| 
13224
 | 
     1  | 
(*  Title:      HOL/MicroJava/BV/JVM.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Tobias Nipkow, Gerwin Klein
  | 
| 
 | 
     4  | 
    Copyright   2000 TUM
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
header {* \isaheader{The Typing Framework for the JVM}\label{sec:JVM} *}
 | 
| 
 | 
     8  | 
  | 
| 
16417
 | 
     9  | 
theory Typing_Framework_JVM imports Typing_Framework_err JVMType EffectMono BVSpec begin
  | 
| 
13224
 | 
    10  | 
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
constdefs
  | 
| 
26450
 | 
    13  | 
  exec :: "jvm_prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> instr list \<Rightarrow> JVMType.state step_type"
  | 
| 
13224
 | 
    14  | 
  "exec G maxs rT et bs == 
  | 
| 
 | 
    15  | 
  err_step (size bs) (\<lambda>pc. app (bs!pc) G maxs rT pc et) (\<lambda>pc. eff (bs!pc) G pc et)"
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
constdefs
  | 
| 
 | 
    18  | 
  opt_states :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> (ty list \<times> ty err list) option set"
  | 
| 
 | 
    19  | 
  "opt_states G maxs maxr \<equiv> opt (\<Union>{list n (types G) |n. n \<le> maxs} \<times> list maxr (err (types G)))"
 | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
section {*  Executability of @{term check_bounded} *}
 | 
| 
 | 
    23  | 
consts
  | 
| 
 | 
    24  | 
  list_all'_rec :: "('a \<Rightarrow> nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> bool"
 | 
| 
 | 
    25  | 
primrec
  | 
| 
 | 
    26  | 
  "list_all'_rec P n []     = True"
  | 
| 
 | 
    27  | 
  "list_all'_rec P n (x#xs) = (P x n \<and> list_all'_rec P (Suc n) xs)"
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
constdefs
  | 
| 
 | 
    30  | 
  list_all' :: "('a \<Rightarrow> nat \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
 | 
| 
 | 
    31  | 
  "list_all' P xs \<equiv> list_all'_rec P 0 xs"
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
lemma list_all'_rec:
  | 
| 
 | 
    34  | 
  "\<And>n. list_all'_rec P n xs = (\<forall>p < size xs. P (xs!p) (p+n))"
  | 
| 
 | 
    35  | 
  apply (induct xs)
  | 
| 
 | 
    36  | 
  apply auto
  | 
| 
 | 
    37  | 
  apply (case_tac p)
  | 
| 
 | 
    38  | 
  apply auto
  | 
| 
 | 
    39  | 
  done
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
lemma list_all' [iff]:
  | 
| 
 | 
    42  | 
  "list_all' P xs = (\<forall>n < size xs. P (xs!n) n)"
  | 
| 
 | 
    43  | 
  by (unfold list_all'_def) (simp add: list_all'_rec)
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
lemma [code]:
  | 
| 
 | 
    46  | 
  "check_bounded ins et = 
  | 
| 
 | 
    47  | 
  (list_all' (\<lambda>i pc. list_all (\<lambda>pc'. pc' < length ins) (succs i pc)) ins \<and> 
  | 
| 
 | 
    48  | 
   list_all (\<lambda>e. fst (snd (snd e)) < length ins) et)"
  | 
| 
17090
 | 
    49  | 
  by (simp add: list_all_iff check_bounded_def)
  | 
| 
13224
 | 
    50  | 
  
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
section {* Connecting JVM and Framework *}
 | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma check_bounded_is_bounded:
  | 
| 
 | 
    55  | 
  "check_bounded ins et \<Longrightarrow> bounded (\<lambda>pc. eff (ins!pc) G pc et) (length ins)"  
  | 
| 
 | 
    56  | 
  by (unfold bounded_def) (blast dest: check_boundedD)
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
lemma special_ex_swap_lemma [iff]: 
  | 
| 
 | 
    59  | 
  "(? X. (? n. X = A n & P n) & Q X) = (? n. Q(A n) & P n)"
  | 
| 
 | 
    60  | 
  by blast
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
lemmas [iff del] = not_None_eq
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
theorem exec_pres_type:
  | 
| 
 | 
    65  | 
  "wf_prog wf_mb S \<Longrightarrow> 
  | 
| 
 | 
    66  | 
  pres_type (exec S maxs rT et bs) (size bs) (states S maxs maxr)"
  | 
| 
 | 
    67  | 
  apply (unfold exec_def JVM_states_unfold)
  | 
| 
 | 
    68  | 
  apply (rule pres_type_lift)
  | 
| 
 | 
    69  | 
  apply clarify
  | 
| 
 | 
    70  | 
  apply (case_tac s)
  | 
| 
 | 
    71  | 
   apply simp
  | 
| 
 | 
    72  | 
   apply (drule effNone)
  | 
| 
 | 
    73  | 
   apply simp  
  | 
| 
 | 
    74  | 
  apply (simp add: eff_def xcpt_eff_def norm_eff_def)
  | 
| 
 | 
    75  | 
  apply (case_tac "bs!p")
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
  apply (clarsimp simp add: not_Err_eq)
  | 
| 
 | 
    78  | 
  apply (drule listE_nth_in, assumption)
  | 
| 
 | 
    79  | 
  apply fastsimp
  | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
  apply (fastsimp simp add: not_None_eq)
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
  apply (fastsimp simp add: not_None_eq typeof_empty_is_type)
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
  apply clarsimp
  | 
| 
 | 
    86  | 
  apply (erule disjE)
  | 
| 
 | 
    87  | 
   apply fastsimp
  | 
| 
 | 
    88  | 
  apply clarsimp
  | 
| 
 | 
    89  | 
  apply (rule_tac x="1" in exI)
  | 
| 
 | 
    90  | 
  apply fastsimp
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
  apply clarsimp
  | 
| 
 | 
    93  | 
  apply (erule disjE)
  | 
| 
 | 
    94  | 
   apply (fastsimp dest: field_fields fields_is_type)
  | 
| 
 | 
    95  | 
  apply (simp add: match_some_entry split: split_if_asm)
  | 
| 
 | 
    96  | 
  apply (rule_tac x=1 in exI)
  | 
| 
 | 
    97  | 
  apply fastsimp
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
  apply clarsimp
  | 
| 
 | 
   100  | 
  apply (erule disjE)
  | 
| 
 | 
   101  | 
   apply fastsimp
  | 
| 
 | 
   102  | 
  apply (simp add: match_some_entry split: split_if_asm)
  | 
| 
 | 
   103  | 
  apply (rule_tac x=1 in exI)
  | 
| 
 | 
   104  | 
  apply fastsimp
  | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
  apply clarsimp
  | 
| 
 | 
   107  | 
  apply (erule disjE)
  | 
| 
 | 
   108  | 
   apply fastsimp
  | 
| 
 | 
   109  | 
  apply clarsimp
  | 
| 
 | 
   110  | 
  apply (rule_tac x=1 in exI)
  | 
| 
 | 
   111  | 
  apply fastsimp
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
  defer 
  | 
| 
 | 
   114  | 
  | 
| 
