| author | wenzelm | 
| Sun, 04 Mar 2012 19:24:05 +0100 | |
| changeset 46815 | 6bccb1dc9bc3 | 
| parent 45703 | c7a13ce60161 | 
| child 46820 | c656222c4dc1 | 
| permissions | -rw-r--r-- | 
| 23146 | 1  | 
(* Title: ZF/Bin.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
3  | 
Copyright 1994 University of Cambridge  | 
|
4  | 
||
5  | 
The sign Pls stands for an infinite string of leading 0's.  | 
|
6  | 
The sign Min stands for an infinite string of leading 1's.  | 
|
7  | 
||
8  | 
A number can have multiple representations, namely leading 0's with sign  | 
|
9  | 
Pls and leading 1's with sign Min. See twos-compl.ML/int_of_binary for  | 
|
10  | 
the numerical interpretation.  | 
|
11  | 
||
12  | 
The representation expects that (m mod 2) is 0 or 1, even if m is negative;  | 
|
13  | 
For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1  | 
|
14  | 
*)  | 
|
15  | 
||
16  | 
header{*Arithmetic on Binary Integers*}
 | 
|
17  | 
||
18  | 
theory Bin  | 
|
| 
26056
 
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
 
krauss 
parents: 
24893 
diff
changeset
 | 
19  | 
imports Int_ZF Datatype_ZF  | 
| 26190 | 20  | 
uses ("Tools/numeral_syntax.ML")
 | 
| 23146 | 21  | 
begin  | 
22  | 
||
23  | 
consts bin :: i  | 
|
24  | 
datatype  | 
|
25  | 
"bin" = Pls  | 
|
26  | 
| Min  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
26190 
diff
changeset
 | 
27  | 
        | Bit ("w: bin", "b: bool")     (infixl "BIT" 90)
 | 
| 23146 | 28  | 
|
29  | 
consts  | 
|
30  | 
integ_of :: "i=>i"  | 
|
31  | 
NCons :: "[i,i]=>i"  | 
|
32  | 
bin_succ :: "i=>i"  | 
|
33  | 
bin_pred :: "i=>i"  | 
|
34  | 
bin_minus :: "i=>i"  | 
|
35  | 
bin_adder :: "i=>i"  | 
|
36  | 
bin_mult :: "[i,i]=>i"  | 
|
37  | 
||
38  | 
primrec  | 
|
39  | 
integ_of_Pls: "integ_of (Pls) = $# 0"  | 
|
40  | 
integ_of_Min: "integ_of (Min) = $-($#1)"  | 
|
41  | 
integ_of_BIT: "integ_of (w BIT b) = $#b $+ integ_of(w) $+ integ_of(w)"  | 
|
42  | 
||
43  | 
(** recall that cond(1,b,c)=b and cond(0,b,c)=0 **)  | 
|
44  | 
||
45  | 
primrec (*NCons adds a bit, suppressing leading 0s and 1s*)  | 
|
46  | 
NCons_Pls: "NCons (Pls,b) = cond(b,Pls BIT b,Pls)"  | 
|
47  | 
NCons_Min: "NCons (Min,b) = cond(b,Min,Min BIT b)"  | 
|
48  | 
NCons_BIT: "NCons (w BIT c,b) = w BIT c BIT b"  | 
|
49  | 
||
50  | 
primrec (*successor. If a BIT, can change a 0 to a 1 without recursion.*)  | 
|
51  | 
bin_succ_Pls: "bin_succ (Pls) = Pls BIT 1"  | 
|
52  | 
bin_succ_Min: "bin_succ (Min) = Pls"  | 
|
53  | 
bin_succ_BIT: "bin_succ (w BIT b) = cond(b, bin_succ(w) BIT 0, NCons(w,1))"  | 
|
54  | 
||
55  | 
primrec (*predecessor*)  | 
|
56  | 
bin_pred_Pls: "bin_pred (Pls) = Min"  | 
|
57  | 
bin_pred_Min: "bin_pred (Min) = Min BIT 0"  | 
|
58  | 
bin_pred_BIT: "bin_pred (w BIT b) = cond(b, NCons(w,0), bin_pred(w) BIT 1)"  | 
|
59  | 
||
60  | 
primrec (*unary negation*)  | 
|
61  | 
bin_minus_Pls:  | 
|
62  | 
"bin_minus (Pls) = Pls"  | 
|
63  | 
bin_minus_Min:  | 
|
64  | 
"bin_minus (Min) = Pls BIT 1"  | 
|
65  | 
bin_minus_BIT:  | 
|
66  | 
