7218
|
1 |
(* Title : HOL/Real/Hyperreal/fuf.ml
|
|
2 |
ID : $Id$
|
|
3 |
Author : Jacques D. Fleuriot
|
|
4 |
Copyright : 1998 University of Cambridge
|
|
5 |
1999 University of Edinburgh
|
|
6 |
Description : Simple tactics to help proofs involving our
|
|
7 |
free ultrafilter (FreeUltrafilterNat). We rely
|
|
8 |
on the fact that filters satisfy the finite
|
|
9 |
intersection property.
|
|
10 |
*)
|
|
11 |
|
|
12 |
exception FUFempty;
|
|
13 |
|
|
14 |
fun get_fuf_hyps [] zs = zs
|
|
15 |
| get_fuf_hyps (x::xs) zs =
|
|
16 |
case (concl_of x) of
|
|
17 |
(_ $ (Const ("Not",_) $ (Const ("op :",_) $ _ $
|
|
18 |
Const ("HyperDef.FreeUltrafilterNat",_)))) => get_fuf_hyps xs
|
|
19 |
((x RS FreeUltrafilterNat_Compl_mem)::zs)
|
|
20 |
|(_ $ (Const ("op :",_) $ _ $
|
|
21 |
Const ("HyperDef.FreeUltrafilterNat",_))) => get_fuf_hyps xs (x::zs)
|
|
22 |
| _ => get_fuf_hyps xs zs;
|
|
23 |
|
|
24 |
fun Intprems [] = raise FUFempty
|
|
25 |
| Intprems [x] = x
|
|
26 |
| Intprems (x::y::ys) =
|
|
27 |
Intprems (([x,y] MRS FreeUltrafilterNat_Int) :: ys);
|
|
28 |
|
|
29 |
(*---------------------------------------------------------------
|
|
30 |
solves goals of the form
|
|
31 |
[| A1: FUF; A2: FUF; ...; An: FUF |] ==> B : FUF
|
|
32 |
where A1 Int A2 Int ... Int An <= B
|
|
33 |
---------------------------------------------------------------*)
|
|
34 |
|
|
35 |
val Fuf_tac = METAHYPS(fn prems =>
|
|
36 |
(rtac ((Intprems (get_fuf_hyps prems [])) RS
|
|
37 |
FreeUltrafilterNat_subset) 1) THEN
|
|
38 |
Auto_tac);
|
|
39 |
|
|
40 |
fun fuf_tac (fclaset,fsimpset) i = METAHYPS(fn prems =>
|
|
41 |
(rtac ((Intprems (get_fuf_hyps prems [])) RS
|
|
42 |
FreeUltrafilterNat_subset) 1) THEN
|
|
43 |
auto_tac (fclaset,fsimpset)) i;
|
|
44 |
|
|
45 |
(*---------------------------------------------------------------
|
|
46 |
solves goals of the form
|
|
47 |
[| A1: FUF; A2: FUF; ...; An: FUF |] ==> P
|
|
48 |
where A1 Int A2 Int ... Int An <= {} since {} ~: FUF
|
|
49 |
(i.e. uses fact that FUF is a proper filter)
|
|
50 |
---------------------------------------------------------------*)
|
|
51 |
|
|
52 |
val Fuf_empty_tac = METAHYPS(fn prems =>
|
|
53 |
(rtac ((Intprems (get_fuf_hyps prems [])) RS
|
|
54 |
(FreeUltrafilterNat_subset RS
|
|
55 |
(FreeUltrafilterNat_empty RS notE))) 1)
|
|
56 |
THEN Auto_tac);
|
|
57 |
|
|
58 |
fun fuf_empty_tac (fclaset,fsimpset) i = METAHYPS(fn prems =>
|
|
59 |
(rtac ((Intprems (get_fuf_hyps prems [])) RS
|
|
60 |
(FreeUltrafilterNat_subset RS
|
|
61 |
(FreeUltrafilterNat_empty RS notE))) 1)
|
|
62 |
THEN auto_tac (fclaset,fsimpset)) i;
|
|
63 |
|
|
64 |
(*---------------------------------------------------------------
|
|
65 |
All in one -- not really needed.
|
|
66 |
---------------------------------------------------------------*)
|
|
67 |
|
|
68 |
fun Fuf_auto_tac i = SOLVE (Fuf_empty_tac i) ORELSE TRY(Fuf_tac i);
|
|
69 |
|
|
70 |
fun fuf_auto_tac (fclaset,fsimpset) i =
|
|
71 |
SOLVE (fuf_empty_tac (fclaset,fsimpset) i)
|
|
72 |
ORELSE TRY(fuf_tac (fclaset,fsimpset) i);
|
|
73 |
|
|
74 |
(*---------------------------------------------------------------
|
|
75 |
In fact could make this the only tactic: just need to
|
|
76 |
use contraposition and then look for empty set.
|
|
77 |
---------------------------------------------------------------*)
|
|
78 |
|
|
79 |
fun Ultra_tac i = rtac ccontr i THEN Fuf_empty_tac i;
|
|
80 |
fun ultra_tac (fclaset,fsimpset) i = rtac ccontr i THEN
|
|
81 |
fuf_empty_tac (fclaset,fsimpset) i;
|
|
82 |
|