7085
|
1 |
(* Title: HOL/ex/Tarski
|
|
2 |
ID: $Id$
|
|
3 |
Author: Florian Kammueller, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1999 University of Cambridge
|
|
5 |
|
|
6 |
Minimal version of lattice theory plus the full theorem of Tarski:
|
|
7 |
The fixedpoints of a complete lattice themselves form a complete lattice.
|
|
8 |
|
|
9 |
Illustrates first-class theories, using the Sigma representation of structures
|
|
10 |
*)
|
|
11 |
|
|
12 |
|
|
13 |
(* abbreviate commonly used tactic application *)
|
|
14 |
|
|
15 |
fun afs thms = (asm_full_simp_tac (simpset() addsimps thms));
|
|
16 |
|
|
17 |
(* Partial Order *)
|
|
18 |
Open_locale "PO";
|
|
19 |
|
|
20 |
val simp_PO = simplify (simpset() addsimps [PartialOrder_def]) (thm "cl_po");
|
|
21 |
Addsimps [simp_PO, thm "cl_po"];
|
|
22 |
|
|
23 |
val PO_simp = [thm "A_def", thm "r_def"];
|
|
24 |
|
|
25 |
Goal "refl A r";
|
|
26 |
by (simp_tac (simpset() addsimps PO_simp) 1);
|
|
27 |
qed "PartialOrderE1";
|
|
28 |
|
|
29 |
Goal "antisym r";
|
|
30 |
by (simp_tac (simpset() addsimps PO_simp) 1);
|
|
31 |
qed "PartialOrderE2";
|
|
32 |
|
|
33 |
Goal "trans r";
|
|
34 |
by (simp_tac (simpset() addsimps PO_simp) 1);
|
|
35 |
qed "PartialOrderE3";
|
|
36 |
|
|
37 |
Goal "[| refl A r; x: A|] ==> (x, x): r";
|
|
38 |
by (afs [refl_def] 1);
|
|
39 |
qed "reflE";
|
|
40 |
(* Interesting: A and r don't get bound because the proof doesn't use
|
|
41 |
locale rules
|
|
42 |
val reflE = "[| refl ?A ?r; ?x : ?A |] ==> (?x, ?x) : ?r" *)
|
|
43 |
|
|
44 |
Goal "[| antisym r; (a, b): r; (b, a): r |] ==> a = b";
|
|
45 |
by (afs [antisym_def] 1);
|
|
46 |
qed "antisymE";
|
|
47 |
|
|
48 |
Goalw [trans_def] "[| trans r; (a, b): r; (b, c): r|] ==> (a,c): r";
|
|
49 |
by (Fast_tac 1);
|
|
50 |
qed "transE";
|
|
51 |
|
|
52 |
Goal "[| monotone f A r; x: A; y: A; (x, y): r |] ==> (f x, f y): r";
|
|
53 |
by (afs [monotone_def] 1);
|
|
54 |
qed "monotoneE";
|
|
55 |
|
|
56 |
Goal "S <= A ==> (| pset = S, order = induced S r |): PartialOrder";
|
|
57 |
by (simp_tac (simpset() addsimps [PartialOrder_def]) 1);
|
|
58 |
by (Step_tac 1);
|
|
59 |
(* refl *)
|
|
60 |
by (afs [refl_def,induced_def] 1);
|
|
61 |
by (rtac conjI 1);
|
|
62 |
by (Fast_tac 1);
|
|
63 |
by (rtac ballI 1);
|
|
64 |
by (rtac reflE 1);
|
|
65 |
by (rtac PartialOrderE1 1);
|
|
66 |
by (Fast_tac 1);
|
|
67 |
(* antisym *)
|
|
68 |
by (afs [antisym_def,induced_def] 1);
|
|
69 |
by (Step_tac 1);
|
|
70 |
by (rtac antisymE 1);
|
|
71 |
by (assume_tac 2);
|
|
72 |
by (assume_tac 2);
|
|
73 |
by (rtac PartialOrderE2 1);
|
|
74 |
(* trans *)
|
|
75 |
by (afs [trans_def,induced_def] 1);
|
|
76 |
by (Step_tac 1);
|
|
77 |
by (rtac transE 1);
|
|
78 |
by (assume_tac 2);
|
|
79 |
by (assume_tac 2);
|
|
80 |
by (rtac PartialOrderE3 1);
|
|
81 |
qed "po_subset_po";
|
|
82 |
|
|
83 |
Goal "[| (x, y): induced S r; S <= A |] ==> (x, y): r";
|
|
84 |
by (afs [induced_def] 1);
|
|
85 |
qed "indE";
|
|
86 |
|
|
87 |
Goal "[| (x, y): r; x: S; y: S |] ==> (x, y): induced S r";
|
|
88 |
by (afs [induced_def] 1);
|
|
89 |
qed "indI";
|
|
90 |
|
|
91 |
(* with locales *)
|
|
92 |
Open_locale "CL";
|
|
93 |
|
|
94 |
Delsimps [simp_PO, thm "cl_po"];
|
|
95 |
|
|
96 |
val simp_CL = simplify (simpset() addsimps [CompleteLattice_def])
|
|
97 |
(thm "cl_co");
|
|
98 |
Addsimps [simp_CL, thm "cl_co"];
|
|
99 |
|
|
100 |
Goalw [Ex_def] "(EX L. islub S cl L) = islub S cl (lub S cl)";
|
|
101 |
by (simp_tac (simpset() addsimps [lub_def, least_def, islub_def]) 1);
|
|
102 |
qed "islub_lub";
|
|
103 |
|
|
104 |
Goalw [Ex_def] "(EX G. isglb S cl G) = isglb S cl (glb S cl)";
|
|
105 |
by (simp_tac (simpset() addsimps [glb_def, greatest_def, isglb_def]) 1);
|
|
106 |
qed "isglb_glb";
|
|
107 |
|
|
108 |
Goal "isglb S cl = islub S (dual cl)";
|
|
109 |
by (afs [islub_def,isglb_def,dual_def,converse_def] 1);
|
|
110 |
qed "isglb_dual_islub";
|
|
111 |
|
|
112 |
Goal "islub S cl = isglb S (dual cl)";
|
|
113 |
by (afs [islub_def,isglb_def,dual_def,converse_def] 1);
|
|
114 |
qed "islub_dual_isglb";
|
|
115 |
|
|
116 |
Goal "dual cl : PartialOrder";
|
|
117 |
by (simp_tac (simpset() addsimps [PartialOrder_def, dual_def]) 1);
|
|
118 |
by (afs [simp_PO,refl_converse,trans_converse,antisym_converse] 1);
|
|
119 |
qed "dualPO";
|
|
120 |
|
|
121 |
Goal "! S. (S <= A -->( ? L. islub S (| pset = A, order = r|) L)) \
|
|
122 |