 | 
   115  | 
  apply fastsimp
  | 
| 
 | 
   116  | 
  apply fastsimp
  | 
| 
 | 
   117  | 
  | 
| 
 | 
   118  | 
  apply clarsimp
  | 
| 
 | 
   119  | 
  apply (rule_tac x="n'+2" in exI)  
  | 
| 
 | 
   120  | 
  apply simp
  | 
| 
 | 
   121  | 
  | 
| 
 | 
   122  | 
  apply clarsimp
  | 
| 
 | 
   123  | 
  apply (rule_tac x="Suc (Suc (Suc (length ST)))" in exI)  
  | 
| 
 | 
   124  | 
  apply simp
  | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
  apply clarsimp
  | 
| 
 | 
   127  | 
  apply (rule_tac x="Suc (Suc (Suc (Suc (length ST))))" in exI)  
  | 
| 
 | 
   128  | 
  apply simp
  | 
| 
 | 
   129  | 
  | 
| 
 | 
   130  | 
  apply fastsimp
  | 
| 
 | 
   131  | 
  apply fastsimp
  | 
| 
 | 
   132  | 
  apply fastsimp
  | 
| 
 | 
   133  | 
  apply fastsimp
  | 
| 
 | 
   134  | 
  | 
| 
 | 
   135  | 
  apply clarsimp
  | 
| 
 | 
   136  | 
  apply (erule disjE)
  | 
| 
 | 
   137  | 
   apply fastsimp
  | 
| 
 | 
   138  | 
  apply clarsimp
  | 
| 
 | 
   139  | 
  apply (rule_tac x=1 in exI)
  | 
| 
 | 
   140  | 
  apply fastsimp
  | 
| 
 | 
   141  | 
  
  | 
| 
 | 
   142  | 
  apply (erule disjE)
  | 
| 
 | 
   143  | 
   apply (clarsimp simp add: Un_subset_iff)  
  | 
| 
 | 
   144  | 
   apply (drule method_wf_mdecl, assumption+)
  | 
| 
 | 
   145  | 
   apply (clarsimp simp add: wf_mdecl_def wf_mhead_def)
  | 
| 
 | 
   146  | 
   apply fastsimp
  | 
| 
 | 
   147  | 
  apply clarsimp
  | 
| 
 | 
   148  | 
  apply (rule_tac x=1 in exI)
  | 
| 
 | 
   149  | 
  apply fastsimp
  | 
| 
 | 
   150  | 
  done
  | 
| 
 | 
   151  | 
  | 
| 
 | 
   152  | 
lemmas [iff] = not_None_eq
  | 
| 
 | 
   153  | 
  | 
| 
 | 
   154  | 
lemma sup_state_opt_unfold:
  | 
| 
 | 
   155  | 
  "sup_state_opt G \<equiv> Opt.le (Product.le (Listn.le (subtype G)) (Listn.le (Err.le (subtype G))))"
  | 
| 
 | 
   156  | 
  by (simp add: sup_state_opt_def sup_state_def sup_loc_def sup_ty_opt_def)
  | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
lemma app_mono:
  | 
| 
 | 
   160  | 
  "app_mono (sup_state_opt G) (\<lambda>pc. app (bs!pc) G maxs rT pc et) (length bs) (opt_states G maxs maxr)"
  | 
| 
 | 
   161  | 
  by (unfold app_mono_def lesub_def) (blast intro: EffectMono.app_mono)
  | 
| 
 | 
   162  | 
  
  | 
| 
 | 
   163  | 
  | 
| 
 | 
   164  | 
lemma list_appendI:
  | 
| 
 | 
   165  | 
  "\<lbrakk>a \<in> list x A; b \<in> list y A\<rbrakk> \<Longrightarrow> a @ b \<in> list (x+y) A"
  | 
| 
 | 
   166  | 
  apply (unfold list_def)
  | 
| 
 | 
   167  | 
  apply (simp (no_asm))
  | 
| 
 | 
   168  | 
  apply blast
  | 
| 
 | 
   169  | 
  done
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
lemma list_map [simp]:
  | 
| 
 | 
   172  | 
  "(map f xs \<in> list (length xs) A) = (f ` set xs \<subseteq> A)"
  | 
| 
 | 
   173  | 
  apply (unfold list_def)
  | 
| 
 | 
   174  | 
  apply simp
  | 
| 
 | 
   175  | 
  done
  | 
| 
 | 
   176  | 
  | 
| 
 | 
   177  | 
lemma [iff]:
  | 
| 
 | 
   178  | 
  "(OK ` A \<subseteq> err B) = (A \<subseteq> B)"
  | 
| 
 | 