"bin_minus (w BIT b) = cond(b, bin_pred(NCons(bin_minus(w),0)),  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
26190 
diff
changeset
 | 
67  | 
bin_minus(w) BIT 0)"  | 
| 23146 | 68  | 
|
69  | 
primrec (*sum*)  | 
|
70  | 
bin_adder_Pls:  | 
|
71  | 
"bin_adder (Pls) = (lam w:bin. w)"  | 
|
72  | 
bin_adder_Min:  | 
|
73  | 
"bin_adder (Min) = (lam w:bin. bin_pred(w))"  | 
|
74  | 
bin_adder_BIT:  | 
|
75  | 
"bin_adder (v BIT x) =  | 
|
76  | 
(lam w:bin.  | 
|
77  | 
bin_case (v BIT x, bin_pred(v BIT x),  | 
|
78  | 
%w y. NCons(bin_adder (v) ` cond(x and y, bin_succ(w), w),  | 
|
79  | 
x xor y),  | 
|
80  | 
w))"  | 
|
81  | 
||
82  | 
(*The bin_case above replaces the following mutually recursive function:  | 
|
83  | 
primrec  | 
|
84  | 
"adding (v,x,Pls) = v BIT x"  | 
|
85  | 
"adding (v,x,Min) = bin_pred(v BIT x)"  | 
|
86  | 
"adding (v,x,w BIT y) = NCons(bin_adder (v, cond(x and y, bin_succ(w), w)),  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
26190 
diff
changeset
 | 
87  | 
x xor y)"  | 
| 23146 | 88  | 
*)  | 
89  | 
||
| 24893 | 90  | 
definition  | 
91  | 
bin_add :: "[i,i]=>i" where  | 
|
| 23146 | 92  | 
"bin_add(v,w) == bin_adder(v)`w"  | 
93  | 
||
94  | 
||
95  | 
primrec  | 
|
96  | 
bin_mult_Pls:  | 
|
97  | 
"bin_mult (Pls,w) = Pls"  | 
|
98  | 
bin_mult_Min:  | 
|
99  | 
"bin_mult (Min,w) = bin_minus(w)"  | 
|
100  | 
bin_mult_BIT:  | 
|
101  | 
"bin_mult (v BIT b,w) = cond(b, bin_add(NCons(bin_mult(v,w),0),w),  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
26190 
diff
changeset
 | 
102  | 
NCons(bin_mult(v,w),0))"  | 
| 23146 | 103  | 
|
| 
35112
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
32960 
diff
changeset
 | 
104  | 
syntax  | 
| 
45703
 
c7a13ce60161
renamed inner syntax categories "num" to "num_token" and "xnum" to "xnum_token";
 
wenzelm 
parents: 
35123 
diff
changeset
 | 
105  | 
  "_Int"    :: "xnum_token => i"        ("_")
 | 
| 
35112
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
32960 
diff
changeset
 | 
106  | 
|
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
32960 
diff
changeset
 | 
107  | 
use "Tools/numeral_syntax.ML"  | 
| 35123 | 108  | 
setup Numeral_Syntax.setup  | 
| 23146 | 109  | 
|
110  | 
||
111  | 
declare bin.intros [simp,TC]  | 
|
112  | 
||
113  | 
lemma NCons_Pls_0: "NCons(Pls,0) = Pls"  | 
|
114  | 
by simp  | 
|
115  | 
||
116  | 
lemma NCons_Pls_1: "NCons(Pls,1) = Pls BIT 1"  | 
|
117  | 
by simp  | 
|
118  | 
||
119  | 
lemma NCons_Min_0: "NCons(Min,0) = Min BIT 0"  | 
|
120  | 
by simp  | 
|
121  | 
||
122  | 
lemma NCons_Min_1: "NCons(Min,1) = Min"  | 
|
123  | 
by simp  | 
|
124  | 
||
125  | 
lemma NCons_BIT: "NCons(w BIT x,b) = w BIT x BIT b"  | 
|
126  | 
by (simp add: bin.case_eqns)  | 
|
127  | 
||
128  | 
lemmas NCons_simps [simp] =  | 
|
129  | 
NCons_Pls_0 NCons_Pls_1 NCons_Min_0 NCons_Min_1 NCons_BIT  | 
|
130  | 
||
131  | 
||
132  | 
||
133  | 
(** Type checking **)  | 
|
134  | 
||
135  | 
lemma integ_of_type [TC]: "w: bin ==> integ_of(w) : int"  | 
|
136  | 
apply (induct_tac "w")  | 
|
137  | 
apply (simp_all add: bool_into_nat)  | 
|
138  | 
done  | 
|
139  | 
||
140  | 