\ ==> ! S. (S <= A --> (? G. isglb S (| pset = A, order = r|) G))";
|
|
123 |
by (Step_tac 1);
|
|
124 |
by (res_inst_tac
|
|
125 |
[("x"," lub {y. y: A & (! k: S. (y, k): r)}(|pset = A, order = r|)")]
|
|
126 |
exI 1);
|
|
127 |
by (dres_inst_tac [("x","{y. y: A & (! k: S. (y,k): r)}")] spec 1);
|
|
128 |
by (dtac mp 1);
|
|
129 |
by (Fast_tac 1);
|
|
130 |
by (afs [islub_lub, isglb_def] 1);
|
|
131 |
by (afs [islub_def] 1);
|
|
132 |
by (Blast_tac 1);
|
|
133 |
qed "Rdual";
|
|
134 |
|
|
135 |
Goal "lub S cl = glb S (dual cl)";
|
|
136 |
by (afs [lub_def,glb_def,least_def,greatest_def,dual_def,converse_def] 1);
|
|
137 |
qed "lub_dual_glb";
|
|
138 |
|
|
139 |
Goal "glb S cl = lub S (dual cl)";
|
|
140 |
by (afs [lub_def,glb_def,least_def,greatest_def,dual_def,converse_def] 1);
|
|
141 |
qed "glb_dual_lub";
|
|
142 |
|
|
143 |
Goal "CompleteLattice <= PartialOrder";
|
|
144 |
by (simp_tac (simpset() addsimps [PartialOrder_def, CompleteLattice_def]) 1);
|
|
145 |
by (Fast_tac 1);
|
|
146 |
qed "CL_subset_PO";
|
|
147 |
|
|
148 |
val CompleteLatticeE1 = CL_subset_PO RS subsetD;
|
|
149 |
|
|
150 |
Goal "! S. S <= A --> (? L. islub S cl L)";
|
|
151 |
by (simp_tac (simpset() addsimps PO_simp) 1);
|
|
152 |
qed "CompleteLatticeE2";
|
|
153 |
|
|
154 |
Goal "! S. S <= A --> (? G. isglb S cl G)";
|
|
155 |
by (simp_tac (simpset() addsimps PO_simp) 1);
|
|
156 |
qed "CompleteLatticeE3";
|
|
157 |
|
|
158 |
Addsimps [CompleteLatticeE1 RS (export simp_PO)];
|
|
159 |
|
|
160 |
Goal "refl A r";
|
|
161 |
by (simp_tac (simpset() addsimps PO_simp) 1);
|
|
162 |
qed "CompleteLatticeE11";
|
|
163 |
|
|
164 |
Goal "antisym r";
|
|
165 |
by (simp_tac (simpset() addsimps PO_simp) 1);
|
|
166 |
qed "CompleteLatticeE12";
|
|
167 |
|
|
168 |
Goal "trans r";
|
|
169 |
by (afs (PO_simp) 1);
|
|
170 |
qed "CompleteLatticeE13";
|
|
171 |
|
|
172 |
Goal "[| po : PartialOrder; (! S. S <= po.<A> --> (? L. islub S po L));\
|
|
173 |
\ (! S. S <= po.<A> --> (? G. isglb S po G))|] ==> po: CompleteLattice";
|
|
174 |
by (afs [CompleteLattice_def] 1);
|
|
175 |
qed "CompleteLatticeI";
|
|
176 |
|
|
177 |
Goal "dual cl : CompleteLattice";
|
|
178 |
by (simp_tac (simpset() addsimps [CompleteLattice_def,dual_def]) 1);
|
|
179 |
by (fold_goals_tac [dual_def]);
|
|
180 |
by (simp_tac (simpset() addsimps [islub_dual_isglb RS sym,
|
|
181 |
isglb_dual_islub RS sym,
|
|
182 |
export dualPO]) 1);
|
|
183 |
qed "CL_dualCL";
|
|
184 |
|
|
185 |
Goal "(dual cl.<A>) = cl.<A>";
|
|
186 |
by (simp_tac (simpset() addsimps [dual_def]) 1);
|
|
187 |
qed "dualA_iff";
|
|
188 |
|
|
189 |
Goal "((x, y): (dual cl.<r>)) = ((y, x): cl.<r>)";
|
|
190 |
by (simp_tac (simpset() addsimps [dual_def]) 1);
|
|
191 |
qed "dualr_iff";
|
|
192 |
|
|
193 |
Goal "monotone f (cl.<A>) (cl.<r>) ==> monotone f (dual cl.<A>) (dual cl.<r>)";
|
|
194 |
by (afs [monotone_def,dualA_iff,dualr_iff] 1);
|
|
195 |
qed "monotone_dual";
|
|
196 |
|
|
197 |
Goal "[| x: A; y: A|] ==> interval r x y = interval (dual cl.<r>) y x";
|
|
198 |
by (simp_tac (simpset() addsimps [interval_def,dualr_iff]) 1);
|
|
199 |
by (fold_goals_tac [thm "r_def"]);
|
|
200 |
by (Fast_tac 1);
|
|
201 |
qed "interval_dual";
|
|
202 |
|
|
203 |
Goal "[| trans r; interval r a b ~= {} |] ==> (a, b): r";
|
|
204 |
by (afs [interval_def] 1);
|
|
205 |
by (rewtac trans_def);
|
|
206 |
by (Blast_tac 1);
|
|
207 |
qed "interval_not_empty";
|
|
208 |
|
|
209 |
Goal "x: interval r a b ==> (a, x): r";
|
|
210 |
by (afs [interval_def] 1);
|
|
211 |
qed "intervalE1";
|
|
212 |
|
|
213 |
Goal "[| a: A; b: A; interval r a b ~= {} |] ==> a: interval r a b";
|
|
214 |
by (simp_tac (simpset() addsimps [interval_def]) 1);
|
|
215 |
by (afs [PartialOrderE3,interval_not_empty] 1);
|
|
216 |
by (afs [PartialOrderE1 RS reflE] 1);
|
|
217 |
qed "left_in_interval";
|
|
218 |
|
|
219 |
Goal "[| a: A; b: A; interval r a b ~= {} |] ==> b: interval r a b";
|
|
220 |
by (simp_tac (simpset() addsimps [interval_def]) 1);
|
|
221 |
by (afs [PartialOrderE3,interval_not_empty] 1);
|
|
222 |
by (afs [PartialOrderE1 RS reflE] 1);
|
|
223 |
qed "right_in_interval";
|
|
224 |
|
|
225 |
Goal "[| (| pset = A, order = r |) : PartialOrder;\
|
|
226 |
\ ! S. S <= A --> (? L. islub S (| pset = A, order = r |) L) |] \
|
|
227 |
\ ==> (| pset = A, order = r |) : CompleteLattice";
|
|
228 |
by (afs [CompleteLatticeI, Rdual] 1);
|
|
229 |
qed "CompleteLatticeI_simp";
