundedness, induction, and recursion |
923 | 7 |
*) |
8 |
||
950 | 9 |
val H_cong = read_instantiate [("f","H")] (standard(refl RS cong RS cong)); |
923 | 10 |
val H_cong1 = refl RS H_cong; |
11 |
||
5579 | 12 |
val [prem] = Goalw [wf_def] |
13 |
"[| !!P x. [| !x. (!y. (y,x) : r --> P(y)) --> P(x) |] ==> P(x) |] ==> wf(r)"; |
|
14 |
by (Clarify_tac 1); |
|
15 |
by (rtac prem 1); |
|
16 |
by (assume_tac 1); |
|
17 |
qed "wfUNIVI"; |
|
18 |
||
923 | 19 |
(*Restriction to domain A. If r is well-founded over A then wf(r)*) |
5316 | 20 |
val [prem1,prem2] = Goalw [wf_def] |
1642 | 21 |
"[| r <= A Times A; \ |
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
950
diff
changeset
|
22 |
\ !!x P. [| ! x. (! y. (y,x) : r --> P(y)) --> P(x); x:A |] ==> P(x) |] \ |
923 | 23 |
\ ==> wf(r)"; |
3708 | 24 |
by (Clarify_tac 1); |
923 | 25 |
by (rtac allE 1); |
26 |
by (assume_tac 1); |
|
4089 | 27 |
by (best_tac (claset() addSEs [prem1 RS subsetD RS SigmaE2] addIs [prem2]) 1); |
923 | 28 |
qed "wfI"; |
29 |
||
5316 | 30 |
val major::prems = Goalw [wf_def] |
923 | 31 |
"[| wf(r); \ |
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
950
diff
changeset
|
32 |
\ !!x.[| ! y. (y,x): r --> P(y) |] ==> P(x) \ |
923 | 33 |
\ |] ==> P(a)"; |
34 |
by (rtac (major RS spec RS mp RS spec) 1); |
|
4089 | 35 |
by (blast_tac (claset() addIs prems) 1); |
923 | 36 |
qed "wf_induct"; |
37 |
||
38 |
(*Perform induction on i, then prove the wf(r) subgoal using prems. *) |
|
39 |
fun wf_ind_tac a prems i = |
|
40 |
EVERY [res_inst_tac [("a",a)] wf_induct i, |
|
1465 | 41 |
rename_last_tac a ["1"] (i+1), |
42 |
ares_tac prems i]; |
|
923 | 43 |
|
5452 | 44 |
Goal "wf(r) ==> ! x. (a,x):r --> (x,a)~:r"; |
5316 | 45 |
by (wf_ind_tac "a" [] 1); |
2935 | 46 |
by (Blast_tac 1); |
5452 | 47 |
qed_spec_mp "wf_not_sym"; |
48 |
||
49 |
(* [| wf(r); (a,x):r; ~P ==> (x,a):r |] ==> P *) |
|
50 |
bind_thm ("wf_asym", wf_not_sym RS swap); |
|
923 | 51 |
|
5316 | 52 |
Goal "[| wf(r); (a,a): r |] ==> P"; |
53 |
by (blast_tac (claset() addEs [wf_asym]) 1); |
|
1618 | 54 |
qed "wf_irrefl"; |
923 | 55 |
|
1475 | 56 |
(*transitive closure of a wf relation is wf! *) |
5316 | 57 |
Goal "wf(r) ==> wf(r^+)"; |
58 |
by (stac wf_def 1); |
|
3708 | 59 |
by (Clarify_tac 1); |
923 | 60 |
(*must retain the universal formula for later use!*) |
61 |
by (rtac allE 1 THEN assume_tac 1); |
|
62 |
by (etac mp 1); |
|
5316 | 63 |
by (eres_inst_tac [("a","x")] wf_induct 1); |
923 | 64 |
by (rtac (impI RS allI) 1); |
65 |
by (etac tranclE 1); |
|
2935 | 66 |
by (Blast_tac 1); |
67 |
by (Blast_tac 1); |
|
923 | 68 |
qed "wf_trancl"; |
69 |
||
70 |
||
4762 | 71 |
val wf_converse_trancl = prove_goal thy |
72 |
"!!X. wf (r^-1) ==> wf ((r^+)^-1)" (K [ |
|
73 |
stac (trancl_converse RS sym) 1, |
|
74 |
etac wf_trancl 1]); |
|
75 |
||
3198 | 76 |
(*---------------------------------------------------------------------------- |
77 |
* Minimal-element characterization of well-foundedness |
|
78 |