lemma NCons_type [TC]: "[| w: bin; b: bool |] ==> NCons(w,b) : bin"  | 
|
141  | 
by (induct_tac "w", auto)  | 
|
142  | 
||
143  | 
lemma bin_succ_type [TC]: "w: bin ==> bin_succ(w) : bin"  | 
|
144  | 
by (induct_tac "w", auto)  | 
|
145  | 
||
146  | 
lemma bin_pred_type [TC]: "w: bin ==> bin_pred(w) : bin"  | 
|
147  | 
by (induct_tac "w", auto)  | 
|
148  | 
||
149  | 
lemma bin_minus_type [TC]: "w: bin ==> bin_minus(w) : bin"  | 
|
150  | 
by (induct_tac "w", auto)  | 
|
151  | 
||
152  | 
(*This proof is complicated by the mutual recursion*)  | 
|
153  | 
lemma bin_add_type [rule_format,TC]:  | 
|
154  | 
"v: bin ==> ALL w: bin. bin_add(v,w) : bin"  | 
|
155  | 
apply (unfold bin_add_def)  | 
|
156  | 
apply (induct_tac "v")  | 
|
157  | 
apply (rule_tac [3] ballI)  | 
|
158  | 
apply (rename_tac [3] "w'")  | 
|
159  | 
apply (induct_tac [3] "w'")  | 
|
160  | 
apply (simp_all add: NCons_type)  | 
|
161  | 
done  | 
|
162  | 
||
163  | 
lemma bin_mult_type [TC]: "[| v: bin; w: bin |] ==> bin_mult(v,w) : bin"  | 
|
164  | 
by (induct_tac "v", auto)  | 
|
165  | 
||
166  | 
||
167  | 
subsubsection{*The Carry and Borrow Functions, 
 | 
|
168  | 
            @{term bin_succ} and @{term bin_pred}*}
 | 
|
169  | 
||
170  | 
(*NCons preserves the integer value of its argument*)  | 
|
171  | 
lemma integ_of_NCons [simp]:  | 
|
172  | 
"[| w: bin; b: bool |] ==> integ_of(NCons(w,b)) = integ_of(w BIT b)"  | 
|
173  | 
apply (erule bin.cases)  | 
|
174  | 
apply (auto elim!: boolE)  | 
|
175  | 
done  | 
|
176  | 
||
177  | 
lemma integ_of_succ [simp]:  | 
|
178  | 
"w: bin ==> integ_of(bin_succ(w)) = $#1 $+ integ_of(w)"  | 
|
179  | 
apply (erule bin.induct)  | 
|
180  | 
apply (auto simp add: zadd_ac elim!: boolE)  | 
|
181  | 
done  | 
|
182  | 
||
183  | 
lemma integ_of_pred [simp]:  | 
|
184  | 
"w: bin ==> integ_of(bin_pred(w)) = $- ($#1) $+ integ_of(w)"  | 
|
185  | 
apply (erule bin.induct)  | 
|
186  | 
apply (auto simp add: zadd_ac elim!: boolE)  | 
|
187  | 
done  | 
|
188  | 
||
189  | 
||
190  | 
subsubsection{*@{term bin_minus}: Unary Negation of Binary Integers*}
 | 
|
191  | 
||
192  | 
lemma integ_of_minus: "w: bin ==> integ_of(bin_minus(w)) = $- integ_of(w)"  | 
|
193  | 
apply (erule bin.induct)  | 
|
194  | 
apply (auto simp add: zadd_ac zminus_zadd_distrib elim!: boolE)  | 
|
195  | 
done  | 
|
196  | 
||
197  | 
||
198  | 
subsubsection{*@{term bin_add}: Binary Addition*}
 | 
|
199  | 
||
200  | 
lemma bin_add_Pls [simp]: "w: bin ==> bin_add(Pls,w) = w"  | 
|
201  | 
by (unfold bin_add_def, simp)  | 
|
202  | 
||
203  | 
lemma bin_add_Pls_right: "w: bin ==> bin_add(w,Pls) = w"  | 
|
204  | 
apply (unfold bin_add_def)  | 
|
205  | 
apply (erule bin.induct, auto)  | 
|
206  | 
done  | 
|
207  | 
||
208  | 
lemma bin_add_Min [simp]: "w: bin ==> bin_add(Min,w) = bin_pred(w)"  | 
|
209  | 
by (unfold bin_add_def, simp)  | 
|
210  | 
||
211  | 
lemma bin_add_Min_right: "w: bin ==> bin_add(w,Min) = bin_pred(w)"  | 
|
212  | 
apply (unfold bin_add_def)  | 
|
213  | 
apply (erule bin.induct, auto)  | 
|
214  | 
done  | 
|
215  | 
||
216  | 