   179  | 
  apply (unfold err_def)
  | 
| 
 | 
   180  | 
  apply blast
  | 
| 
 | 
   181  | 
  done
  | 
| 
 | 
   182  | 
  | 
| 
 | 
   183  | 
lemma [intro]:
  | 
| 
 | 
   184  | 
  "x \<in> A \<Longrightarrow> replicate n x \<in> list n A"
  | 
| 
 | 
   185  | 
  by (induct n, auto)
  | 
| 
 | 
   186  | 
  | 
| 
 | 
   187  | 
lemma lesubstep_type_simple:
  | 
| 
 | 
   188  | 
  "a <=[Product.le (op =) r] b \<Longrightarrow> a <=|r| b"
  | 
| 
 | 
   189  | 
  apply (unfold lesubstep_type_def)
  | 
| 
 | 
   190  | 
  apply clarify
  | 
| 
 | 
   191  | 
  apply (simp add: set_conv_nth)
  | 
| 
 | 
   192  | 
  apply clarify
  | 
| 
 | 
   193  | 
  apply (drule le_listD, assumption)
  | 
| 
 | 
   194  | 
  apply (clarsimp simp add: lesub_def Product.le_def)
  | 
| 
 | 
   195  | 
  apply (rule exI)
  | 
| 
 | 
   196  | 
  apply (rule conjI)
  | 
| 
 | 
   197  | 
   apply (rule exI)
  | 
| 
 | 
   198  | 
   apply (rule conjI)
  | 
| 
 | 
   199  | 
    apply (rule sym)
  | 
| 
 | 
   200  | 
    apply assumption
  | 
| 
 | 
   201  | 
   apply assumption
  | 
| 
 | 
   202  | 
  apply assumption
  | 
| 
 | 
   203  | 
  done
  | 
| 
 | 
   204  | 
  
  | 
| 
 | 
   205  | 
  | 
| 
 | 
   206  | 
lemma eff_mono:
  | 
| 
 | 
   207  | 
  "\<lbrakk>p < length bs; s <=_(sup_state_opt G) t; app (bs!p) G maxs rT pc et t\<rbrakk>
  | 
| 
 | 
   208  | 
  \<Longrightarrow> eff (bs!p) G p et s <=|sup_state_opt G| eff (bs!p) G p et t"
  | 
| 
 | 
   209  | 
  apply (unfold eff_def)
  | 
| 
 | 
   210  | 
  apply (rule lesubstep_type_simple)
  | 
| 
 | 
   211  | 
  apply (rule le_list_appendI)
  | 
| 
 | 
   212  | 
   apply (simp add: norm_eff_def)
  | 
| 
 | 
   213  | 
   apply (rule le_listI)
  | 
| 
 | 
   214  | 
    apply simp
  | 
| 
 | 
   215  | 
   apply simp
  | 
| 
 | 
   216  | 
   apply (simp add: lesub_def)
  | 
| 
 | 
   217  | 
   apply (case_tac s)
  | 
| 
 | 
   218  | 
    apply simp
  | 
| 
 | 
   219  | 
   apply (simp del: split_paired_All split_paired_Ex)
  | 
| 
 | 
   220  | 
   apply (elim exE conjE)
  | 
| 
 | 
   221  | 
   apply simp
  | 
| 
 | 
   222  | 
   apply (drule eff'_mono, assumption)
  | 
| 
 | 
   223  | 
   apply assumption
  | 
| 
 | 
   224  | 
  apply (simp add: xcpt_eff_def)
  | 
| 
 | 
   225  | 
  apply (rule le_listI)
  | 
| 
 | 
   226  | 
    apply simp
  | 
| 
 | 
   227  | 
  apply simp
  | 
| 
 | 
   228  | 
  apply (simp add: lesub_def)
  | 
| 
 | 
   229  | 
  apply (case_tac s)
  | 
| 
 | 
   230  | 
   apply simp
  | 
| 
 | 
   231  | 
  apply simp
  | 
| 
 | 
   232  | 
  apply (case_tac t)
  | 
| 
 | 
   233  | 
   apply simp
  | 
| 
 | 
   234  | 
  apply (clarsimp simp add: sup_state_conv)
  | 
| 
 | 
   235  | 
  done
  | 
| 
 | 
   236  | 
  | 
| 
 | 
   237  | 
lemma order_sup_state_opt:
  | 
| 
14045
 | 
   238  | 
  "ws_prog G \<Longrightarrow> order (sup_state_opt G)"
  | 
| 
13224
 | 
   239  | 
  by (unfold sup_state_opt_unfold) (blast dest: acyclic_subcls1 order_widen)
  | 
| 
 | 
   240  | 
  | 
| 
 | 
   241  | 