|
|
230 |
|
|
231 |
(* sublattice *)
|
|
232 |
Goal "S <<= cl ==> S <= A";
|
|
233 |
by (afs [sublattice_def, CompleteLattice_def, thm "A_def"] 1);
|
|
234 |
qed "sublatticeE1";
|
|
235 |
|
|
236 |
Goal "S <<= cl ==> (| pset = S, order = induced S r |) : CompleteLattice";
|
|
237 |
by (afs ([sublattice_def, CompleteLattice_def] @ PO_simp) 1);
|
|
238 |
qed "sublatticeE2";
|
|
239 |
|
|
240 |
Goal "[| S <= A; (| pset = S, order = induced S r |) : CompleteLattice |] ==> S <<= cl";
|
|
241 |
by (afs ([sublattice_def] @ PO_simp) 1);
|
|
242 |
qed "sublatticeI";
|
|
243 |
|
|
244 |
(* lub *)
|
|
245 |
Goal "[| S <= A; islub S cl x; islub S cl L|] ==> x = L";
|
|
246 |
by (rtac antisymE 1);
|
|
247 |
by (rtac CompleteLatticeE12 1);
|
|
248 |
by (rewtac islub_def);
|
|
249 |
by (rotate_tac ~1 1);
|
|
250 |
by (etac conjE 1);
|
|
251 |
by (dtac conjunct2 1);
|
|
252 |
by (dtac conjunct1 1);
|
|
253 |
by (dtac conjunct2 1);
|
|
254 |
by (rotate_tac ~1 1);
|
|
255 |
by (dres_inst_tac [("x","L")] bspec 1);
|
|
256 |
by (assume_tac 1);
|
|
257 |
by (fold_goals_tac [thm "r_def"]);
|
|
258 |
by (etac mp 1);
|
|
259 |
by (assume_tac 1);
|
|
260 |
(* (L, x) : (cl .<r>) *)
|
|
261 |
by (rotate_tac ~1 1);
|
|
262 |
by (etac conjE 1);
|
|
263 |
by (rotate_tac ~1 1);
|
|
264 |
by (dtac conjunct2 1);
|
|
265 |
by (dtac bspec 1);
|
|
266 |
by (etac conjunct1 1);
|
|
267 |
by (etac mp 1);
|
|
268 |
by (etac (conjunct2 RS conjunct1) 1);
|
|
269 |
qed "lub_unique";
|
|
270 |
|
|
271 |
Goal "[| S <= A |] ==> ! x: S. (x,lub S cl): r";
|
|
272 |
by (rtac exE 1);
|
|
273 |
by (rtac (CompleteLatticeE2 RS spec RS mp) 1);
|
|
274 |
by (assume_tac 1);
|
|
275 |
by (rewrite_goals_tac [lub_def,least_def]);
|
|
276 |
by (stac select_equality 1);
|
|
277 |
by (rtac conjI 1);
|
|
278 |
by (afs [islub_def] 2);
|
|
279 |
by (etac conjunct2 2);
|
|
280 |
by (afs [islub_def] 1);
|
|
281 |
by (rtac lub_unique 1);
|
|
282 |
by (afs [thm "A_def"] 1);
|
|
283 |
by (afs [islub_def] 1);
|
|
284 |
by (assume_tac 1);
|
|
285 |
by (afs [islub_def,thm "r_def"] 1);
|
|
286 |
qed "lubE1";
|
|
287 |
|
|
288 |
Goal "[| S <= A; L: A; ! x: S. (x,L): r |] ==> (lub S cl, L): r";
|
|
289 |
by (rtac exE 1);
|
|
290 |
by (rtac (CompleteLatticeE2 RS spec RS mp) 1);
|
|
291 |
by (assume_tac 1);
|
|
292 |
by (rewrite_goals_tac [lub_def,least_def]);
|
|
293 |
by (stac select_equality 1);
|
|
294 |
by (rtac conjI 1);
|
|
295 |
by (afs [islub_def] 2);
|
|
296 |
by (etac conjunct2 2);
|
|
297 |
by (afs [islub_def] 1);
|
|
298 |
by (rtac lub_unique 1);
|
|
299 |
by (afs [thm "A_def"] 1);
|
|
300 |
by (afs [islub_def] 1);
|
|
301 |
by (assume_tac 1);
|
|
302 |
by (afs [islub_def] 1);
|
|
303 |
by (dtac conjunct2 1);
|
|
304 |
by (dtac conjunct2 1);
|
|
305 |
by (rotate_tac 3 1);
|
|
306 |
by (dtac bspec 1);
|
|
307 |
by (fold_goals_tac [thm "r_def"]);
|
|
308 |
by (etac mp 2);
|
|
309 |
by (afs [thm "A_def"] 1);
|
|
310 |
by (assume_tac 1);
|
|
311 |
qed "lubE2";
|
|
312 |
|
|
313 |
Goal "[| S <= A |] ==> lub S cl : A";
|
|
314 |
by (rtac exE 1);
|
|
315 |
by (rtac (CompleteLatticeE2 RS spec RS mp) 1);
|
|
316 |
by (assume_tac 1);
|
|
317 |
by (rewrite_goals_tac [lub_def,least_def]);
|
|
318 |
by (stac select_equality 1);
|
|
319 |
by (afs [islub_def] 1);
|
|
320 |
by (afs [islub_def, thm "A_def"] 2);
|
|
321 |
by (rtac lub_unique 1);
|
|
322 |
by (afs [thm "A_def"] 1);
|
|
323 |
by (afs [islub_def] 1);
|
|
324 |
by (assume_tac 1);
|
|
325 |
qed "lub_in_lattice";
|
|
326 |
|
|
327 |
Goal "[| S <= A; L: A; ! x: S. (x,L): r;\
|
|
328 |
\ ! z: A. (! y: S. (y,z): r) --> (L,z): r |] ==> L = lub S cl";
|
|
329 |
by (rtac lub_unique 1);
|
|
330 |
by (assume_tac 1);
|
|
331 |
by (afs ([islub_def] @ PO_simp) 1);
|
|
332 |
by (rewtac islub_def);
|
|
333 |
by (rtac conjI 1);
|
|
334 |
by (fold_goals_tac PO_simp);
|
|
335 |
by (rtac lub_in_lattice 1);
|
|
336 |
by (assume_tac 1);
|
|
337 |
by (afs [lubE1, lubE2] 1);
|
|
338 |
qed "lubI";
|
|
339 |
|
|
340 |
Goal "[| S <= A; islub S cl L |] ==> L = lub S cl";
|
|
341 |
by (afs ([lubI, islub_def] @ PO_simp) 1);
|
|
342 |
qed "lubIa";
|
|
343 |
|
|
344 |
Goal "islub S cl L ==> L : A";
|
|
345 |
by (afs [islub_def, thm "A_def"] 1);
|
|
346 |
qed "islub_in_lattice";
|
|
347 |
|
|
348 |
Goal "islub S cl L ==> ! y: S. (y, L): r";
|
|
349 |
by (afs [islub_def, thm "r_def"] 1);
|
|
350 |
qed "islubE1";
|
|
351 |
|
|
352 |