*---------------------------------------------------------------------------*) |
|
79 |
||
5316 | 80 |
Goalw [wf_def] "wf r ==> x:Q --> (? z:Q. ! y. (y,z):r --> y~:Q)"; |
5318 | 81 |
by (dtac spec 1); |
5316 | 82 |
by (etac (mp RS spec) 1); |
3198 | 83 |
by (Blast_tac 1); |
84 |
val lemma1 = result(); |
|
85 |
||
5316 | 86 |
Goalw [wf_def] "(! Q x. x:Q --> (? z:Q. ! y. (y,z):r --> y~:Q)) ==> wf r"; |
3708 | 87 |
by (Clarify_tac 1); |
3198 | 88 |
by (dres_inst_tac [("x", "{x. ~ P x}")] spec 1); |
89 |
by (Blast_tac 1); |
|
90 |
val lemma2 = result(); |
|
91 |
||
5069 | 92 |
Goal "wf r = (! Q x. x:Q --> (? z:Q. ! y. (y,z):r --> y~:Q))"; |
4089 | 93 |
by (blast_tac (claset() addSIs [lemma1, lemma2]) 1); |
3198 | 94 |
qed "wf_eq_minimal"; |
95 |
||
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
96 |
(*--------------------------------------------------------------------------- |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
97 |
* Wellfoundedness of subsets |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
98 |
*---------------------------------------------------------------------------*) |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
99 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
100 |
Goal "[| wf(r); p<=r |] ==> wf(p)"; |
4089 | 101 |
by (full_simp_tac (simpset() addsimps [wf_eq_minimal]) 1); |
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
102 |
by (Fast_tac 1); |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
103 |
qed "wf_subset"; |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
104 |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
105 |
(*--------------------------------------------------------------------------- |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
106 |
* Wellfoundedness of the empty relation. |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
107 |
*---------------------------------------------------------------------------*) |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
108 |
|
5069 | 109 |
Goal "wf({})"; |
4089 | 110 |
by (simp_tac (simpset() addsimps [wf_def]) 1); |
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
111 |
qed "wf_empty"; |
5281 | 112 |
AddIffs [wf_empty]; |
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
113 |
|
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
114 |
(*--------------------------------------------------------------------------- |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
115 |
* Wellfoundedness of `insert' |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
116 |
*---------------------------------------------------------------------------*) |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
117 |
|
5069 | 118 |
Goal "wf(insert (y,x) r) = (wf(r) & (x,y) ~: r^*)"; |
3457 | 119 |
by (rtac iffI 1); |
4350
1983e4054fd8
updated for latest Blast_tac, which treats equality differently
paulson
parents:
4153
diff
changeset
|
120 |
by (blast_tac (claset() addEs [wf_trancl RS wf_irrefl] |