lemma bin_add_BIT_Pls [simp]: "bin_add(v BIT x,Pls) = v BIT x"  | 
|
217  | 
by (unfold bin_add_def, simp)  | 
|
218  | 
||
219  | 
lemma bin_add_BIT_Min [simp]: "bin_add(v BIT x,Min) = bin_pred(v BIT x)"  | 
|
220  | 
by (unfold bin_add_def, simp)  | 
|
221  | 
||
222  | 
lemma bin_add_BIT_BIT [simp]:  | 
|
223  | 
"[| w: bin; y: bool |]  | 
|
224  | 
==> bin_add(v BIT x, w BIT y) =  | 
|
225  | 
NCons(bin_add(v, cond(x and y, bin_succ(w), w)), x xor y)"  | 
|
226  | 
by (unfold bin_add_def, simp)  | 
|
227  | 
||
228  | 
lemma integ_of_add [rule_format]:  | 
|
229  | 
"v: bin ==>  | 
|
230  | 
ALL w: bin. integ_of(bin_add(v,w)) = integ_of(v) $+ integ_of(w)"  | 
|
231  | 
apply (erule bin.induct, simp, simp)  | 
|
232  | 
apply (rule ballI)  | 
|
233  | 
apply (induct_tac "wa")  | 
|
234  | 
apply (auto simp add: zadd_ac elim!: boolE)  | 
|
235  | 
done  | 
|
236  | 
||
237  | 
(*Subtraction*)  | 
|
238  | 
lemma diff_integ_of_eq:  | 
|
239  | 
"[| v: bin; w: bin |]  | 
|
240  | 
==> integ_of(v) $- integ_of(w) = integ_of(bin_add (v, bin_minus(w)))"  | 
|
241  | 
apply (unfold zdiff_def)  | 
|
242  | 
apply (simp add: integ_of_add integ_of_minus)  | 
|
243  | 
done  | 
|
244  | 
||
245  | 
||
246  | 
subsubsection{*@{term bin_mult}: Binary Multiplication*}
 | 
|
247  | 
||
248  | 
lemma integ_of_mult:  | 
|
249  | 
"[| v: bin; w: bin |]  | 
|
250  | 
==> integ_of(bin_mult(v,w)) = integ_of(v) $* integ_of(w)"  | 
|
251  | 
apply (induct_tac "v", simp)  | 
|
252  | 
apply (simp add: integ_of_minus)  | 
|
253  | 
apply (auto simp add: zadd_ac integ_of_add zadd_zmult_distrib elim!: boolE)  | 
|
254  | 
done  | 
|
255  | 
||
256  | 
||
257  | 
subsection{*Computations*}
 | 
|
258  | 
||
259  | 
(** extra rules for bin_succ, bin_pred **)  | 
|
260  | 
||
261  | 
lemma bin_succ_1: "bin_succ(w BIT 1) = bin_succ(w) BIT 0"  | 
|
262  | 
by simp  | 
|
263  | 
||
264  | 
lemma bin_succ_0: "bin_succ(w BIT 0) = NCons(w,1)"  | 
|
265  | 
by simp  | 
|
266  | 
||
267  | 
lemma bin_pred_1: "bin_pred(w BIT 1) = NCons(w,0)"  | 
|
268  | 
by simp  | 
|
269  | 
||
270  | 
lemma bin_pred_0: "bin_pred(w BIT 0) = bin_pred(w) BIT 1"  | 
|
271  | 
by simp  | 
|
272  | 
||
273  | 
(** extra rules for bin_minus **)  | 
|
274  | 
||
275  | 
lemma bin_minus_1: "bin_minus(w BIT 1) = bin_pred(NCons(bin_minus(w), 0))"  | 
|
276  | 
by simp  | 
|
277  | 
||
278  | 
lemma bin_minus_0: "bin_minus(w BIT 0) = bin_minus(w) BIT 0"  | 
|
279  | 
by simp  | 
|
280  | 
||
281  | 
(** extra rules for bin_add **)  | 
|
282  | 
||
283  | 
lemma bin_add_BIT_11: "w: bin ==> bin_add(v BIT 1, w BIT 1) =  | 
|
284  | 
NCons(bin_add(v, bin_succ(w)), 0)"  | 
|
285  | 
by simp  | 
|
286  | 
||
287  | 
lemma bin_add_BIT_10: "w: bin ==> bin_add(v BIT 1, w BIT 0) =  | 
|
288  | 
NCons(bin_add(v,w), 1)"  | 
|
289  | 
by simp  | 
|
290  | 
||
291  | 
lemma bin_add_BIT_0: "[| w: bin; y: bool |]  | 
|
292  | 
==> bin_add(v BIT 0, w BIT y) = NCons(bin_add(v,w), y)"  | 
|
293  | 
by simp  | 
|
294  | 
||
295  | 
(** extra rules for bin_mult **)  | 
|
296  | 
||
297  | 
lemma bin_mult_1: "bin_mult(v BIT 1, w) = bin_add(NCons(bin_mult(v,w),0), w)"  | 