Goal "[| islub S cl L; \
|
|
353 |
\ z: A; ! y: S. (y, z): r|] ==> (L, z): r";
|
|
354 |
by (afs ([islub_def] @ PO_simp) 1);
|
|
355 |
qed "islubE2";
|
|
356 |
|
|
357 |
Goal "[| S <= A |] ==> ? L. islub S cl L";
|
|
358 |
by (afs [thm "A_def"] 1);
|
|
359 |
qed "islubE";
|
|
360 |
|
|
361 |
Goal "[| L: A; ! y: S. (y, L): r; \
|
|
362 |
\ (!z: A. (! y: S. (y, z):r) --> (L, z): r)|] ==> islub S cl L";
|
|
363 |
by (afs ([islub_def] @ PO_simp) 1);
|
|
364 |
qed "islubI";
|
|
365 |
|
|
366 |
(* glb *)
|
|
367 |
Goal "S <= A ==> glb S cl : A";
|
|
368 |
by (stac glb_dual_lub 1);
|
|
369 |
by (afs [thm "A_def"] 1);
|
|
370 |
by (rtac (dualA_iff RS subst) 1);
|
|
371 |
by (rtac (export lub_in_lattice) 1);
|
|
372 |
by (rtac CL_dualCL 1);
|
|
373 |
by (afs [dualA_iff] 1);
|
|
374 |
qed "glb_in_lattice";
|
|
375 |
|
|
376 |
Goal "S <= A ==> ! x: S. (glb S cl, x): r";
|
|
377 |
by (stac glb_dual_lub 1);
|
|
378 |
by (rtac ballI 1);
|
|
379 |
by (afs [thm "r_def"] 1);
|
|
380 |
by (rtac (dualr_iff RS subst) 1);
|
|
381 |
by (rtac (export lubE1 RS bspec) 1);
|
|
382 |
by (rtac CL_dualCL 1);
|
|
383 |
by (afs [dualA_iff, thm "A_def"] 1);
|
|
384 |
by (assume_tac 1);
|
|
385 |
qed "glbE1";
|
|
386 |
|
|
387 |
(* Reduce the sublattice property by using substructural properties! *)
|
|
388 |
(* abandoned see Tarski_4.ML *)
|
|
389 |
|
|
390 |
Open_locale "CLF";
|
|
391 |
|
|
392 |
val simp_CLF = simplify (simpset() addsimps [CLF_def]) (thm "f_cl");
|
|
393 |
Addsimps [simp_CLF, thm "f_cl"];
|
|
394 |
|
|
395 |
Goal "f : A funcset A";
|
|
396 |
by (simp_tac (simpset() addsimps [thm "A_def"]) 1);
|
|
397 |
qed "CLF_E1";
|
|
398 |
|
|
399 |
Goal "monotone f A r";
|
|
400 |
by (simp_tac (simpset() addsimps PO_simp) 1);
|
|
401 |
qed "CLF_E2";
|
|
402 |
|
|
403 |
Goal "f : CLF ^^ {cl} ==> f : CLF ^^ {dual cl}";
|
|
404 |
by (afs [CLF_def, CL_dualCL, monotone_dual] 1);
|
|
405 |
by (afs [dualA_iff] 1);
|
|
406 |
qed "CLF_dual";
|
|
407 |
|
|
408 |
(* fixed points *)
|
|
409 |
Goal "P <= A";
|
|
410 |
by (simp_tac (simpset() addsimps [thm "P_def", fix_def]) 1);
|
|
411 |
by (Fast_tac 1);
|
|
412 |
qed "fixfE1";
|
|
413 |
|
|
414 |
Goal "x: P ==> f x = x";
|
|
415 |
by (afs [thm "P_def", fix_def] 1);
|
|
416 |
qed "fixfE2";
|
|
417 |
|
|
418 |
Goal "[| A <= B; x: fix (lam y: A. f y) A |] ==> x: fix f B";
|
|
419 |
by (forward_tac [export fixfE2] 1);
|
|
420 |
by (dtac ((export fixfE1) RS subsetD) 1);
|
|
421 |
by (afs [fix_def] 1);
|
|
422 |
by (rtac conjI 1);
|
|
423 |
by (Fast_tac 1);
|
|
424 |
by (res_inst_tac [("P","% y. f x = y")] subst 1);
|
|
425 |
by (assume_tac 1);
|
|
426 |
by (rtac sym 1);
|
|
427 |
by (etac restrict_apply1 1);
|
|
428 |
qed "fixf_subset";
|
|
429 |
|
|
430 |
(* lemmas for Tarski, lub *)
|
|
431 |
Goal "H = {x. (x, f x) : r & x : A} ==> (lub H cl, f (lub H cl)) : r";
|
|
432 |
by (rtac lubE2 1);
|
|
433 |
by (Fast_tac 1);
|
|
434 |
by (rtac (CLF_E1 RS funcset_mem) 1);
|
|
435 |
by (rtac lub_in_lattice 1);
|
|
436 |
by (Fast_tac 1);
|
|
437 |
(* ! x:H. (x, f (lub H r)) : r *)
|
|
438 |
by (rtac ballI 1);
|
|
439 |
by (rtac transE 1);
|
|
440 |
by (rtac CompleteLatticeE13 1);
|
|
441 |
(* instantiates (x, ???z): cl.<r> to (x, f x), because of the def of H *)
|
|
442 |
by (Fast_tac 1);
|
|
443 |
(* so it remains to show (f x, f (lub H cl)) : r *)
|
|
444 |
by (res_inst_tac [("f","f")] monotoneE 1);
|
|
445 |
by (rtac CLF_E2 1);
|
|
446 |
by (Fast_tac 1);
|
|
447 |
by (rtac lub_in_lattice 1);
|
|
448 |
by (Fast_tac 1);
|
|
449 |
by (rtac (lubE1 RS bspec) 1);
|
|
450 |
by (Fast_tac 1);
|
|
451 |
by (assume_tac 1);
|
|
452 |
qed "lubH_le_flubH";
|
|
453 |
|
|
454 |
Goal "[| H = {x. (x, f x) : r & x : A} |] ==> (f (lub H cl), lub H cl) : r";
|
|
455 |
by (rtac (lubE1 RS bspec) 1);
|
|
456 |
by (Fast_tac 1);
|
|
457 |
by (res_inst_tac [("t","H")] ssubst 1);
|
|
458 |
by (assume_tac 1);
|
|
459 |
by (rtac CollectI 1);
|
|
460 |
by (rtac conjI 1);
|
|
461 |
by (rtac (CLF_E1 RS funcset_mem) 2);
|
|
462 |
by (rtac lub_in_lattice 2);
|
|
463 |
by (Fast_tac 2);
|
|
464 |
by (res_inst_tac [("f","f")] monotoneE 1);
|
|
465 |
by (rtac CLF_E2 1);
|
|
466 |
by (afs [lubH_le_flubH] 3);
|
|
467 |
by (rtac (CLF_E1 RS funcset_mem) 2);
|
|
468 |
by (rtac lub_in_lattice 2);
|
|
469 |
by (Fast_tac 2);
|
|
470 |
by (rtac lub_in_lattice 1);
|
|
471 |
by (Fast_tac 1);
|
|
472 |
qed "flubH_le_lubH";
|
|
473 |
|
|
474 |