1983e4054fd8
updated for latest Blast_tac, which treats equality differently
paulson
parents:
4153
diff
changeset
|
121 |
addIs [rtrancl_into_trancl1,wf_subset,impOfSubs rtrancl_mono]) 1); |
4089 | 122 |
by (asm_full_simp_tac (simpset() addsimps [wf_eq_minimal]) 1); |
4153 | 123 |
by Safe_tac; |
3457 | 124 |
by (EVERY1[rtac allE, atac, etac impE, Blast_tac]); |
125 |
by (etac bexE 1); |
|
126 |
by (rename_tac "a" 1); |
|
127 |
by (case_tac "a = x" 1); |
|
128 |
by (res_inst_tac [("x","a")]bexI 2); |
|
129 |
by (assume_tac 3); |
|
130 |
by (Blast_tac 2); |
|
131 |
by (case_tac "y:Q" 1); |
|
132 |
by (Blast_tac 2); |
|
4059 | 133 |
by (res_inst_tac [("x","{z. z:Q & (z,y) : r^*}")] allE 1); |
3457 | 134 |
by (assume_tac 1); |
4059 | 135 |
by (thin_tac "! Q. (? x. x : Q) --> ?P Q" 1); (*essential for speed*) |
4350
1983e4054fd8
updated for latest Blast_tac, which treats equality differently
paulson
parents:
4153
diff
changeset
|
136 |
(*Blast_tac with new substOccur fails*) |
1983e4054fd8
updated for latest Blast_tac, which treats equality differently
paulson
parents:
4153
diff
changeset
|
137 |
by (best_tac (claset() addIs [rtrancl_into_rtrancl2]) 1); |
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
138 |
qed "wf_insert"; |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
139 |
AddIffs [wf_insert]; |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
140 |
|
5281 | 141 |
(*--------------------------------------------------------------------------- |
142 |
* Wellfoundedness of `disjoint union' |
|
143 |
*---------------------------------------------------------------------------*) |
|
144 |
||
5330 | 145 |
(*Intuition behind this proof for the case of binary union: |
146 |
||
147 |
Goal: find an (R u S)-min element of a nonempty subset A. |
|
148 |
by case distinction: |
|
149 |
1. There is a step a -R-> b with a,b : A. |
|
150 |
Pick an R-min element z of the (nonempty) set {a:A | EX b:A. a -R-> b}. |
|
151 |
By definition, there is z':A s.t. z -R-> z'. Because z is R-min in the |
|
152 |
subset, z' must be R-min in A. Because z' has an R-predecessor, it cannot |
|
153 |
have an S-successor and is thus S-min in A as well. |
|
154 |
2. There is no such step. |
|
155 |
Pick an S-min element of A. In this case it must be an R-min |
|
156 |
element of A as well. |
|
157 |
||
158 |
*) |
|
159 |
||
5316 | 160 |
Goal "[| !i:I. wf(r i); \ |
161 |
\ !i:I.!j:I. r i ~= r j --> Domain(r i) Int Range(r j) = {} & \ |
|
162 |
\ Domain(r j) Int Range(r i) = {} \ |
|
163 |
\ |] ==> wf(UN i:I. r i)"; |
|
5318 | 164 |
by (asm_full_simp_tac (HOL_basic_ss addsimps [wf_eq_minimal]) 1); |
165 |
by (Clarify_tac 1); |
|
166 |
by (rename_tac "A a" 1); |
|
167 |
by (case_tac "? i:I. ? a:A. ? b:A. (b,a) : r i" 1); |
|
168 |
by (Clarify_tac 1); |
|
169 |
by (EVERY1[dtac bspec, atac, |
|
5281 | 170 |
eres_inst_tac[("x","{a. a:A & (? b:A. (b,a) : r i)}")]allE]); |
5318 | 171 |
by (EVERY1[etac allE,etac impE]); |