theorem exec_mono:
  | 
| 
14045
 | 
   242  | 
  "ws_prog G \<Longrightarrow> bounded (exec G maxs rT et bs) (size bs) \<Longrightarrow>
  | 
| 
13224
 | 
   243  | 
  mono (JVMType.le G maxs maxr) (exec G maxs rT et bs) (size bs) (states G maxs maxr)"  
  | 
| 
 | 
   244  | 
  apply (unfold exec_def JVM_le_unfold JVM_states_unfold)  
  | 
| 
 | 
   245  | 
  apply (rule mono_lift)
  | 
| 
 | 
   246  | 
     apply (fold sup_state_opt_unfold opt_states_def)
  | 
| 
 | 
   247  | 
     apply (erule order_sup_state_opt)
  | 
| 
 | 
   248  | 
    apply (rule app_mono)
  | 
| 
 | 
   249  | 
   apply assumption
  | 
| 
 | 
   250  | 
  apply clarify
  | 
| 
 | 
   251  | 
  apply (rule eff_mono)
  | 
| 
 | 
   252  | 
  apply assumption+
  | 
| 
 | 
   253  | 
  done
  | 
| 
 | 
   254  | 
  | 
| 
 | 
   255  | 
theorem semilat_JVM_slI:
  | 
| 
14045
 | 
   256  | 
  "ws_prog G \<Longrightarrow> semilat (JVMType.sl G maxs maxr)"
  | 
| 
13224
 | 
   257  | 
  apply (unfold JVMType.sl_def stk_esl_def reg_sl_def)
  | 
| 
 | 
   258  | 
  apply (rule semilat_opt)
  | 
| 
 | 
   259  | 
  apply (rule err_semilat_Product_esl)
  | 
| 
 | 
   260  | 
  apply (rule err_semilat_upto_esl)
  | 
| 
 | 
   261  | 
  apply (rule err_semilat_JType_esl, assumption+)
  | 
| 
 | 
   262  | 
  apply (rule err_semilat_eslI)
  | 
| 
 | 
   263  | 
  apply (rule Listn_sl)
  | 
| 
 | 
   264  | 
  apply (rule err_semilat_JType_esl, assumption+)
  | 
| 
 | 
   265  | 
  done
  | 
| 
 | 
   266  | 
  | 
| 
 | 
   267  | 
lemma sl_triple_conv:
  | 
| 
 | 
   268  | 
  "JVMType.sl G maxs maxr == 
  | 
| 
 | 
   269  | 
  (states G maxs maxr, JVMType.le G maxs maxr, JVMType.sup G maxs maxr)"
  | 
| 
 | 
   270  | 
  by (simp (no_asm) add: states_def JVMType.le_def JVMType.sup_def)
  | 
| 
 | 
   271  | 
  | 
| 
 | 
   272  | 
  | 
| 
 | 
   273  | 
lemma map_id [rule_format]:
  | 
| 
 | 
   274  | 
  "(\<forall>n < length xs. f (g (xs!n)) = xs!n) \<longrightarrow> map f (map g xs) = xs"
  | 
| 
 | 
   275  | 
  by (induct xs, auto)
  | 
| 
 | 
   276  | 
  | 
| 
 | 
   277  | 
  | 
| 
 | 
   278  | 
lemma is_type_pTs:
  | 
| 
 | 
   279  | 
  "\<lbrakk> wf_prog wf_mb G; (C,S,fs,mdecls) \<in> set G; ((mn,pTs),rT,code) \<in> set mdecls \<rbrakk>
  | 
| 
 | 
   280  | 
  \<Longrightarrow> set pTs \<subseteq> types G"
  | 
| 
 | 
   281  | 
proof 
  | 
| 
 | 
   282  | 
  assume "wf_prog wf_mb G" 
  | 
| 
 | 
   283  | 
         "(C,S,fs,mdecls) \<in> set G"
  | 
| 
 | 
   284  | 
         "((mn,pTs),rT,code) \<in> set mdecls"
  | 
| 
 | 
   285  | 
  hence "wf_mdecl wf_mb G C ((mn,pTs),rT,code)"
  | 
| 
14045
 | 
   286  | 
    by (rule wf_prog_wf_mdecl)
  | 
| 
13224
 | 
   287  | 
  hence "\<forall>t \<in> set pTs. is_type G t" 
  | 
| 
 | 
   288  | 
    by (unfold wf_mdecl_def wf_mhead_def) auto
  | 
| 
 | 
   289  | 
  moreover
  | 
| 
 | 
   290  | 
  fix t assume "t \<in> set pTs"
  | 
| 
 | 
   291  | 
  ultimately
  | 
| 
 | 
   292  | 
  have "is_type G t" by blast
  | 
| 
 | 
   293  | 
  thus "t \<in> types G" ..