Goal "H = {x. (x, f x): r & x : A} ==> lub H cl : P";
|
|
475 |
by (simp_tac (simpset() addsimps [thm "P_def", fix_def]) 1);
|
|
476 |
by (rtac conjI 1);
|
|
477 |
by (rtac lub_in_lattice 1);
|
|
478 |
by (Fast_tac 1);
|
|
479 |
by (rtac antisymE 1);
|
|
480 |
by (rtac CompleteLatticeE12 1);
|
|
481 |
by (afs [flubH_le_lubH] 1);
|
|
482 |
by (afs [lubH_le_flubH] 1);
|
|
483 |
qed "lubH_is_fixp";
|
|
484 |
|
|
485 |
Goal "[| H = {x. (x, f x) : r & x : A}; x: P |] ==> x: H";
|
|
486 |
by (etac ssubst 1);
|
|
487 |
by (Simp_tac 1);
|
|
488 |
by (rtac conjI 1);
|
|
489 |
by (forward_tac [fixfE2] 1);
|
|
490 |
by (etac ssubst 1);
|
|
491 |
by (rtac reflE 1);
|
|
492 |
by (rtac CompleteLatticeE11 1);
|
|
493 |
by (etac (fixfE1 RS subsetD) 1);
|
|
494 |
by (etac (fixfE1 RS subsetD) 1);
|
|
495 |
qed "fix_in_H";
|
|
496 |
|
|
497 |
Goal "H = {x. (x, f x) : r & x : A} ==> ! x: P. (x, lub H cl) : r";
|
|
498 |
by (rtac ballI 1);
|
|
499 |
by (rtac (lubE1 RS bspec) 1);
|
|
500 |
by (Fast_tac 1);
|
|
501 |
by (rtac fix_in_H 1);
|
|
502 |
by (REPEAT (atac 1));
|
|
503 |
qed "fixf_le_lubH";
|
|
504 |
|
|
505 |
Goal "H = {x. (x, f x) : r & x : A} ==> ! L. (! y: P. (y,L): r) --> (lub H cl, L): r";
|
|
506 |
by (rtac allI 1);
|
|
507 |
by (rtac impI 1);
|
|
508 |
by (etac bspec 1);
|
|
509 |
by (rtac lubH_is_fixp 1);
|
|
510 |
by (assume_tac 1);
|
|
511 |
qed "lubH_least_fixf";
|
|
512 |
|
|
513 |
(* Tarski fixpoint theorem 1, first part *)
|
|
514 |
Goal "lub P cl = lub {x. (x, f x) : r & x : A} cl";
|
|
515 |
by (rtac sym 1);
|
|
516 |
by (rtac lubI 1);
|
|
517 |
by (rtac fixfE1 1);
|
|
518 |
by (rtac lub_in_lattice 1);
|
|
519 |
by (Fast_tac 1);
|
|
520 |
by (afs [fixf_le_lubH] 1);
|
|
521 |
by (afs [lubH_least_fixf] 1);
|
|
522 |
qed "T_thm_1_lub";
|
|
523 |
|
|
524 |
(* Tarski for glb *)
|
|
525 |
Goal "H = {x. (f x, x): r & x : A} ==> glb H cl : P";
|
|
526 |
by (full_simp_tac
|
|
527 |
(simpset() addsimps [glb_dual_lub, thm "P_def"] @ PO_simp) 1);
|
|
528 |
by (rtac (dualA_iff RS subst) 1);
|
|
529 |
by (rtac (CL_dualCL RS (export lubH_is_fixp)) 1);
|
|
530 |
by (rtac (thm "f_cl" RS CLF_dual) 1);
|
|
531 |
by (afs [dualr_iff, dualA_iff] 1);
|
|
532 |
qed "glbH_is_fixp";
|
|
533 |
|
|
534 |
Goal "glb P cl = glb {x. (f x, x): r & x : A} cl";
|
|
535 |
by (simp_tac (simpset() addsimps [glb_dual_lub, thm "P_def"] @ PO_simp) 1);
|
|
536 |
by (rtac (dualA_iff RS subst) 1);
|
|
537 |
by (rtac (CL_dualCL RS (export T_thm_1_lub) RS ssubst) 1);
|
|
538 |
by (rtac (thm "f_cl" RS CLF_dual) 1);
|
|
539 |
by (afs [dualr_iff] 1);
|
|
540 |
qed "T_thm_1_glb";
|
|
541 |
|
|
542 |
(* interval *)
|
|
543 |
Goal "refl A r ==> r <= A Times A";
|
|
544 |
by (afs [refl_def] 1);
|
|
545 |
qed "reflE1";
|
|
546 |
|
|
547 |
Goal "(x, y): r ==> x: A";
|
|
548 |
by (rtac SigmaD1 1);
|
|
549 |
by (rtac (reflE1 RS subsetD) 1);
|
|
550 |
by (rtac CompleteLatticeE11 1);
|
|
551 |
by (assume_tac 1);
|
|
552 |
qed "rel_imp_elem";
|
|
553 |
|
|
554 |
Goal "[| a: A; b: A |] ==> interval r a b <= A";
|
|
555 |
by (simp_tac (simpset() addsimps [interval_def]) 1);
|
|
556 |
by (rtac subsetI 1);
|
|
557 |
by (rtac rel_imp_elem 1);
|
|
558 |
by (dtac CollectD 1);
|
|
559 |
by (etac conjunct2 1);
|
|
560 |
qed "interval_subset";
|
|
561 |
|
|
562 |
Goal "[| (a, x): r; (x, b): r |] ==> x: interval r a b";
|
|
563 |
by (afs [interval_def] 1);
|
|
564 |
qed "intervalI";
|
|
565 |
|
|
566 |
Goalw [interval_def] "[| S <= interval r a b; x: S |] ==> (a, x): r";
|
|
567 |
by (Fast_tac 1);
|
|
568 |
qed "interval_lemma1";
|
|
569 |
|
|
570 |
Goalw [interval_def] "[| S <= interval r a b; x: S |] ==> (x, b): r";
|
|
571 |
by (Fast_tac 1);
|
|
572 |
qed "interval_lemma2";
|
|
573 |
|
|
574 |
Goal "[| S <= A; S ~= {};\
|
|
575 |
\ ! x: S. (a,x): r; ! y: S. (y, L): r |] ==> (a,L): r";
|
|
576 |
by (blast_tac (claset() addIs [transE, PartialOrderE3]) 1);
|
|
577 |
qed "a_less_lub";
|
|
578 |
|
|
579 |
Goal "[| S <= A; S ~= {};\
|
|
580 |
\ ! x: S. (x,b): r; ! y: S. (G, y): r |] ==> (G,b): r";
|
|
581 |
by (blast_tac (claset() addIs [transE, PartialOrderE3]) 1);
|
|
582 |
qed "glb_less_b";
|
|
583 |
|
|
584 |
Goal "[| a : A; b : A; S <= interval r a b |]==> S <= A";
|
|
585 |
by (afs [interval_subset RSN(2, subset_trans)] 1);
|
|
586 |
qed "S_intv_cl";
|
|
587 |
|
|
588 |
Goal "[| a : A; b: A; S <= interval r a b; \
|
|
589 |
