| author | haftmann | 
| Wed, 17 Jun 2009 08:31:13 +0200 | |
| changeset 31673 | 6cc4c63cc990 | 
| parent 30235 | 58d147683393 | 
| permissions | -rw-r--r-- | 
| 12516 | 1  | 
(* Title: HOL/MicroJava/BV/Opt.thy  | 
| 10496 | 2  | 
ID: $Id$  | 
3  | 
Author: Tobias Nipkow  | 
|
4  | 
Copyright 2000 TUM  | 
|
5  | 
||
6  | 
More about options  | 
|
7  | 
*)  | 
|
8  | 
||
| 12911 | 9  | 
header {* \isaheader{More about Options} *}
 | 
| 10496 | 10  | 
|
| 27680 | 11  | 
theory Opt  | 
12  | 
imports Err  | 
|
13  | 
begin  | 
|
| 10496 | 14  | 
|
15  | 
constdefs  | 
|
| 13006 | 16  | 
le :: "'a ord \<Rightarrow> 'a option ord"  | 
17  | 
"le r o1 o2 == case o2 of None \<Rightarrow> o1=None |  | 
|
18  | 
Some y \<Rightarrow> (case o1 of None \<Rightarrow> True  | 
|
19  | 
| Some x \<Rightarrow> x <=_r y)"  | 
|
| 10496 | 20  | 
|
| 13006 | 21  | 
opt :: "'a set \<Rightarrow> 'a option set"  | 
| 10496 | 22  | 
"opt A == insert None {x . ? y:A. x = Some y}"
 | 
23  | 
||
| 13006 | 24  | 
sup :: "'a ebinop \<Rightarrow> 'a option ebinop"  | 
| 10496 | 25  | 
"sup f o1 o2 ==  | 
| 13006 | 26  | 
case o1 of None \<Rightarrow> OK o2 | Some x \<Rightarrow> (case o2 of None \<Rightarrow> OK o1  | 
27  | 
| Some y \<Rightarrow> (case f x y of Err \<Rightarrow> Err | OK z \<Rightarrow> OK (Some z)))"  | 
|
| 10496 | 28  | 
|
| 13006 | 29  | 
esl :: "'a esl \<Rightarrow> 'a option esl"  | 
| 10496 | 30  | 
"esl == %(A,r,f). (opt A, le r, sup f)"  | 
31  | 
||
32  | 
lemma unfold_le_opt:  | 
|
33  | 
"o1 <=_(le r) o2 =  | 
|
| 13006 | 34  | 
(case o2 of None \<Rightarrow> o1=None |  | 
35  | 
Some y \<Rightarrow> (case o1 of None \<Rightarrow> True | Some x \<Rightarrow> x <=_r y))"  | 
|
| 10496 | 36  | 
apply (unfold lesub_def le_def)  | 
37  | 
apply (rule refl)  | 
|
38  | 
done  | 
|
39  | 
||
40  | 
lemma le_opt_refl:  | 
|
| 13006 | 41  | 
"order r \<Longrightarrow> o1 <=_(le r) o1"  | 
| 10496 | 42  | 
by (simp add: unfold_le_opt split: option.split)  | 
43  | 
||
44  | 
lemma le_opt_trans [rule_format]:  | 
|
| 13006 | 45  | 
"order r \<Longrightarrow>  | 
46  | 
o1 <=_(le r) o2 \<longrightarrow> o2 <=_(le r) o3 \<longrightarrow> o1 <=_(le r) o3"  | 
|
| 10496 | 47  | 
apply (simp add: unfold_le_opt split: option.split)  | 
48  | 
apply (blast intro: order_trans)  | 
|
49  | 
done  | 
|
50  | 
||
51  | 
lemma le_opt_antisym [rule_format]:  | 
|
| 13006 | 52  | 
"order r \<Longrightarrow> o1 <=_(le r) o2 \<longrightarrow> o2 <=_(le r) o1 \<longrightarrow> o1=o2"  | 
| 10496 | 53  | 
apply (simp add: unfold_le_opt split: option.split)  | 
54  | 
apply (blast intro: order_antisym)  | 
|
55  | 
done  | 
|
56  | 
||
57  | 
lemma order_le_opt [intro!,simp]:  | 
|
| 13006 | 58  | 
"order r \<Longrightarrow> order(le r)"  | 
| 22068 | 59  | 
apply (subst Semilat.order_def)  | 
| 10496 | 60  | 
apply (blast intro: le_opt_refl le_opt_trans le_opt_antisym)  | 
61  | 
done  | 
|
62  | 
||
63  | 
lemma None_bot [iff]:  | 
|
64  | 
"None <=_(le r) ox"  | 