  | 
| 
 | 
   294  | 
qed
  | 
| 
 | 
   295  | 
  | 
| 
 | 
   296  | 
  | 
| 
 | 
   297  | 
lemma jvm_prog_lift:  
  | 
| 
 | 
   298  | 
  assumes wf: 
  | 
| 
 | 
   299  | 
  "wf_prog (\<lambda>G C bd. P G C bd) G"
  | 
| 
 | 
   300  | 
  | 
| 
 | 
   301  | 
  assumes rule:
  | 
| 
 | 
   302  | 
  "\<And>wf_mb C mn pTs C rT maxs maxl b et bd.
  | 
| 
 | 
   303  | 
   wf_prog wf_mb G \<Longrightarrow>
  | 
| 
 | 
   304  | 
   method (G,C) (mn,pTs) = Some (C,rT,maxs,maxl,b,et) \<Longrightarrow>
  | 
| 
 | 
   305  | 
   is_class G C \<Longrightarrow>
  | 
| 
 | 
   306  | 
   set pTs \<subseteq> types G \<Longrightarrow>
  | 
| 
 | 
   307  | 
   bd = ((mn,pTs),rT,maxs,maxl,b,et) \<Longrightarrow>
  | 
| 
 | 
   308  | 
   P G C bd \<Longrightarrow>
  | 
| 
 | 
   309  | 
   Q G C bd"
  | 
| 
 | 
   310  | 
 
  | 
| 
 | 
   311  | 
  shows 
  | 
| 
 | 
   312  | 
  "wf_prog (\<lambda>G C bd. Q G C bd) G"
  | 
| 
 | 
   313  | 
proof -
  | 
| 
 | 
   314  | 
  from wf show ?thesis
  | 
| 
 | 
   315  | 
    apply (unfold wf_prog_def wf_cdecl_def)
  | 
| 
 | 
   316  | 
    apply clarsimp
  | 
| 
 | 
   317  | 
    apply (drule bspec, assumption)
  | 
| 
14045
 | 
   318  | 
    apply (unfold wf_cdecl_mdecl_def)
  | 
| 
13224
 | 
   319  | 
    apply clarsimp
  | 
| 
 | 
   320  | 
    apply (drule bspec, assumption)
  | 
| 
14045
 | 
   321  | 
    apply (frule methd [OF wf [THEN wf_prog_ws_prog]], assumption+)
  | 
| 
13224
 | 
   322  | 
    apply (frule is_type_pTs [OF wf], assumption+)
  | 
| 
 | 
   323  | 
    apply clarify
  | 
| 
 | 
   324  | 
    apply (drule rule [OF wf], assumption+)
  | 
| 
26289
 | 
   325  | 
    apply (rule HOL.refl)
  | 
| 
13224
 | 
   326  | 
    apply assumption+
  | 
| 
 | 
   327  | 
    done
  | 
| 
 | 
   328  | 
qed
  | 
| 
 | 
   329  | 
  | 
| 
 | 
   330  | 
end
  |