\ S ~= {}; islub S cl L; interval r a b ~= {} |] ==> L : interval r a b";
|
|
590 |
by (rtac intervalI 1);
|
|
591 |
by (rtac a_less_lub 1);
|
|
592 |
by (assume_tac 2);
|
|
593 |
by (afs [S_intv_cl] 1);
|
|
594 |
by (rtac ballI 1);
|
|
595 |
by (afs [interval_lemma1] 1);
|
|
596 |
by (afs [islubE1] 1);
|
|
597 |
(* (L, b) : r *)
|
|
598 |
by (rtac islubE2 1);
|
|
599 |
by (assume_tac 1);
|
|
600 |
by (assume_tac 1);
|
|
601 |
by (rtac ballI 1);
|
|
602 |
by (afs [interval_lemma2] 1);
|
|
603 |
qed "L_in_interval";
|
|
604 |
|
|
605 |
Goal "[| a : A; b : A; interval r a b ~= {}; S <= interval r a b; isglb S cl G; \
|
|
606 |
\ S ~= {} |] ==> G : interval r a b";
|
|
607 |
by (afs [interval_dual] 1);
|
|
608 |
by (rtac (export L_in_interval) 1);
|
|
609 |
by (rtac dualPO 1);
|
|
610 |
by (afs [dualA_iff, thm "A_def"] 1);
|
|
611 |
by (afs [dualA_iff, thm "A_def"] 1);
|
|
612 |
by (assume_tac 1);
|
|
613 |
by (afs [isglb_dual_islub] 1);
|
|
614 |
by (afs [isglb_dual_islub] 1);
|
|
615 |
by (assume_tac 1);
|
|
616 |
qed "G_in_interval";
|
|
617 |
|
|
618 |
Goal "[| a: A; b: A; interval r a b ~= {} |]\
|
|
619 |
\ ==> (| pset = interval r a b, order = induced (interval r a b) r |) : PartialOrder";
|
|
620 |
by (rtac po_subset_po 1);
|
|
621 |
by (afs [interval_subset] 1);
|
|
622 |
qed "intervalPO";
|
|
623 |
|
|
624 |
Goal "[| a : A; b : A;\
|
|
625 |
\ interval r a b ~= {} |] ==> ! S. S <= interval r a b -->\
|
|
626 |
\ (? L. islub S (| pset = interval r a b, order = induced (interval r a b) r |) L)";
|
|
627 |
by (strip_tac 1);
|
|
628 |
by (forward_tac [S_intv_cl RS islubE] 1);
|
|
629 |
by (assume_tac 2);
|
|
630 |
by (assume_tac 1);
|
|
631 |
by (etac exE 1);
|
|
632 |
(* define the lub for the interval as: *)
|
|
633 |
by (res_inst_tac [("x","if S = {} then a else L")] exI 1);
|
|
634 |
by (rtac (export islubI) 1);
|
|
635 |
(* (if S = {} then a else L) : interval r a b *)
|
|
636 |
by (asm_full_simp_tac
|
|
637 |
(simpset() addsimps [CompleteLatticeE1,L_in_interval]) 1);
|
|
638 |
by (afs [left_in_interval] 1);
|
|
639 |
(* lub prop 1 *)
|
|
640 |
by (case_tac "S = {}" 1);
|
|
641 |
(* S = {}, y: S = False => everything *)
|
|
642 |
by (Fast_tac 1);
|
|
643 |
(* S ~= {} *)
|
|
644 |
by (Asm_full_simp_tac 1);
|
|
645 |
(* ! y:S. (y, L) : induced (interval r a b) r *)
|
|
646 |
by (rtac ballI 1);
|
|
647 |
by (afs [induced_def, L_in_interval] 1);
|
|
648 |
by (rtac conjI 1);
|
|
649 |
by (rtac subsetD 1);
|
|
650 |
by (afs [S_intv_cl] 1);
|
|
651 |
by (assume_tac 1);
|
|
652 |
by (afs [islubE1] 1);
|
|
653 |
(* ! z:interval r a b. (! y:S. (y, z) : induced (interval r a b) r -->
|
|
654 |
(if S = {} then a else L, z) : induced (interval r a b) r *)
|
|
655 |
by (rtac ballI 1);
|
|
656 |
by (rtac impI 1);
|
|
657 |
by (case_tac "S = {}" 1);
|
|
658 |
(* S = {} *)
|
|
659 |
by (Asm_full_simp_tac 1);
|
|
660 |
by (afs [induced_def, interval_def] 1);
|
|
661 |
by (rtac conjI 1);
|
|
662 |
by (rtac reflE 1);
|
|
663 |
by (rtac CompleteLatticeE11 1);
|
|
664 |
by (assume_tac 1);
|
|
665 |
by (rtac interval_not_empty 1);
|
|
666 |
by (rtac CompleteLatticeE13 1);
|
|
667 |
by (afs [interval_def] 1);
|
|
668 |
(* S ~= {} *)
|
|
669 |
by (Asm_full_simp_tac 1);
|
|
670 |
by (afs [induced_def, L_in_interval] 1);
|
|
671 |
by (rtac islubE2 1);
|
|
672 |
by (assume_tac 1);
|
|
673 |
by (rtac subsetD 1);
|
|
674 |
by (assume_tac 2);
|
|
675 |
by (afs [S_intv_cl] 1);
|
|
676 |
by (Fast_tac 1);
|
|
677 |
qed "intv_CL_lub";
|
|
678 |
|
|
679 |
val intv_CL_glb = intv_CL_lub RS Rdual;
|
|
680 |
|
|
681 |
Goal "[| a: A; b: A; interval r a b ~= {} |]\
|
|
682 |
\ ==> interval r a b <<= cl";
|
|
683 |
by (rtac sublatticeI 1);
|
|
684 |
by (afs [interval_subset] 1);
|
|
685 |
by (rtac CompleteLatticeI 1);
|
|
686 |
by (afs [intervalPO] 1);
|
|
687 |
by (afs [intv_CL_lub] 1);
|
|
688 |
by (afs [intv_CL_glb] 1);
|
|
689 |
qed "interval_is_sublattice";
|
|
690 |
|
|
691 |
val interv_is_compl_latt = interval_is_sublattice RS sublatticeE2;
|
|
692 |
|
|
693 |
(* Top and Bottom *)
|
|
694 |
Goal "Top cl = Bot (dual cl)";
|
|
695 |
by (afs [Top_def,Bot_def,least_def,greatest_def,dualA_iff, dualr_iff] 1);
|
|
696 |
qed "Top_dual_Bot";
|
|
697 |
|
|
698 |
Goal "Bot cl = Top (dual cl)";
|
|
699 |
by (afs [Top_def,Bot_def,least_def,greatest_def,dualA_iff, dualr_iff] 1);
|
|
700 |
qed "Bot_dual_Top";
|
|
701 |
|
|
702 |
Goal "Bot cl: A";
|
|
703 |