|
65  | 
apply (unfold lesub_def le_def)  | 
|
66  | 
apply (simp split: option.split)  | 
|
67  | 
done  | 
|
68  | 
||
69  | 
lemma Some_le [iff]:  | 
|
70  | 
"(Some x <=_(le r) ox) = (? y. ox = Some y & x <=_r y)"  | 
|
71  | 
apply (unfold lesub_def le_def)  | 
|
72  | 
apply (simp split: option.split)  | 
|
73  | 
done  | 
|
74  | 
||
75  | 
lemma le_None [iff]:  | 
|
76  | 
"(ox <=_(le r) None) = (ox = None)";  | 
|
77  | 
apply (unfold lesub_def le_def)  | 
|
78  | 
apply (simp split: option.split)  | 
|
79  | 
done  | 
|
80  | 
||
81  | 
||
82  | 
lemma OK_None_bot [iff]:  | 
|
83  | 
"OK None <=_(Err.le (le r)) x"  | 
|
84  | 
by (simp add: lesub_def Err.le_def le_def split: option.split err.split)  | 
|
85  | 
||
86  | 
lemma sup_None1 [iff]:  | 
|
87  | 
"x +_(sup f) None = OK x"  | 
|
88  | 
by (simp add: plussub_def sup_def split: option.split)  | 
|
89  | 
||
90  | 
lemma sup_None2 [iff]:  | 
|
91  | 
"None +_(sup f) x = OK x"  | 
|
92  | 
by (simp add: plussub_def sup_def split: option.split)  | 
|
93  | 
||
94  | 
||
95  | 
lemma None_in_opt [iff]:  | 
|
96  | 
"None : opt A"  | 
|
97  | 
by (simp add: opt_def)  | 
|
98  | 
||
99  | 
lemma Some_in_opt [iff]:  | 
|
100  | 
"(Some x : opt A) = (x:A)"  | 
|
101  | 
apply (unfold opt_def)  | 
|
102  | 
apply auto  | 
|
103  | 
done  | 
|
104  | 
||
105  | 
||
| 13062 | 106  | 
lemma semilat_opt [intro, simp]:  | 
| 13006 | 107  | 
"\<And>L. err_semilat L \<Longrightarrow> err_semilat (Opt.esl L)"  | 
| 10496 | 108  | 
proof (unfold Opt.esl_def Err.sl_def, simp add: split_tupled_all)  | 
109  | 
||
110  | 
fix A r f  | 
|
111  | 
assume s: "semilat (err A, Err.le r, lift2 f)"  | 
|
112  | 
||
113  | 
let ?A0 = "err A"  | 
|
114  | 
let ?r0 = "Err.le r"  | 
|
115  | 
let ?f0 = "lift2 f"  | 
|
116  | 
||
117  | 
from s  | 
|
118  | 
obtain  | 
|
119  | 
ord: "order ?r0" and  | 
|
120  | 
clo: "closed ?A0 ?f0" and  | 
|
121  | 
ub1: "\<forall>x\<in>?A0. \<forall>y\<in>?A0. x <=_?r0 x +_?f0 y" and  | 
|
122  | 
ub2: "\<forall>x\<in>?A0. \<forall>y\<in>?A0. y <=_?r0 x +_?f0 y" and  | 
|
123  | 
lub: "\<forall>x\<in>?A0. \<forall>y\<in>?A0. \<forall>z\<in>?A0. x <=_?r0 z \<and> y <=_?r0 z \<longrightarrow> x +_?f0 y <=_?r0 z"  | 
|
124  | 
by (unfold semilat_def) simp  | 
|
125  | 
||
126  | 
let ?A = "err (opt A)"  | 
|
127  | 
let ?r = "Err.le (Opt.le r)"  | 
|
128  | 
let ?f = "lift2 (Opt.sup f)"  | 
|
129  | 
||
130  | 
from ord  | 
|
131  | 
have "order ?r"  | 
|
132  | 
by simp  | 
|
133  | 
||
134  | 
moreover  | 
|
135  | 
||
136  | 
have "closed ?A ?f"  | 
|
137  | 
proof (unfold closed_def, intro strip)  | 
|
138  | 
fix x y  | 
|
139  | 
assume x: "x : ?A"  | 
|
140  | 
assume y: "y : ?A"  | 
|
141  | 
||
| 11085 | 142  | 
    { fix a b
 | 
| 10496 | 143  | 
assume ab: "x = OK a" "y = OK b"  | 
144  | 
||
145  | 
with x  | 
|
| 13006 | 146  | 
have a: "\<And>c. a = Some c \<Longrightarrow> c : A"  | 
| 10496 | 147  | 
by (clarsimp simp add: opt_def)  | 
148  | 