|
298  | 
by simp  | 
|
299  | 
||
300  | 
lemma bin_mult_0: "bin_mult(v BIT 0, w) = NCons(bin_mult(v,w),0)"  | 
|
301  | 
by simp  | 
|
302  | 
||
303  | 
||
304  | 
(** Simplification rules with integer constants **)  | 
|
305  | 
||
306  | 
lemma int_of_0: "$#0 = #0"  | 
|
307  | 
by simp  | 
|
308  | 
||
309  | 
lemma int_of_succ: "$# succ(n) = #1 $+ $#n"  | 
|
310  | 
by (simp add: int_of_add [symmetric] natify_succ)  | 
|
311  | 
||
312  | 
lemma zminus_0 [simp]: "$- #0 = #0"  | 
|
313  | 
by simp  | 
|
314  | 
||
315  | 
lemma zadd_0_intify [simp]: "#0 $+ z = intify(z)"  | 
|
316  | 
by simp  | 
|
317  | 
||
318  | 
lemma zadd_0_right_intify [simp]: "z $+ #0 = intify(z)"  | 
|
319  | 
by simp  | 
|
320  | 
||
321  | 
lemma zmult_1_intify [simp]: "#1 $* z = intify(z)"  | 
|
322  | 
by simp  | 
|
323  | 
||
324  | 
lemma zmult_1_right_intify [simp]: "z $* #1 = intify(z)"  | 
|
325  | 
by (subst zmult_commute, simp)  | 
|
326  | 
||
327  | 
lemma zmult_0 [simp]: "#0 $* z = #0"  | 
|
328  | 
by simp  | 
|
329  | 
||
330  | 
lemma zmult_0_right [simp]: "z $* #0 = #0"  | 
|
331  | 
by (subst zmult_commute, simp)  | 
|
332  | 
||
333  | 
lemma zmult_minus1 [simp]: "#-1 $* z = $-z"  | 
|
334  | 
by (simp add: zcompare_rls)  | 
|
335  | 
||
336  | 
lemma zmult_minus1_right [simp]: "z $* #-1 = $-z"  | 
|
337  | 
apply (subst zmult_commute)  | 
|
338  | 
apply (rule zmult_minus1)  | 
|
339  | 
done  | 
|
340  | 
||
341  | 
||
342  | 
subsection{*Simplification Rules for Comparison of Binary Numbers*}
 | 
|
343  | 
text{*Thanks to Norbert Voelker*}
 | 
|
344  | 
||
345  | 
(** Equals (=) **)  | 
|
346  | 
||
347  | 
lemma eq_integ_of_eq:  | 
|
348  | 
"[| v: bin; w: bin |]  | 
|
349  | 
==> ((integ_of(v)) = integ_of(w)) <->  | 
|
350  | 
iszero (integ_of (bin_add (v, bin_minus(w))))"  | 
|
351  | 
apply (unfold iszero_def)  | 
|
352  | 
apply (simp add: zcompare_rls integ_of_add integ_of_minus)  | 
|
353  | 
done  | 
|
354  | 
||
355  | 
lemma iszero_integ_of_Pls: "iszero (integ_of(Pls))"  | 
|
356  | 
by (unfold iszero_def, simp)  | 
|
357  | 
||
358  | 
||
359  | 
lemma nonzero_integ_of_Min: "~ iszero (integ_of(Min))"  | 
|
360  | 
apply (unfold iszero_def)  | 
|
361  | 
apply (simp add: zminus_equation)  | 
|
362  | 
done  | 
|
363  | 
||
364  | 
lemma iszero_integ_of_BIT:  | 
|
365  | 
"[| w: bin; x: bool |]  | 
|
366  | 
==> iszero (integ_of (w BIT x)) <-> (x=0 & iszero (integ_of(w)))"  | 
|
367  | 
apply (unfold iszero_def, simp)  | 
|
368  | 
apply (subgoal_tac "integ_of (w) : int")  | 
|
369  | 
apply typecheck  | 
|
370  | 
apply (drule int_cases)  | 
|
371  | 
apply (safe elim!: boolE)  | 
|
372  | 
apply (simp_all (asm_lr) add: zcompare_rls zminus_zadd_distrib [symmetric]  | 
|
373  | 
int_of_add [symmetric])  | 
|
374  | 
done  | 
|
375  | 
||
376  | 
lemma iszero_integ_of_0:  | 
|
377  | 
"w: bin ==> iszero (integ_of (w BIT 0)) <-> iszero (integ_of(w))"  | 
|
378  | 
by (simp only: iszero_integ_of_BIT, blast)  | 
|
379  | 
||
380  | 
lemma iszero_integ_of_1: "w: bin ==> ~ iszero (integ_of (w BIT 1))"  | 
|
381  | 