by (simp_tac (simpset() addsimps [Bot_def,least_def]) 1);
|
|
704 |
by (rtac selectI2 1);
|
|
705 |
by (fold_goals_tac [thm "A_def"]);
|
|
706 |
by (etac conjunct1 2);
|
|
707 |
by (rtac conjI 1);
|
|
708 |
by (rtac glb_in_lattice 1);
|
|
709 |
by (rtac subset_refl 1);
|
|
710 |
by (fold_goals_tac [thm "r_def"]);
|
|
711 |
by (afs [glbE1] 1);
|
|
712 |
qed "Bot_in_lattice";
|
|
713 |
|
|
714 |
Goal "Top cl: A";
|
|
715 |
by (simp_tac (simpset() addsimps [Top_dual_Bot, thm "A_def"]) 1);
|
|
716 |
by (rtac (dualA_iff RS subst) 1);
|
|
717 |
by (afs [export Bot_in_lattice,CL_dualCL] 1);
|
|
718 |
qed "Top_in_lattice";
|
|
719 |
|
|
720 |
Goal "x: A ==> (x, Top cl): r";
|
|
721 |
by (simp_tac (simpset() addsimps [Top_def,greatest_def]) 1);
|
|
722 |
by (rtac selectI2 1);
|
|
723 |
by (fold_goals_tac [thm "r_def", thm "A_def"]);
|
|
724 |
by (Fast_tac 2);
|
|
725 |
by (rtac conjI 1);
|
|
726 |
by (rtac lubE1 2);
|
|
727 |
by (afs [lub_in_lattice] 1);
|
|
728 |
by (rtac subset_refl 1);
|
|
729 |
qed "Top_prop";
|
|
730 |
|
|
731 |
Goal "x: A ==> (Bot cl, x): r";
|
|
732 |
by (simp_tac (simpset() addsimps [Bot_dual_Top, thm "r_def"]) 1);
|
|
733 |
by (rtac (dualr_iff RS subst) 1);
|
|
734 |
by (rtac (export Top_prop) 1);
|
|
735 |
by (rtac CL_dualCL 1);
|
|
736 |
by (afs [dualA_iff, thm "A_def"] 1);
|
|
737 |
qed "Bot_prop";
|
|
738 |
|
|
739 |
Goal "x: A ==> interval r x (Top cl) ~= {}";
|
|
740 |
by (rtac notI 1);
|
|
741 |
by (dres_inst_tac [("a","Top cl")] equals0D 1);
|
|
742 |
by (afs [interval_def] 1);
|
|
743 |
by (afs [refl_def,Top_in_lattice,Top_prop] 1);
|
|
744 |
qed "Top_intv_not_empty";
|
|
745 |
|
|
746 |
Goal "x: A ==> interval r (Bot cl) x ~= {}";
|
|
747 |
by (simp_tac (simpset() addsimps [Bot_dual_Top]) 1);
|
|
748 |
by (stac interval_dual 1);
|
|
749 |
by (assume_tac 2);
|
|
750 |
by (afs [thm "A_def"] 1);
|
|
751 |
by (rtac (dualA_iff RS subst) 1);
|
|
752 |
by (rtac (export Top_in_lattice) 1);
|
|
753 |
by (rtac CL_dualCL 1);
|
|
754 |
by (afs [export Top_intv_not_empty,CL_dualCL,dualA_iff, thm "A_def"] 1);
|
|
755 |
qed "Bot_intv_not_empty";
|
|
756 |
|
|
757 |
(* fixed points form a partial order *)
|
|
758 |
Goal "(| pset = P, order = induced P r|) : PartialOrder";
|
|
759 |
by (rtac po_subset_po 1);
|
|
760 |
by (rtac fixfE1 1);
|
|
761 |
qed "fixf_po";
|
|
762 |
|
|
763 |
Open_locale "Tarski";
|
|
764 |
|
|
765 |
Goal "Y <= A";
|
|
766 |
by (rtac (fixfE1 RSN(2,subset_trans)) 1);
|
|
767 |
by (rtac (thm "Y_ss") 1);
|
|
768 |
qed "Y_subset_A";
|
|
769 |
|
|
770 |
Goal "lub Y cl : A";
|
|
771 |
by (afs [Y_subset_A RS lub_in_lattice] 1);
|
|
772 |
qed "lubY_in_A";
|
|
773 |
|
|
774 |
Goal "(lub Y cl, f (lub Y cl)): r";
|
|
775 |
by (rtac lubE2 1);
|
|
776 |
by (rtac Y_subset_A 1);
|
|
777 |
by (rtac (CLF_E1 RS funcset_mem) 1);
|
|
778 |
by (rtac lubY_in_A 1);
|
|
779 |
(* Y <= P ==> f x = x *)
|
|
780 |
by (rtac ballI 1);
|
|
781 |
by (res_inst_tac [("t","x")] (fixfE2 RS subst) 1);
|
|
782 |
by (etac (thm "Y_ss" RS subsetD) 1);
|
|
783 |
(* reduce (f x, f (lub Y cl)) : r to (x, lub Y cl): r by monotonicity *)
|
|
784 |
by (res_inst_tac [("f","f")] monotoneE 1);
|
|
785 |
by (rtac CLF_E2 1);
|
|
786 |
by (afs [Y_subset_A RS subsetD] 1);
|
|
787 |
by (rtac lubY_in_A 1);
|
|
788 |
by (afs [lubE1, Y_subset_A] 1);
|
|
789 |
qed "lubY_le_flubY";
|
|
790 |
|
|
791 |
Goalw [thm "intY1_def"] "intY1 <= A";
|
|
792 |
by (rtac interval_subset 1);
|
|
793 |
by (rtac lubY_in_A 1);
|
|
794 |
by (rtac Top_in_lattice 1);
|
|
795 |
qed "intY1_subset";
|
|
796 |
|
|
797 |
val intY1_elem = intY1_subset RS subsetD;
|
|
798 |
|
|
799 |
Goal "(lam x: intY1. f x): intY1 funcset intY1";
|
|
800 |
by (rtac restrictI 1);
|
|
801 |
by (afs [thm "intY1_def", interval_def] 1);
|
|
802 |
by (rtac conjI 1);
|
|
803 |
by (rtac transE 1);
|
|
804 |
by (rtac CompleteLatticeE13 1);
|
|
805 |
by (rtac lubY_le_flubY 1);
|
|
806 |
(* (f (lub Y cl), f x) : r *)
|
|
807 |
by (res_inst_tac [("f","f")]monotoneE 1);
|
|
808 |
by (rtac CLF_E2 1);
|
|
809 |
by (rtac lubY_in_A 1);
|
|
810 |
by (afs [thm "intY1_def",interval_def, intY1_elem] 1);
|
|
811 |
by (afs [thm "intY1_def", interval_def] 1);
|
|
812 |
(* (f x, Top cl) : r *)
|
|
813 |
by (rtac Top_prop 1);
|
|
814 |
by (rtac (CLF_E1 RS funcset_mem) 1);
|
|
815 |
by (afs [thm "intY1_def",interval_def, intY1_elem] 1);
|
|
816 |
qed "intY1_func";
|
|
817 |
|
|
818 |
