| author | wenzelm | 
| Wed, 29 Sep 1999 13:54:31 +0200 | |
| changeset 7640 | 6b7daae5d316 | 
| parent 289 | 78541329ff35 | 
| permissions | -rw-r--r-- | 
| 0 | 1 | (* Title: CCL/hered | 
| 2 | ID: $Id$ | |
| 3 | Author: Martin Coen, Cambridge University Computer Laboratory | |
| 4 | Copyright 1993 University of Cambridge | |
| 5 | ||
| 6 | For hered.thy. | |
| 7 | *) | |
| 8 | ||
| 9 | open Hered; | |
| 10 | ||
| 11 | fun type_of_terms (Const("Trueprop",_) $ (Const("op =",(Type ("fun", [t,_])))$_$_)) = t;
 | |
| 12 | ||
| 13 | (*** Hereditary Termination ***) | |
| 14 | ||
| 15 | goalw Hered.thy [HTTgen_def] "mono(%X.HTTgen(X))"; | |
| 16 | br monoI 1; | |
| 17 | by (fast_tac set_cs 1); | |
| 18 | val HTTgen_mono = result(); | |
| 19 | ||
| 20 | goalw Hered.thy [HTTgen_def] | |
| 21 | "t : HTTgen(A) <-> t=true | t=false | (EX a b.t=<a,b> & a : A & b : A) | \ | |
| 22 | \ (EX f.t=lam x.f(x) & (ALL x.f(x) : A))"; | |
| 23 | by (fast_tac set_cs 1); | |
| 24 | val HTTgenXH = result(); | |
| 25 | ||
| 26 | goal Hered.thy | |
| 27 | "t : HTT <-> t=true | t=false | (EX a b.t=<a,b> & a : HTT & b : HTT) | \ | |
| 28 | \ (EX f.t=lam x.f(x) & (ALL x.f(x) : HTT))"; | |
| 29 | br (rewrite_rule [HTTgen_def] | |
| 30 | (HTTgen_mono RS (HTT_def RS def_gfp_Tarski) RS XHlemma1)) 1; | |
| 31 | by (fast_tac set_cs 1); | |
| 32 | val HTTXH = result(); | |
| 33 | ||
| 34 | (*** Introduction Rules for HTT ***) | |
| 35 | ||
| 36 | goal Hered.thy "~ bot : HTT"; | |
| 37 | by (fast_tac (term_cs addDs [XH_to_D HTTXH]) 1); | |
| 38 | val HTT_bot = result(); | |
| 39 | ||
| 40 | goal Hered.thy "true : HTT"; | |
| 41 | by (fast_tac (term_cs addIs [XH_to_I HTTXH]) 1); | |
| 42 | val HTT_true = result(); | |
| 43 | ||
| 44 | goal Hered.thy "false : HTT"; | |
| 45 | by (fast_tac (term_cs addIs [XH_to_I HTTXH]) 1); | |
| 46 | val HTT_false = result(); | |
| 47 | ||
| 48 | goal Hered.thy "<a,b> : HTT <-> a : HTT & b : HTT"; | |
| 49 | br (HTTXH RS iff_trans) 1; | |
| 50 | by (fast_tac term_cs 1); | |
| 51 | val HTT_pair = result(); | |
| 52 | ||
| 53 | goal Hered.thy "lam x.f(x) : HTT <-> (ALL x. f(x) : HTT)"; | |
| 54 | br (HTTXH RS iff_trans) 1; | |
| 8 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 lcp parents: 
0diff
changeset | 55 | by (simp_tac term_ss 1); | 
| 0 | 56 | by (safe_tac term_cs); | 
| 8 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 lcp parents: 
0diff
changeset | 57 | by (asm_simp_tac term_ss 1); | 
| 0 | 58 | by (fast_tac term_cs 1); | 
| 59 | val HTT_lam = result(); | |
| 60 | ||
| 61 | local | |
| 62 | val raw_HTTrews = [HTT_bot,HTT_true,HTT_false,HTT_pair,HTT_lam]; | |
| 63 | fun mk_thm s = prove_goalw Hered.thy data_defs s (fn _ => | |
| 8 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 lcp parents: 
0diff
changeset | 64 | [simp_tac (term_ss addsimps raw_HTTrews) 1]); | 
| 0 | 65 | in | 
| 66 | val HTT_rews = raw_HTTrews @ | |
| 67 | map mk_thm ["one : HTT", | |
| 68 | "inl(a) : HTT <-> a : HTT", | |
| 69 | "inr(b) : HTT <-> b : HTT", | |
| 70 | "zero : HTT", | |
| 71 | "succ(n) : HTT <-> n : HTT", | |
| 72 | "[] : HTT", | |
| 289 | 73 | "x$xs : HTT <-> x : HTT & xs : HTT"]; | 
| 0 | 74 | end; | 
| 75 | ||