by (simp only: iszero_integ_of_BIT, blast)  | 
|
382  | 
||
383  | 
||
384  | 
||
385  | 
(** Less-than (<) **)  | 
|
386  | 
||
387  | 
lemma less_integ_of_eq_neg:  | 
|
388  | 
"[| v: bin; w: bin |]  | 
|
389  | 
==> integ_of(v) $< integ_of(w)  | 
|
390  | 
<-> znegative (integ_of (bin_add (v, bin_minus(w))))"  | 
|
391  | 
apply (unfold zless_def zdiff_def)  | 
|
392  | 
apply (simp add: integ_of_minus integ_of_add)  | 
|
393  | 
done  | 
|
394  | 
||
395  | 
lemma not_neg_integ_of_Pls: "~ znegative (integ_of(Pls))"  | 
|
396  | 
by simp  | 
|
397  | 
||
398  | 
lemma neg_integ_of_Min: "znegative (integ_of(Min))"  | 
|
399  | 
by simp  | 
|
400  | 
||
401  | 
lemma neg_integ_of_BIT:  | 
|
402  | 
"[| w: bin; x: bool |]  | 
|
403  | 
==> znegative (integ_of (w BIT x)) <-> znegative (integ_of(w))"  | 
|
404  | 
apply simp  | 
|
405  | 
apply (subgoal_tac "integ_of (w) : int")  | 
|
406  | 
apply typecheck  | 
|
407  | 
apply (drule int_cases)  | 
|
408  | 
apply (auto elim!: boolE simp add: int_of_add [symmetric] zcompare_rls)  | 
|
409  | 
apply (simp_all add: zminus_zadd_distrib [symmetric] zdiff_def  | 
|
410  | 
int_of_add [symmetric])  | 
|
411  | 
apply (subgoal_tac "$#1 $- $# succ (succ (n #+ n)) = $- $# succ (n #+ n) ")  | 
|
412  | 
apply (simp add: zdiff_def)  | 
|
413  | 
apply (simp add: equation_zminus int_of_diff [symmetric])  | 
|
414  | 
done  | 
|
415  | 
||
416  | 
(** Less-than-or-equals (<=) **)  | 
|
417  | 
||
418  | 
lemma le_integ_of_eq_not_less:  | 
|
419  | 
"(integ_of(x) $<= (integ_of(w))) <-> ~ (integ_of(w) $< (integ_of(x)))"  | 
|
420  | 
by (simp add: not_zless_iff_zle [THEN iff_sym])  | 
|
421  | 
||
422  | 
||
423  | 
(*Delete the original rewrites, with their clumsy conditional expressions*)  | 
|
424  | 
declare bin_succ_BIT [simp del]  | 
|
425  | 
bin_pred_BIT [simp del]  | 
|
426  | 
bin_minus_BIT [simp del]  | 
|
427  | 
NCons_Pls [simp del]  | 
|
428  | 
NCons_Min [simp del]  | 
|
429  | 
bin_adder_BIT [simp del]  | 
|
430  | 
bin_mult_BIT [simp del]  | 
|
431  | 
||
432  | 
(*Hide the binary representation of integer constants*)  | 
|
433  | 
declare integ_of_Pls [simp del] integ_of_Min [simp del] integ_of_BIT [simp del]  | 
|
434  | 
||
435  | 
||
436  | 
lemmas bin_arith_extra_simps =  | 
|
437  | 
integ_of_add [symmetric]  | 
|
438  | 
integ_of_minus [symmetric]  | 
|
439  | 
integ_of_mult [symmetric]  | 
|
440  | 
bin_succ_1 bin_succ_0  | 
|
441  | 
bin_pred_1 bin_pred_0  | 
|
442  | 
bin_minus_1 bin_minus_0  | 
|
443  | 
bin_add_Pls_right bin_add_Min_right  | 
|
444  | 
bin_add_BIT_0 bin_add_BIT_10 bin_add_BIT_11  | 
|
445  | 
diff_integ_of_eq  | 
|
446  | 
bin_mult_1 bin_mult_0 NCons_simps  | 
|
447  | 
||
448  | 
||
449  | 
(*For making a minimal simpset, one must include these default simprules  | 
|
450  | 
of thy. Also include simp_thms, or at least (~False)=True*)  | 
|
451  | 
lemmas bin_arith_simps =  | 
|
452  | 
bin_pred_Pls bin_pred_Min  | 
|
453  | 
bin_succ_Pls bin_succ_Min  | 
|
454  | 
bin_add_Pls bin_add_Min  | 
|
455  | 
bin_minus_Pls bin_minus_Min  | 
|
456  | 
bin_mult_Pls bin_mult_Min  | 
|