||
149  | 
from ab y  | 
|
| 13006 | 150  | 
have b: "\<And>d. b = Some d \<Longrightarrow> d : A"  | 
| 10496 | 151  | 
by (clarsimp simp add: opt_def)  | 
152  | 
||
153  | 
      { fix c d assume "a = Some c" "b = Some d"
 | 
|
154  | 
with ab x y  | 
|
155  | 
have "c:A & d:A"  | 
|
156  | 
by (simp add: err_def opt_def Bex_def)  | 
|
157  | 
with clo  | 
|
158  | 
have "f c d : err A"  | 
|
159  | 
by (simp add: closed_def plussub_def err_def lift2_def)  | 
|
160  | 
moreover  | 
|
161  | 
fix z assume "f c d = OK z"  | 
|
162  | 
ultimately  | 
|
163  | 
have "z : A" by simp  | 
|
164  | 
} note f_closed = this  | 
|
165  | 
||
166  | 
have "sup f a b : ?A"  | 
|
167  | 
proof (cases a)  | 
|
168  | 
case None  | 
|
169  | 
thus ?thesis  | 
|
170  | 
by (simp add: sup_def opt_def) (cases b, simp, simp add: b Bex_def)  | 
|
171  | 
next  | 
|
172  | 
case Some  | 
|
173  | 
thus ?thesis  | 
|
174  | 
by (auto simp add: sup_def opt_def Bex_def a b f_closed split: err.split option.split)  | 
|
175  | 
qed  | 
|
176  | 
}  | 
|
177  | 
||
178  | 
thus "x +_?f y : ?A"  | 
|
179  | 
by (simp add: plussub_def lift2_def split: err.split)  | 
|
180  | 
qed  | 
|
181  | 
||
182  | 
moreover  | 
|
183  | 
||
| 11085 | 184  | 
  { fix a b c 
 | 
185  | 
assume "a \<in> opt A" "b \<in> opt A" "a +_(sup f) b = OK c"  | 
|
186  | 
moreover  | 
|
187  | 
from ord have "order r" by simp  | 
|
188  | 
moreover  | 
|
189  | 
    { fix x y z
 | 
|
190  | 
assume "x \<in> A" "y \<in> A"  | 
|
191  | 
hence "OK x \<in> err A \<and> OK y \<in> err A" by simp  | 
|
192  | 
with ub1 ub2  | 
|
193  | 
have "(OK x) <=_(Err.le r) (OK x) +_(lift2 f) (OK y) \<and>  | 
|
194  | 
(OK y) <=_(Err.le r) (OK x) +_(lift2 f) (OK y)"  | 
|
195  | 
by blast  | 
|
196  | 
moreover  | 
|
197  | 
assume "x +_f y = OK z"  | 
|
198  | 
ultimately  | 
|
199  | 
have "x <=_r z \<and> y <=_r z"  | 
|
200  | 
by (auto simp add: plussub_def lift2_def Err.le_def lesub_def)  | 
|
201  | 
}  | 
|
202  | 
ultimately  | 
|
203  | 
have "a <=_(le r) c \<and> b <=_(le r) c"  | 
|
204  | 
by (auto simp add: sup_def le_def lesub_def plussub_def  | 
|
205  | 
dest: order_refl split: option.splits err.splits)  | 
|
206  | 
}  | 
|
207  | 
||
208  | 
hence "(\<forall>x\<in>?A. \<forall>y\<in>?A. x <=_?r x +_?f y) \<and> (\<forall>x\<in>?A. \<forall>y\<in>?A. y <=_?r x +_?f y)"  | 
|
209  | 
by (auto simp add: lesub_def plussub_def Err.le_def lift2_def split: err.split)  | 
|
| 10496 | 210  | 
|
211  | 
moreover  | 
|
212  | 
||
213  | 
have "\<forall>x\<in>?A. \<forall>y\<in>?A. \<forall>z\<in>?A. x <=_?r z \<and> y <=_?r z \<longrightarrow> x +_?f y <=_?r z"  | 
|
214  | 
proof (intro strip, elim conjE)  | 
|
215  | 
fix x y z  | 
|
216  | 
assume xyz: "x : ?A" "y : ?A" "z : ?A"  | 
|
217  | 
assume xz: "x <=_?r z"  | 
|
218  | 
assume yz: "y <=_?r z"  | 
|
219  | 
||
220  | 
    { fix a b c
 | 
|
221  | 
assume ok: "x = OK a" "y = OK b" "z = OK c"  | 
|
222  | 
||
223  | 
      { fix d e g
