| 1461 |      1 | (*  Title:      LCF/fix
 | 
| 660 |      2 |     ID:         $Id$
 | 
| 1461 |      3 |     Author:     Tobias Nipkow
 | 
| 660 |      4 |     Copyright   1992  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Fixedpoint theory
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
| 0 |      9 | signature FIX =
 | 
|  |     10 | sig
 | 
|  |     11 |   val adm_eq: thm
 | 
|  |     12 |   val adm_not_eq_tr: thm
 | 
|  |     13 |   val adm_not_not: thm
 | 
|  |     14 |   val not_eq_TT: thm
 | 
|  |     15 |   val not_eq_FF: thm
 | 
|  |     16 |   val not_eq_UU: thm
 | 
|  |     17 |   val induct2: thm
 | 
|  |     18 |   val induct_tac: string -> int -> tactic
 | 
|  |     19 |   val induct2_tac: string*string -> int -> tactic
 | 
|  |     20 | end;
 | 
|  |     21 | 
 | 
|  |     22 | structure Fix:FIX =
 | 
|  |     23 | struct
 | 
|  |     24 | 
 | 
| 3837 |     25 | val adm_eq = prove_goal LCF.thy "adm(%x. t(x)=(u(x)::'a::cpo))"
 | 
| 1461 |     26 |         (fn _ => [rewtac eq_def,
 | 
|  |     27 |                   REPEAT(rstac[adm_conj,adm_less]1)]);
 | 
| 0 |     28 | 
 | 
|  |     29 | val adm_not_not = prove_goal LCF.thy "adm(P) ==> adm(%x.~~P(x))"
 | 
| 1461 |     30 |         (fn prems => [simp_tac (LCF_ss addsimps prems) 1]);
 | 
| 0 |     31 | 
 | 
|  |     32 | 
 | 
|  |     33 | val tac = rtac tr_induct 1 THEN REPEAT(simp_tac LCF_ss 1);
 | 
|  |     34 | 
 | 
|  |     35 | val not_eq_TT = prove_goal LCF.thy "ALL p. ~p=TT <-> (p=FF | p=UU)"
 | 
| 660 |     36 |     (fn _ => [tac]) RS spec;
 | 
| 0 |     37 | 
 | 
|  |     38 | val not_eq_FF = prove_goal LCF.thy "ALL p. ~p=FF <-> (p=TT | p=UU)"
 | 
| 660 |     39 |     (fn _ => [tac]) RS spec;
 | 
| 0 |     40 | 
 | 
|  |     41 | val not_eq_UU = prove_goal LCF.thy "ALL p. ~p=UU <-> (p=TT | p=FF)"
 | 
| 660 |     42 |     (fn _ => [tac]) RS spec;
 | 
| 0 |     43 | 
 | 
| 3837 |     44 | val adm_not_eq_tr = prove_goal LCF.thy "ALL p::tr. adm(%x. ~t(x)=p)"
 | 
| 660 |     45 |     (fn _ => [rtac tr_induct 1,
 | 
|  |     46 |     REPEAT(simp_tac (LCF_ss addsimps [not_eq_TT,not_eq_FF,not_eq_UU]) 1 THEN
 | 
| 1461 |     47 |            REPEAT(rstac [adm_disj,adm_eq] 1))]) RS spec;
 | 
| 0 |     48 | 
 | 
|  |     49 | val adm_lemmas = [adm_not_free,adm_eq,adm_less,adm_not_less,adm_not_eq_tr,
 | 
| 1461 |     50 |                   adm_conj,adm_disj,adm_imp,adm_all];
 | 
| 0 |     51 | 
 | 
|  |     52 | fun induct_tac v i = res_inst_tac[("f",v)] induct i THEN
 | 
| 1461 |     53 |                      REPEAT(rstac adm_lemmas i);
 | 
| 0 |     54 | 
 | 
|  |     55 | 