457  | 
bin_arith_extra_simps  | 
|
458  | 
||
459  | 
(*Simplification of relational operations*)  | 
|
460  | 
lemmas bin_rel_simps =  | 
|
461  | 
eq_integ_of_eq iszero_integ_of_Pls nonzero_integ_of_Min  | 
|
462  | 
iszero_integ_of_0 iszero_integ_of_1  | 
|
463  | 
less_integ_of_eq_neg  | 
|
464  | 
not_neg_integ_of_Pls neg_integ_of_Min neg_integ_of_BIT  | 
|
465  | 
le_integ_of_eq_not_less  | 
|
466  | 
||
467  | 
declare bin_arith_simps [simp]  | 
|
468  | 
declare bin_rel_simps [simp]  | 
|
469  | 
||
470  | 
||
471  | 
(** Simplification of arithmetic when nested to the right **)  | 
|
472  | 
||
473  | 
lemma add_integ_of_left [simp]:  | 
|
474  | 
"[| v: bin; w: bin |]  | 
|
475  | 
==> integ_of(v) $+ (integ_of(w) $+ z) = (integ_of(bin_add(v,w)) $+ z)"  | 
|
476  | 
by (simp add: zadd_assoc [symmetric])  | 
|
477  | 
||
478  | 
lemma mult_integ_of_left [simp]:  | 
|
479  | 
"[| v: bin; w: bin |]  | 
|
480  | 
==> integ_of(v) $* (integ_of(w) $* z) = (integ_of(bin_mult(v,w)) $* z)"  | 
|
481  | 
by (simp add: zmult_assoc [symmetric])  | 
|
482  | 
||
483  | 
lemma add_integ_of_diff1 [simp]:  | 
|
484  | 
"[| v: bin; w: bin |]  | 
|
485  | 
==> integ_of(v) $+ (integ_of(w) $- c) = integ_of(bin_add(v,w)) $- (c)"  | 
|
486  | 
apply (unfold zdiff_def)  | 
|
487  | 
apply (rule add_integ_of_left, auto)  | 
|
488  | 
done  | 
|
489  | 
||
490  | 
lemma add_integ_of_diff2 [simp]:  | 
|
491  | 
"[| v: bin; w: bin |]  | 
|
492  | 
==> integ_of(v) $+ (c $- integ_of(w)) =  | 
|
493  | 
integ_of (bin_add (v, bin_minus(w))) $+ (c)"  | 
|
494  | 
apply (subst diff_integ_of_eq [symmetric])  | 
|
495  | 
apply (simp_all add: zdiff_def zadd_ac)  | 
|
496  | 
done  | 
|
497  | 
||
498  | 
||
499  | 
(** More for integer constants **)  | 
|
500  | 
||
501  | 
declare int_of_0 [simp] int_of_succ [simp]  | 
|
502  | 
||
503  | 
lemma zdiff0 [simp]: "#0 $- x = $-x"  | 
|
504  | 
by (simp add: zdiff_def)  | 
|
505  | 
||
506  | 
lemma zdiff0_right [simp]: "x $- #0 = intify(x)"  | 
|
507  | 
by (simp add: zdiff_def)  | 
|
508  | 
||
509  | 
lemma zdiff_self [simp]: "x $- x = #0"  | 
|
510  | 
by (simp add: zdiff_def)  | 
|
511  | 
||
512  | 
lemma znegative_iff_zless_0: "k: int ==> znegative(k) <-> k $< #0"  | 
|
513  | 
by (simp add: zless_def)  | 
|
514  | 
||
515  | 
lemma zero_zless_imp_znegative_zminus: "[|#0 $< k; k: int|] ==> znegative($-k)"  | 
|
516  | 
by (simp add: zless_def)  | 
|
517  | 
||
518  | 
lemma zero_zle_int_of [simp]: "#0 $<= $# n"  | 
|
519  | 
by (simp add: not_zless_iff_zle [THEN iff_sym] znegative_iff_zless_0 [THEN iff_sym])  | 
|
520  | 
||
521  | 
lemma nat_of_0 [simp]: "nat_of(#0) = 0"  | 
|
522  | 
by (simp only: natify_0 int_of_0 [symmetric] nat_of_int_of)  | 
|
523  | 
||
524  | 
lemma nat_le_int0_lemma: "[| z $<= $#0; z: int |] ==> nat_of(z) = 0"  | 
|
525  | 
by (auto simp add: znegative_iff_zless_0 [THEN iff_sym] zle_def zneg_nat_of)  | 
|
526  | 
||
527  | 
lemma nat_le_int0: "z $<= $#0 ==> nat_of(z) = 0"  | 
|
528  | 
apply (subgoal_tac "nat_of (intify (z)) = 0")  | 
|
529  | 
apply (rule_tac [2] nat_le_int0_lemma, auto)  | 
|
530  | 