172 |
by (Blast_tac 1); |
|
173 |
by (Clarify_tac 1); |
|
174 |
by (rename_tac "z'" 1); |
|
175 |
by (res_inst_tac [("x","z'")] bexI 1); |
|
176 |
by (assume_tac 2); |
|
177 |
by (Clarify_tac 1); |
|
178 |
by (rename_tac "j" 1); |
|
179 |
by (case_tac "r j = r i" 1); |
|
180 |
by (EVERY1[etac allE,etac impE,atac]); |
|
181 |
by (Asm_full_simp_tac 1); |
|
182 |
by (Blast_tac 1); |
|
183 |
by (blast_tac (claset() addEs [equalityE]) 1); |
|
184 |
by (Asm_full_simp_tac 1); |
|
5521 | 185 |
by (fast_tac (claset() delWrapper "bspec") 1); (*faster than Blast_tac*) |
5281 | 186 |
qed "wf_UN"; |
187 |
||
188 |
Goalw [Union_def] |
|
189 |
"[| !r:R. wf r; \ |
|
190 |
\ !r:R.!s:R. r ~= s --> Domain r Int Range s = {} & \ |
|
191 |
\ Domain s Int Range r = {} \ |
|
192 |
\ |] ==> wf(Union R)"; |
|
5318 | 193 |
by (rtac wf_UN 1); |
194 |
by (Blast_tac 1); |
|
195 |
by (Blast_tac 1); |
|
5281 | 196 |
qed "wf_Union"; |
197 |
||
5316 | 198 |
Goal "[| wf r; wf s; Domain r Int Range s = {}; Domain s Int Range r = {} \ |
199 |
\ |] ==> wf(r Un s)"; |
|
5318 | 200 |
by (rtac (simplify (simpset()) (read_instantiate[("R","{r,s}")]wf_Union)) 1); |
201 |
by (Blast_tac 1); |
|
202 |
by (Blast_tac 1); |
|
5281 | 203 |
qed "wf_Un"; |
204 |
||
205 |
(*--------------------------------------------------------------------------- |
|
206 |
* Wellfoundedness of `image' |
|
207 |
*---------------------------------------------------------------------------*) |
|
208 |
||
209 |
Goal "[| wf r; inj f |] ==> wf(prod_fun f f `` r)"; |
|
5318 | 210 |
by (asm_full_simp_tac (HOL_basic_ss addsimps [wf_eq_minimal]) 1); |
211 |
by (Clarify_tac 1); |
|
212 |
by (case_tac "? p. f p : Q" 1); |
|
213 |
by (eres_inst_tac [("x","{p. f p : Q}")]allE 1); |
|
214 |
by (fast_tac (claset() addDs [injD]) 1); |
|
215 |
by (Blast_tac 1); |
|
5281 | 216 |
qed "wf_prod_fun_image"; |
217 |
||
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
218 |
(*** acyclic ***) |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
219 |
|
4750 | 220 |
val acyclicI = prove_goalw WF.thy [acyclic_def] |
221 |
"!!r. !x. (x, x) ~: r^+ ==> acyclic r" (K [atac 1]); |
|
222 |
||
5069 | 223 |
Goalw [acyclic_def] |
5148
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5143
diff
changeset
|
224 |
"wf r ==> acyclic r"; |
4089 | 225 |
by (blast_tac (claset() addEs [wf_trancl RS wf_irrefl]) 1); |
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
226 |
qed "wf_acyclic"; |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
227 |
|
5452 | 228 |
Goalw [acyclic_def] "acyclic(insert (y,x) r) = (acyclic r & (x,y) ~: r^*)"; |
4089 | 229 |
by (simp_tac (simpset() addsimps [trancl_insert]) 1); |
5452 | 230 |
by (blast_tac (claset() addIs [rtrancl_trans]) 1); |
3413
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
231 |
qed "acyclic_insert"; |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
232 |
AddIffs [acyclic_insert]; |
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
nipkow
parents:
3320
diff
changeset
|
233 |
|
5069 | 234 |
Goalw [acyclic_def] "acyclic(r^-1) = acyclic r"; |
4746 | 235 |
by (simp_tac (simpset() addsimps [trancl_converse]) 1); |
236 |
qed "acyclic_converse"; |
|
3198 | 237 |
|
6433 | 238 |
Goalw [acyclic_def] "[| acyclic s; r <= s |] ==> acyclic r"; |
239 |
by(blast_tac (claset() addIs [trancl_mono]) 1); |
|
240 |
qed "acyclic_subset"; |
|
241 |
||
923 | 242 |
(** cut **) |
243 |
||
244 |
(*This rewrite rule works upon formulae; thus it requires explicit use of |
|
245 |
H_cong to expose the equality*) |
|
5069 | 246 |
Goalw [cut_def] |
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
950
diff
changeset
|
247 |
"(cut f r x = cut g r x) = (!y. (y,x):r --> f(y)=g(y))"; |
4686 | 248 |
by (simp_tac (HOL_ss addsimps [expand_fun_eq]) 1); |
1475 | 249 |
qed "cuts_eq"; |
923 | 250 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
251 |
Goalw [cut_def] "(x,a):r ==> (cut f r a)(x) = f(x)"; |
1552 | 252 |
by (asm_simp_tac HOL_ss 1); |
923 | 253 |
qed "cut_apply"; |
254 |
||
255 |
(*** is_recfun ***) |
|
256 |
||
5069 | 257 |
Goalw [is_recfun_def,cut_def] |
5148
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5143
diff
changeset
|
258 |
"[| is_recfun r H a f; ~(b,a):r |] ==> f(b) = arbitrary"; |
923 | 259 |
by (etac ssubst 1); |
1552 | 260 |
by (asm_simp_tac HOL_ss 1); |
923 | 261 |
qed "is_recfun_undef"; |
262 |
||
263 |
(*** NOTE! some simplifications need a different finish_tac!! ***) |
|
264 |
fun indhyp_tac hyps = |
|
265 |
(cut_facts_tac hyps THEN' |
|
266 |
DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE' |
|
1465 | 267 |
eresolve_tac [transD, mp, allE])); |
2637
e9b203f854ae
reflecting my recent changes of the simplifier and classical reasoner
oheimb
parents:
2031
diff
changeset
|
268 |
val wf_super_ss = HOL_ss addSolver indhyp_tac; |
923 | 269 |
|
5316 | 270 |
Goalw [is_recfun_def,cut_def] |
1475 | 271 |
"[| wf(r); trans(r); is_recfun r H a f; is_recfun r H b g |] ==> \ |
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
950
diff
changeset
|
272 |
\ (x,a):r --> (x,b):r --> f(x)=g(x)"; |
923 | 273 |
by (etac wf_induct 1); |
274 |
by (REPEAT (rtac impI 1 ORELSE etac ssubst 1)); |
|
275 |
by (asm_simp_tac (wf_super_ss addcongs [if_cong]) 1); |
|
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1475
diff
changeset
|
276 |
qed_spec_mp "is_recfun_equal"; |
923 | 277 |
|
278 |
||
279 |
val prems as [wfr,transr,recfa,recgb,_] = goalw WF.thy [cut_def] |
|
280 |
"[| wf(r); trans(r); \ |
|
1475 | 281 |
\ is_recfun r H a f; is_recfun r H b g; (b,a):r |] ==> \ |
923 | 282 |
\ cut f r b = g"; |
283 |
val gundef = recgb RS is_recfun_undef |
|
284 |
and fisg = recgb RS (recfa RS (transr RS (wfr RS is_recfun_equal))); |
|
285 |
by (cut_facts_tac prems 1); |
|
286 |
by (rtac ext 1); |
|
4686 | 287 |
by (asm_simp_tac (wf_super_ss addsimps [gundef,fisg]) 1); |
923 | 288 |
qed "is_recfun_cut"; |
289 |
||
290 |
(*** Main Existence Lemma -- Basic Properties of the_recfun ***) |