 | 
|  |     56 | val least_FIX = prove_goal LCF.thy "f(p) = p ==> FIX(f) << p"
 | 
| 1461 |     57 |         (fn [prem] => [induct_tac "f" 1, rtac minimal 1, strip_tac 1,
 | 
|  |     58 |                         stac (prem RS sym) 1, etac less_ap_term 1]);
 | 
| 0 |     59 | 
 | 
|  |     60 | val lfp_is_FIX = prove_goal LCF.thy
 | 
| 1461 |     61 |         "[| f(p) = p; ALL q. f(q)=q --> p << q |] ==> p = FIX(f)"
 | 
|  |     62 |         (fn [prem1,prem2] => [rtac less_anti_sym 1,
 | 
|  |     63 |                               rtac (prem2 RS spec RS mp) 1, rtac FIX_eq 1,
 | 
|  |     64 |                               rtac least_FIX 1, rtac prem1 1]);
 | 
| 0 |     65 | 
 | 
|  |     66 | val ffix = read_instantiate [("f","f::?'a=>?'a")] FIX_eq;
 | 
|  |     67 | val gfix = read_instantiate [("f","g::?'a=>?'a")] FIX_eq;
 | 
|  |     68 | val ss = LCF_ss addsimps [ffix,gfix];
 | 
|  |     69 | 
 | 
|  |     70 | val FIX_pair = prove_goal LCF.thy
 | 
|  |     71 |   "<FIX(f),FIX(g)> = FIX(%p.<f(FST(p)),g(SND(p))>)"
 | 
|  |     72 |   (fn _ => [rtac lfp_is_FIX 1, simp_tac ss 1,
 | 
| 1461 |     73 |           strip_tac 1, simp_tac (LCF_ss addsimps [PROD_less]) 1,
 | 
|  |     74 |           rtac conjI 1, rtac least_FIX 1, etac subst 1, rtac (FST RS sym) 1,
 | 
|  |     75 |           rtac least_FIX 1, etac subst 1, rtac (SND RS sym) 1]);
 | 
| 0 |     76 | 
 | 
|  |     77 | val FIX_pair_conj = rewrite_rule (map mk_meta_eq [PROD_eq,FST,SND]) FIX_pair;
 | 
|  |     78 | 
 | 
|  |     79 | val FIX1 = FIX_pair_conj RS conjunct1;
 | 
|  |     80 | val FIX2 = FIX_pair_conj RS conjunct2;
 | 
|  |     81 | 
 | 
|  |     82 | val induct2 = prove_goal LCF.thy
 | 
| 3837 |     83 |          "[| adm(%p. P(FST(p),SND(p))); P(UU::'a,UU::'b);\
 | 
| 1461 |     84 | \            ALL x y. P(x,y) --> P(f(x),g(y)) |] ==> P(FIX(f),FIX(g))"
 | 
|  |     85 |         (fn prems => [EVERY1
 | 
|  |     86 |         [res_inst_tac [("f","f"),("g","g")] (standard(FIX1 RS ssubst)),
 | 
|  |     87 |          res_inst_tac [("f","f"),("g","g")] (standard(FIX2 RS ssubst)),
 | 
|  |     88 |          res_inst_tac [("f","%x. <f(FST(x)),g(SND(x))>")] induct,
 | 
|  |     89 |          rstac prems, simp_tac ss, rstac prems,
 | 
|  |     90 |          simp_tac (LCF_ss addsimps [expand_all_PROD]), rstac prems]]);
 | 
| 0 |     91 | 
 | 
|  |     92 | fun induct2_tac (f,g) i = res_inst_tac[("f",f),("g",g)] induct2 i THEN
 | 
| 1461 |     93 |                      REPEAT(rstac adm_lemmas i);
 | 
| 0 |     94 | 
 | 
|  |     95 | end;
 | 
|  |     96 | 
 | 
|  |     97 | open Fix;
 |