| 76 | val HTT_Is = HTT_rews @ (HTT_rews RL [iffD2]); | |
| 77 | ||
| 78 | (*** Coinduction for HTT ***) | |
| 79 | ||
| 80 | val prems = goal Hered.thy "[| t : R; R <= HTTgen(R) |] ==> t : HTT"; | |
| 81 | br (HTT_def RS def_coinduct) 1; | |
| 82 | by (REPEAT (ares_tac prems 1)); | |
| 83 | val HTT_coinduct = result(); | |
| 84 | ||
| 85 | fun HTT_coinduct_tac s i = res_inst_tac [("R",s)] HTT_coinduct i;
 | |
| 86 | ||
| 87 | val prems = goal Hered.thy | |
| 88 | "[| t : R; R <= HTTgen(lfp(%x. HTTgen(x) Un R Un HTT)) |] ==> t : HTT"; | |
| 89 | br (HTTgen_mono RSN(3,HTT_def RS def_coinduct3)) 1; | |
| 90 | by (REPEAT (ares_tac prems 1)); | |
| 91 | val HTT_coinduct3 = result(); | |
| 92 | val HTT_coinduct3_raw = rewrite_rule [HTTgen_def] HTT_coinduct3; | |
| 93 | ||
| 94 | fun HTT_coinduct3_tac s i = res_inst_tac [("R",s)] HTT_coinduct3 i;
 | |
| 95 | ||
| 96 | val HTTgenIs = map (mk_genIs Hered.thy data_defs HTTgenXH HTTgen_mono) | |
| 97 | ["true : HTTgen(R)", | |
| 98 | "false : HTTgen(R)", | |
| 99 | "[| a : R; b : R |] ==> <a,b> : HTTgen(R)", | |
| 100 | "[| !!x. b(x) : R |] ==> lam x.b(x) : HTTgen(R)", | |
| 101 | "one : HTTgen(R)", | |
| 102 | "a : lfp(%x. HTTgen(x) Un R Un HTT) ==> \ | |
| 103 | \ inl(a) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))", | |
| 104 | "b : lfp(%x. HTTgen(x) Un R Un HTT) ==> \ | |
| 105 | \ inr(b) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))", | |
| 106 | "zero : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))", | |
| 107 | "n : lfp(%x. HTTgen(x) Un R Un HTT) ==> \ | |
| 108 | \ succ(n) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))", | |
| 109 | "[] : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))", | |
| 110 | "[| h : lfp(%x. HTTgen(x) Un R Un HTT); t : lfp(%x. HTTgen(x) Un R Un HTT) |] ==>\ | |
| 289 | 111 | \ h$t : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))"]; | 
| 0 | 112 | |
| 113 | (*** Formation Rules for Types ***) | |
| 114 | ||
| 115 | goal Hered.thy "Unit <= HTT"; | |
| 8 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 lcp parents: 
0diff
changeset | 116 | by (simp_tac (CCL_ss addsimps ([subsetXH,UnitXH] @ HTT_rews)) 1); | 
| 0 | 117 | val UnitF = result(); | 
| 118 | ||
| 119 | goal Hered.thy "Bool <= HTT"; | |
| 8 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 lcp parents: 
0diff
changeset | 120 | by (simp_tac (CCL_ss addsimps ([subsetXH,BoolXH] @ HTT_rews)) 1); | 
| 0 | 121 | by (fast_tac (set_cs addIs HTT_Is @ (prems RL [subsetD])) 1); | 
| 122 | val BoolF = result(); | |
| 123 | ||
| 124 | val prems = goal Hered.thy "[| A <= HTT; B <= HTT |] ==> A + B <= HTT"; | |
| 8 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 lcp parents: 
0diff
changeset | 125 | by (simp_tac (CCL_ss addsimps ([subsetXH,PlusXH] @ HTT_rews)) 1); | 
| 0 | 126 | by (fast_tac (set_cs addIs HTT_Is @ (prems RL [subsetD])) 1); | 
| 127 | val PlusF = result(); | |
| 128 | ||
| 129 | val prems = goal Hered.thy | |
| 130 | "[| A <= HTT; !!x.x:A ==> B(x) <= HTT |] ==> SUM x:A.B(x) <= HTT"; | |
| 8 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 lcp parents: 
0diff
changeset | 131 | by (simp_tac (CCL_ss addsimps ([subsetXH,SgXH] @ HTT_rews)) 1); | 