Goal "monotone (lam x: intY1. f x) intY1 (induced intY1 r)";
|
|
819 |
by (simp_tac (simpset() addsimps [monotone_def]) 1);
|
|
820 |
by (Clarify_tac 1);
|
|
821 |
by (simp_tac (simpset() addsimps [induced_def]) 1);
|
|
822 |
by (afs [intY1_func RS funcset_mem] 1);
|
|
823 |
by (afs [restrict_apply1] 1);
|
|
824 |
by (res_inst_tac [("f","f")] monotoneE 1);
|
|
825 |
by (rtac CLF_E2 1);
|
|
826 |
by (etac (intY1_subset RS subsetD) 2);
|
|
827 |
by (etac (intY1_subset RS subsetD) 1);
|
|
828 |
by (afs [induced_def] 1);
|
|
829 |
qed "intY1_mono";
|
|
830 |
|
|
831 |
Goalw [thm "intY1_def"]
|
|
832 |
"(| pset = intY1, order = induced intY1 r |): CompleteLattice";
|
|
833 |
by (rtac interv_is_compl_latt 1);
|
|
834 |
by (rtac lubY_in_A 1);
|
|
835 |
by (rtac Top_in_lattice 1);
|
|
836 |
by (rtac Top_intv_not_empty 1);
|
|
837 |
by (rtac lubY_in_A 1);
|
|
838 |
qed "intY1_is_cl";
|
|
839 |
|
|
840 |
Goalw [thm "P_def"] "v : P";
|
|
841 |
by (res_inst_tac [("A","intY1")] fixf_subset 1);
|
|
842 |
by (rtac intY1_subset 1);
|
|
843 |
by (rewrite_goals_tac [thm "v_def"]);
|
|
844 |
by (rtac (simplify (simpset()) (intY1_is_cl RS export glbH_is_fixp)) 1);
|
|
845 |
by (afs [CLF_def, intY1_is_cl, intY1_func, intY1_mono] 1);
|
|
846 |
by (Simp_tac 1);
|
|
847 |
qed "v_in_P";
|
|
848 |
|
|
849 |
Goalw [thm "intY1_def"]
|
|
850 |
"[| z : P; ! y:Y. (y, z) : induced P r |] ==> z : intY1";
|
|
851 |
by (rtac intervalI 1);
|
|
852 |
by (etac (fixfE1 RS subsetD RS Top_prop) 2);
|
|
853 |
by (rtac lubE2 1);
|
|
854 |
by (rtac Y_subset_A 1);
|
|
855 |
by (fast_tac (claset() addSEs [fixfE1 RS subsetD]) 1);
|
|
856 |
by (rtac ballI 1);
|
|
857 |
by (dtac bspec 1);
|
|
858 |
by (assume_tac 1);
|
|
859 |
by (afs [induced_def] 1);
|
|
860 |
qed "z_in_interval";
|
|
861 |
|
|
862 |
Goal "[| z : P; ! y:Y. (y, z) : induced P r |]\
|
|
863 |
\ ==> ((lam x: intY1. f x) z, z) : induced intY1 r";
|
|
864 |
by (afs [induced_def,intY1_func RS funcset_mem, z_in_interval] 1);
|
|
865 |
by (rtac (z_in_interval RS restrict_apply1 RS ssubst) 1);
|
|
866 |
by (assume_tac 1);
|
|
867 |
by (afs [induced_def] 1);
|
|
868 |
by (afs [fixfE2] 1);
|
|
869 |
by (rtac reflE 1);
|
|
870 |
by (rtac CompleteLatticeE11 1);
|
|
871 |
by (etac (fixfE1 RS subsetD) 1);
|
|
872 |
qed "f'z_in_int_rel";
|
|
873 |
|
|
874 |
Goal "? L. islub Y (| pset = P, order = induced P r |) L";
|
|
875 |
by (res_inst_tac [("x","v")] exI 1);
|
|
876 |
by (simp_tac (simpset() addsimps [islub_def]) 1);
|
|
877 |
(* v : P *)
|
|
878 |
by (afs [v_in_P] 1);
|
|
879 |
by (rtac conjI 1);
|
|
880 |
(* v is lub *)
|
|
881 |
(* 1. ! y:Y. (y, v) : induced P r *)
|
|
882 |
by (rtac ballI 1);
|
|
883 |
by (afs [induced_def, subsetD, v_in_P] 1);
|
|
884 |
by (rtac conjI 1);
|
|
885 |
by (etac (thm "Y_ss" RS subsetD) 1);
|
|
886 |
by (res_inst_tac [("b","lub Y cl")] transE 1);
|
|
887 |
by (rtac CompleteLatticeE13 1);
|
|
888 |
by (rtac (lubE1 RS bspec) 1);
|
|
889 |
by (rtac Y_subset_A 1);
|
|
890 |
by (assume_tac 1);
|
|
891 |
by (res_inst_tac [("b","Top cl")] intervalE1 1);
|
|
892 |
by (afs [thm "v_def"] 1);
|
|
893 |
by (fold_goals_tac [thm "intY1_def"]);
|
|
894 |
by (rtac (simplify (simpset()) (intY1_is_cl RS export glb_in_lattice)) 1);
|
|
895 |
by (Simp_tac 1);
|
|
896 |
by (rtac subsetI 1);
|
|
897 |
by (dtac CollectD 1);
|
|
898 |
by (etac conjunct2 1);
|
|
899 |
(* v is LEAST ub *)
|
|
900 |
by (Clarify_tac 1);
|
|
901 |
by (rtac indI 1);
|
|
902 |
by (afs [v_in_P] 2);
|
|
903 |
by (assume_tac 2);
|
|
904 |
by (rewrite_goals_tac [thm "v_def"]);
|
|
905 |
by (rtac indE 1);
|
|
906 |
by (rtac intY1_subset 2);
|
|
907 |
by (rtac (simplify (simpset()) (intY1_is_cl RS export (glbE1 RS bspec))) 1);
|
|
908 |
by (Simp_tac 1);
|
|
909 |
by (rtac subsetI 1);
|
|
910 |
by (dtac CollectD 1);
|
|
911 |
by (etac conjunct2 1);
|
|
912 |
by (afs [f'z_in_int_rel, z_in_interval] 1);
|
|
913 |
qed "tarski_full_lemma";
|
|
914 |
val Tarski_full_lemma = Export tarski_full_lemma;
|
|
915 |
|
|
916 |
Close_locale "Tarski";
|
|
917 |
|
|
918 |
Goal "(| pset = P, order = induced P r|) : CompleteLattice";
|
|
919 |
by (rtac CompleteLatticeI_simp 1);
|
|
920 |
by (afs [fixf_po] 1);
|
|
921 |
by (Clarify_tac 1);
|
|
922 |
by (etac Tarski_full_lemma 1);
|
|
923 |
qed "Tarski_full";
|
|
924 |
|
|
925 |
|
|
926 |
Close_locale "CLF";
|
|
927 |
Close_locale "CL";
|
|
928 |
Close_locale "PO";
|
|
929 |
|
|
930 |
|
|
931 |
|