|
291 |
||
5316 | 292 |
Goalw [the_recfun_def] |
1475 | 293 |
"is_recfun r H a f ==> is_recfun r H a (the_recfun r H a)"; |
5316 | 294 |
by (eres_inst_tac [("P", "is_recfun r H a")] selectI 1); |
923 | 295 |
qed "is_the_recfun"; |
296 |
||
5316 | 297 |
Goal "[| wf(r); trans(r) |] ==> is_recfun r H a (the_recfun r H a)"; |
298 |
by (wf_ind_tac "a" [] 1); |
|
4821 | 299 |
by (res_inst_tac [("f","cut (%y. H (the_recfun r H y) y) r a1")] |
300 |
is_the_recfun 1); |
|
301 |
by (rewtac is_recfun_def); |
|
302 |
by (stac cuts_eq 1); |
|
303 |
by (Clarify_tac 1); |
|
304 |
by (rtac (refl RSN (2,H_cong)) 1); |
|
305 |
by (subgoal_tac |
|
1475 | 306 |
"the_recfun r H y = cut(%x. H(cut(the_recfun r H y) r x) x) r y" 1); |
4821 | 307 |
by (etac allE 2); |
308 |
by (dtac impE 2); |
|
309 |
by (atac 2); |
|
1475 | 310 |
by (atac 3); |
4821 | 311 |
by (atac 2); |
312 |
by (etac ssubst 1); |
|
313 |
by (simp_tac (HOL_ss addsimps [cuts_eq]) 1); |
|
314 |
by (Clarify_tac 1); |
|
315 |
by (stac cut_apply 1); |
|
5132 | 316 |
by (fast_tac (claset() addDs [transD]) 1); |
4821 | 317 |
by (rtac (refl RSN (2,H_cong)) 1); |
318 |
by (fold_tac [is_recfun_def]); |
|
319 |
by (asm_simp_tac (wf_super_ss addsimps[is_recfun_cut]) 1); |
|
923 | 320 |
qed "unfold_the_recfun"; |
321 |
||
1475 | 322 |
val unwind1_the_recfun = rewrite_rule[is_recfun_def] unfold_the_recfun; |
923 | 323 |
|
1475 | 324 |
(*--------------Old proof----------------------------------------------------- |
5316 | 325 |
val prems = Goal |
1475 | 326 |
"[| wf(r); trans(r) |] ==> is_recfun r H a (the_recfun r H a)"; |
327 |
by (cut_facts_tac prems 1); |
|
328 |
by (wf_ind_tac "a" prems 1); |
|
329 |
by (res_inst_tac [("f", "cut (%y. wftrec r H y) r a1")] is_the_recfun 1); |
|
330 |
by (rewrite_goals_tac [is_recfun_def, wftrec_def]); |
|
2031 | 331 |
by (stac cuts_eq 1); |
1475 | 332 |
(*Applying the substitution: must keep the quantified assumption!!*) |
3708 | 333 |
by (EVERY1 [Clarify_tac, rtac H_cong1, rtac allE, atac, |
1475 | 334 |
etac (mp RS ssubst), atac]); |
335 |
by (fold_tac [is_recfun_def]); |
|
336 |
by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cuts_eq]) 1); |
|
337 |
qed "unfold_the_recfun"; |
|
338 |
---------------------------------------------------------------------------*) |
|
923 | 339 |
|
340 |
(** Removal of the premise trans(r) **) |
|
1475 | 341 |
val th = rewrite_rule[is_recfun_def] |
342 |
(trans_trancl RSN (2,(wf_trancl RS unfold_the_recfun))); |
|
923 | 343 |
|
5069 | 344 |
Goalw [wfrec_def] |
5148
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5143
diff
changeset
|
345 |
"wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a"; |
1475 | 346 |
by (rtac H_cong 1); |
347 |
by (rtac refl 2); |
|
348 |
by (simp_tac (HOL_ss addsimps [cuts_eq]) 1); |
|
349 |
by (rtac allI 1); |
|
350 |
by (rtac impI 1); |
|
351 |
by (simp_tac(HOL_ss addsimps [wfrec_def]) 1); |
|
352 |
by (res_inst_tac [("a1","a")] (th RS ssubst) 1); |
|
353 |
by (atac 1); |