| 0 | 132 | by (fast_tac (set_cs addIs HTT_Is @ (prems RL [subsetD])) 1); | 
| 133 | val SigmaF = result(); | |
| 134 | ||
| 135 | (*** Formation Rules for Recursive types - using coinduction these only need ***) | |
| 136 | (*** exhaution rule for type-former ***) | |
| 137 | ||
| 138 | (*Proof by induction - needs induction rule for type*) | |
| 139 | goal Hered.thy "Nat <= HTT"; | |
| 8 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 lcp parents: 
0diff
changeset | 140 | by (simp_tac (term_ss addsimps [subsetXH]) 1); | 
| 0 | 141 | by (safe_tac set_cs); | 
| 142 | be Nat_ind 1; | |
| 143 | by (ALLGOALS (fast_tac (set_cs addIs HTT_Is @ (prems RL [subsetD])))); | |
| 144 | val NatF = result(); | |
| 145 | ||
| 146 | goal Hered.thy "Nat <= HTT"; | |
| 147 | by (safe_tac set_cs); | |
| 148 | be HTT_coinduct3 1; | |
| 149 | by (fast_tac (set_cs addIs HTTgenIs | |
| 150 | addSEs [HTTgen_mono RS ci3_RI] addEs [XH_to_E NatXH]) 1); | |
| 151 | val NatF = result(); | |
| 152 | ||
| 153 | val [prem] = goal Hered.thy "A <= HTT ==> List(A) <= HTT"; | |
| 154 | by (safe_tac set_cs); | |
| 155 | be HTT_coinduct3 1; | |
| 156 | by (fast_tac (set_cs addSIs HTTgenIs | |
| 157 | addSEs [HTTgen_mono RS ci3_RI,prem RS subsetD RS (HTTgen_mono RS ci3_AI)] | |
| 158 | addEs [XH_to_E ListXH]) 1); | |
| 159 | val ListF = result(); | |
| 160 | ||
| 161 | val [prem] = goal Hered.thy "A <= HTT ==> Lists(A) <= HTT"; | |
| 162 | by (safe_tac set_cs); | |
| 163 | be HTT_coinduct3 1; | |
| 164 | by (fast_tac (set_cs addSIs HTTgenIs | |
| 165 | addSEs [HTTgen_mono RS ci3_RI,prem RS subsetD RS (HTTgen_mono RS ci3_AI)] | |
| 166 | addEs [XH_to_E ListsXH]) 1); | |
| 167 | val ListsF = result(); | |
| 168 | ||
| 169 | val [prem] = goal Hered.thy "A <= HTT ==> ILists(A) <= HTT"; | |
| 170 | by (safe_tac set_cs); | |
| 171 | be HTT_coinduct3 1; | |
| 172 | by (fast_tac (set_cs addSIs HTTgenIs | |
| 173 | addSEs [HTTgen_mono RS ci3_RI,prem RS subsetD RS (HTTgen_mono RS ci3_AI)] | |
| 174 | addEs [XH_to_E IListsXH]) 1); | |
| 175 | val IListsF = result(); | |
| 176 | ||
| 177 | (*** A possible use for this predicate is proving equality from pre-order ***) | |
| 178 | (*** but it seems as easy (and more general) to do this directly by coinduction ***) | |
| 179 | (* | |
| 180 | val prems = goal Hered.thy "[| t : HTT; t [= u |] ==> u [= t"; | |
| 181 | by (po_coinduct_tac "{p. EX a b.p=<a,b> & b : HTT & b [= a}" 1);
 | |
| 182 | by (fast_tac (ccl_cs addIs prems) 1); | |
| 183 | by (safe_tac ccl_cs); | |
| 184 | bd (poXH RS iffD1) 1; | |
| 185 | by (safe_tac (set_cs addSEs [HTT_bot RS notE])); | |
| 186 | by (REPEAT_SOME (rtac (POgenXH RS iffD2) ORELSE' etac rev_mp)); | |
| 8 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 lcp parents: 
0diff
changeset | 187 | by (ALLGOALS (simp_tac (term_ss addsimps HTT_rews))); | 
| 0 | 188 | by (ALLGOALS (fast_tac ccl_cs)); | 
| 189 | val HTT_po_op = result(); | |
| 190 | ||
| 191 | val prems = goal Hered.thy "[| t : HTT; t [= u |] ==> t = u"; | |
| 192 | by (REPEAT (ares_tac (prems @ [conjI RS (eq_iff RS iffD2),HTT_po_op]) 1)); | |
| 193 | val HTT_po_eq = result(); | |
| 194 | *) |