done  | 
|
531  | 
||
532  | 
lemma int_of_eq_0_imp_natify_eq_0: "$# n = #0 ==> natify(n) = 0"  | 
|
533  | 
by (rule not_znegative_imp_zero, auto)  | 
|
534  | 
||
535  | 
lemma nat_of_zminus_int_of: "nat_of($- $# n) = 0"  | 
|
536  | 
by (simp add: nat_of_def int_of_def raw_nat_of zminus image_intrel_int)  | 
|
537  | 
||
538  | 
lemma int_of_nat_of: "#0 $<= z ==> $# nat_of(z) = intify(z)"  | 
|
539  | 
apply (rule not_zneg_nat_of_intify)  | 
|
540  | 
apply (simp add: znegative_iff_zless_0 not_zless_iff_zle)  | 
|
541  | 
done  | 
|
542  | 
||
543  | 
declare int_of_nat_of [simp] nat_of_zminus_int_of [simp]  | 
|
544  | 
||
545  | 
lemma int_of_nat_of_if: "$# nat_of(z) = (if #0 $<= z then intify(z) else #0)"  | 
|
546  | 
by (simp add: int_of_nat_of znegative_iff_zless_0 not_zle_iff_zless)  | 
|
547  | 
||
548  | 
lemma zless_nat_iff_int_zless: "[| m: nat; z: int |] ==> (m < nat_of(z)) <-> ($#m $< z)"  | 
|
549  | 
apply (case_tac "znegative (z) ")  | 
|
550  | 
apply (erule_tac [2] not_zneg_nat_of [THEN subst])  | 
|
551  | 
apply (auto dest: zless_trans dest!: zero_zle_int_of [THEN zle_zless_trans]  | 
|
552  | 
simp add: znegative_iff_zless_0)  | 
|
553  | 
done  | 
|
554  | 
||
555  | 
||
556  | 
(** nat_of and zless **)  | 
|
557  | 
||
558  | 
(*An alternative condition is $#0 <= w *)  | 
|
559  | 
lemma zless_nat_conj_lemma: "$#0 $< z ==> (nat_of(w) < nat_of(z)) <-> (w $< z)"  | 
|
560  | 
apply (rule iff_trans)  | 
|
561  | 
apply (rule zless_int_of [THEN iff_sym])  | 
|
562  | 
apply (auto simp add: int_of_nat_of_if simp del: zless_int_of)  | 
|
563  | 
apply (auto elim: zless_asym simp add: not_zle_iff_zless)  | 
|
564  | 
apply (blast intro: zless_zle_trans)  | 
|
565  | 
done  | 
|
566  | 
||
567  | 
lemma zless_nat_conj: "(nat_of(w) < nat_of(z)) <-> ($#0 $< z & w $< z)"  | 
|
568  | 
apply (case_tac "$#0 $< z")  | 
|
569  | 
apply (auto simp add: zless_nat_conj_lemma nat_le_int0 not_zless_iff_zle)  | 
|
570  | 
done  | 
|
571  | 
||
572  | 
(*This simprule cannot be added unless we can find a way to make eq_integ_of_eq  | 
|
573  | 
unconditional!  | 
|
574  | 
[The condition "True" is a hack to prevent looping.  | 
|
575  | 
Conditional rewrite rules are tried after unconditional ones, so a rule  | 
|
576  | 
like eq_nat_number_of will be tried first to eliminate #mm=#nn.]  | 
|
577  | 
lemma integ_of_reorient [simp]:  | 
|
578  | 
"True ==> (integ_of(w) = x) <-> (x = integ_of(w))"  | 
|
579  | 
by auto  | 
|
580  | 
*)  | 
|
581  | 
||
582  | 
lemma integ_of_minus_reorient [simp]:  | 
|
583  | 
"(integ_of(w) = $- x) <-> ($- x = integ_of(w))"  | 
|
584  | 
by auto  | 
|
585  | 
||
586  | 
lemma integ_of_add_reorient [simp]:  | 
|
587  | 
"(integ_of(w) = x $+ y) <-> (x $+ y = integ_of(w))"  | 
|
588  | 
by auto  | 
|
589  | 
||
590  | 
lemma integ_of_diff_reorient [simp]:  | 
|
591  | 
"(integ_of(w) = x $- y) <-> (x $- y = integ_of(w))"  | 
|
592  | 
by auto  | 
|
593  | 
||
594  | 
lemma integ_of_mult_reorient [simp]:  | 
|
595  | 
"(integ_of(w) = x $* y) <-> (x $* y = integ_of(w))"  | 
|
596  | 
by auto  | 
|
597  | 
||
598  | 
end  |