 | 
|
224  | 
assume some: "a = Some d" "b = Some e" "c = Some g"  | 
|
225  | 
||
226  | 
with ok xyz  | 
|
227  | 
obtain "OK d:err A" "OK e:err A" "OK g:err A"  | 
|
228  | 
by simp  | 
|
229  | 
with lub  | 
|
| 13006 | 230  | 
have "\<lbrakk> (OK d) <=_(Err.le r) (OK g); (OK e) <=_(Err.le r) (OK g) \<rbrakk>  | 
231  | 
\<Longrightarrow> (OK d) +_(lift2 f) (OK e) <=_(Err.le r) (OK g)"  | 
|
| 10496 | 232  | 
by blast  | 
| 13006 | 233  | 
hence "\<lbrakk> d <=_r g; e <=_r g \<rbrakk> \<Longrightarrow> \<exists>y. d +_f e = OK y \<and> y <=_r g"  | 
| 10496 | 234  | 
by simp  | 
235  | 
||
236  | 
with ok some xyz xz yz  | 
|
237  | 
have "x +_?f y <=_?r z"  | 
|
238  | 
by (auto simp add: sup_def le_def lesub_def lift2_def plussub_def Err.le_def)  | 
|
239  | 
} note this [intro!]  | 
|
240  | 
||
241  | 
from ok xyz xz yz  | 
|
242  | 
have "x +_?f y <=_?r z"  | 
|
243  | 
by - (cases a, simp, cases b, simp, cases c, simp, blast)  | 
|
244  | 
}  | 
|
245  | 
||
246  | 
with xyz xz yz  | 
|
247  | 
show "x +_?f y <=_?r z"  | 
|
248  | 
by - (cases x, simp, cases y, simp, cases z, simp+)  | 
|
249  | 
qed  | 
|
250  | 
||
251  | 
ultimately  | 
|
252  | 
||
253  | 
show "semilat (?A,?r,?f)"  | 
|
254  | 
by (unfold semilat_def) simp  | 
|
255  | 
qed  | 
|
256  | 
||
257  | 
lemma top_le_opt_Some [iff]:  | 
|
258  | 
"top (le r) (Some T) = top r T"  | 
|
259  | 
apply (unfold top_def)  | 
|
260  | 
apply (rule iffI)  | 
|
261  | 
apply blast  | 
|
262  | 
apply (rule allI)  | 
|
263  | 
apply (case_tac "x")  | 
|
264  | 
apply simp+  | 
|
265  | 
done  | 
|
266  | 
||
267  | 
lemma Top_le_conv:  | 
|
| 13006 | 268  | 
"\<lbrakk> order r; top r T \<rbrakk> \<Longrightarrow> (T <=_r x) = (x = T)"  | 
| 10496 | 269  | 
apply (unfold top_def)  | 
270  | 
apply (blast intro: order_antisym)  | 
|
271  | 
done  | 
|
272  | 
||
273  | 
||
274  | 
lemma acc_le_optI [intro!]:  | 
|
| 13006 | 275  | 
"acc r \<Longrightarrow> acc(le r)"  | 
| 10496 | 276  | 
apply (unfold acc_def lesub_def le_def lesssub_def)  | 
| 22271 | 277  | 
apply (simp add: wfP_eq_minimal split: option.split)  | 
| 10496 | 278  | 
apply clarify  | 
279  | 
apply (case_tac "? a. Some a : Q")  | 
|
280  | 
 apply (erule_tac x = "{a . Some a : Q}" in allE)
 | 
|
281  | 
apply blast  | 
|
282  | 
apply (case_tac "x")  | 
|
283  | 
apply blast  | 
|
284  | 
apply blast  | 
|
285  | 
done  | 
|
286  | 
||
287  | 
lemma option_map_in_optionI:  | 
|
| 13006 | 288  | 
"\<lbrakk> ox : opt S; !x:S. ox = Some x \<longrightarrow> f x : S \<rbrakk>  | 
| 
30235
 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 
nipkow 
parents: 
27680 
diff
changeset
 | 
289  | 
\<Longrightarrow> Option.map f ox : opt S";  | 
| 
 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 
nipkow 
parents: 
27680 
diff
changeset
 | 
290  | 
apply (unfold Option.map_def)  | 
| 10496 | 291  | 
apply (simp split: option.split)  | 
292  | 
apply blast  | 
|
293  | 
done  | 
|
294  | 
||
295  | 
end  |