|
354 |
by (forward_tac[wf_trancl] 1); |
|
355 |
by (forward_tac[r_into_trancl] 1); |
|
356 |
by (asm_simp_tac (HOL_ss addsimps [cut_apply]) 1); |
|
357 |
by (rtac H_cong 1); (*expose the equality of cuts*) |
|
358 |
by (rtac refl 2); |
|
359 |
by (simp_tac (HOL_ss addsimps [cuts_eq, cut_apply, r_into_trancl]) 1); |
|
3708 | 360 |
by (Clarify_tac 1); |
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1475
diff
changeset
|
361 |
by (res_inst_tac [("r","r^+")] is_recfun_equal 1); |
1475 | 362 |
by (atac 1); |
363 |
by (rtac trans_trancl 1); |
|
364 |
by (rtac unfold_the_recfun 1); |
|
365 |
by (atac 1); |
|
366 |
by (rtac trans_trancl 1); |
|
367 |
by (rtac unfold_the_recfun 1); |
|
368 |
by (atac 1); |
|
369 |
by (rtac trans_trancl 1); |
|
370 |
by (rtac transD 1); |
|
371 |
by (rtac trans_trancl 1); |
|
4762 | 372 |
by (forw_inst_tac [("p","(ya,y)")] r_into_trancl 1); |
1475 | 373 |
by (atac 1); |
374 |
by (atac 1); |
|
4762 | 375 |
by (forw_inst_tac [("p","(ya,y)")] r_into_trancl 1); |
1475 | 376 |
by (atac 1); |
377 |
qed "wfrec"; |
|
378 |
||
379 |
(*--------------Old proof----------------------------------------------------- |
|
5069 | 380 |
Goalw [wfrec_def] |
5148
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5143
diff
changeset
|
381 |
"wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a"; |
923 | 382 |
by (etac (wf_trancl RS wftrec RS ssubst) 1); |
383 |
by (rtac trans_trancl 1); |
|
384 |
by (rtac (refl RS H_cong) 1); (*expose the equality of cuts*) |
|
1475 | 385 |
by (simp_tac (HOL_ss addsimps [cuts_eq, cut_apply, r_into_trancl]) 1); |
923 | 386 |
qed "wfrec"; |
1475 | 387 |
---------------------------------------------------------------------------*) |
923 | 388 |
|
1475 | 389 |
(*--------------------------------------------------------------------------- |
390 |
* This form avoids giant explosions in proofs. NOTE USE OF == |
|
391 |
*---------------------------------------------------------------------------*) |
|
5316 | 392 |
val rew::prems = goal thy |
1475 | 393 |
"[| f==wfrec r H; wf(r) |] ==> f(a) = H (cut f r a) a"; |
923 | 394 |
by (rewtac rew); |
395 |
by (REPEAT (resolve_tac (prems@[wfrec]) 1)); |
|
396 |
qed "def_wfrec"; |
|
1475 | 397 |
|
3198 | 398 |
|
399 |
(**** TFL variants ****) |
|
400 |
||
5278 | 401 |
Goal "!R. wf R --> (!P. (!x. (!y. (y,x):R --> P y) --> P x) --> (!x. P x))"; |
3708 | 402 |
by (Clarify_tac 1); |
3198 | 403 |
by (res_inst_tac [("r","R"),("P","P"), ("a","x")] wf_induct 1); |
404 |
by (assume_tac 1); |
|
405 |
by (Blast_tac 1); |
|
406 |
qed"tfl_wf_induct"; |
|
407 |
||
5069 | 408 |
Goal "!f R. (x,a):R --> (cut f R a)(x) = f(x)"; |
3708 | 409 |
by (Clarify_tac 1); |
3198 | 410 |
by (rtac cut_apply 1); |
411 |
by (assume_tac 1); |
|
412 |
qed"tfl_cut_apply"; |
|
413 |
||
5069 | 414 |
Goal "!M R f. (f=wfrec R M) --> wf R --> (!x. f x = M (cut f R x) x)"; |
3708 | 415 |
by (Clarify_tac 1); |
4153 | 416 |
by (etac wfrec 1); |
3198 | 417 |
qed "tfl_wfrec"; |