author | huffman |
Fri, 17 Dec 2010 16:43:45 -0800 | |
changeset 41284 | 6d66975b711f |
parent 40774 | 0437dbc127b3 |
child 41429 | cf5f025bc3c7 |
permissions | -rw-r--r-- |
2640 | 1 |
(* Title: HOLCF/Pcpo.thy |
2 |
Author: Franz Regensburger |
|
3 |
*) |
|
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
15563
diff
changeset
|
4 |
|
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
15563
diff
changeset
|
5 |
header {* Classes cpo and pcpo *} |
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
15563
diff
changeset
|
6 |
|
15577 | 7 |
theory Pcpo |
8 |
imports Porder |
|
9 |
begin |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
10 |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
11 |
subsection {* Complete partial orders *} |
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
12 |
|
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
13 |
text {* The class cpo of chain complete partial orders *} |
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
14 |
|
29614
1f7b1b0df292
simplified handling of base sort, dropped axclass
haftmann
parents:
29138
diff
changeset
|
15 |
class cpo = po + |
31071 | 16 |
assumes cpo: "chain S \<Longrightarrow> \<exists>x. range S <<| x" |
17 |
begin |
|
2394 | 18 |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
19 |
text {* in cpo's everthing equal to THE lub has lub properties for every chain *} |
15563 | 20 |
|
31071 | 21 |
lemma cpo_lubI: "chain S \<Longrightarrow> range S <<| (\<Squnion>i. S i)" |
40771 | 22 |
by (fast dest: cpo elim: is_lub_lub) |
26026 | 23 |
|
31071 | 24 |
lemma thelubE: "\<lbrakk>chain S; (\<Squnion>i. S i) = l\<rbrakk> \<Longrightarrow> range S <<| l" |
40771 | 25 |
by (blast dest: cpo intro: is_lub_lub) |
15563 | 26 |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
27 |
text {* Properties of the lub *} |
15563 | 28 |
|
31071 | 29 |
lemma is_ub_thelub: "chain S \<Longrightarrow> S x \<sqsubseteq> (\<Squnion>i. S i)" |
40771 | 30 |
by (blast dest: cpo intro: is_lub_lub [THEN is_lub_rangeD1]) |
15563 | 31 |
|
16626 | 32 |
lemma is_lub_thelub: |
31071 | 33 |
"\<lbrakk>chain S; range S <| x\<rbrakk> \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x" |
40771 | 34 |
by (blast dest: cpo intro: is_lub_lub [THEN is_lubD2]) |
15563 | 35 |
|
39969 | 36 |
lemma lub_below_iff: "chain S \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x \<longleftrightarrow> (\<forall>i. S i \<sqsubseteq> x)" |
37 |
by (simp add: is_lub_below_iff [OF cpo_lubI] is_ub_def) |
|
38 |
||
40500
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
39 |
lemma lub_below: "\<lbrakk>chain S; \<And>i. S i \<sqsubseteq> x\<rbrakk> \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x" |
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
40 |
by (simp add: lub_below_iff) |
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
41 |
|
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
42 |
lemma below_lub: "\<lbrakk>chain S; x \<sqsubseteq> S i\<rbrakk> \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. S i)" |
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
43 |
by (erule below_trans, erule is_ub_thelub) |
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
44 |
|
16626 | 45 |
lemma lub_range_mono: |
31071 | 46 |
"\<lbrakk>range X \<subseteq> range Y; chain Y; chain X\<rbrakk> |
16626 | 47 |
\<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)" |
40500
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
48 |
apply (erule lub_below) |
16626 | 49 |
apply (subgoal_tac "\<exists>j. X i = Y j") |
15563 | 50 |
apply clarsimp |
51 |
apply (erule is_ub_thelub) |
|
52 |
apply auto |
|
53 |
done |
|
54 |
||
16626 | 55 |
lemma lub_range_shift: |
31071 | 56 |
"chain Y \<Longrightarrow> (\<Squnion>i. Y (i + j)) = (\<Squnion>i. Y i)" |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
57 |
apply (rule below_antisym) |
15563 | 58 |
apply (rule lub_range_mono) |
59 |
apply fast |
|
60 |
apply assumption |
|
61 |
apply (erule chain_shift) |
|
40500
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
62 |
apply (rule lub_below) |
15563 | 63 |
apply assumption |
40500
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
64 |
apply (rule_tac i="i" in below_lub) |
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
65 |
apply (erule chain_shift) |
25922
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
huffman
parents:
25921
diff
changeset
|
66 |
apply (erule chain_mono) |
15563 | 67 |
apply (rule le_add1) |
68 |
done |
|
69 |
||
16626 | 70 |
lemma maxinch_is_thelub: |
31071 | 71 |
"chain Y \<Longrightarrow> max_in_chain i Y = ((\<Squnion>i. Y i) = Y i)" |
15563 | 72 |
apply (rule iffI) |
40771 | 73 |
apply (fast intro!: lub_eqI lub_finch1) |
15563 | 74 |
apply (unfold max_in_chain_def) |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
75 |
apply (safe intro!: below_antisym) |
25922
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
huffman
parents:
25921
diff
changeset
|
76 |
apply (fast elim!: chain_mono) |
15563 | 77 |
apply (drule sym) |
78 |
apply (force elim!: is_ub_thelub) |
|
79 |
done |
|
80 |
||
16626 | 81 |
text {* the @{text "\<sqsubseteq>"} relation between two chains is preserved by their lubs *} |
15563 | 82 |
|
16626 | 83 |
lemma lub_mono: |
31071 | 84 |
"\<lbrakk>chain X; chain Y; \<And>i. X i \<sqsubseteq> Y i\<rbrakk> |
16626 | 85 |
\<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)" |
40500
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
86 |
by (fast elim: lub_below below_lub) |
15563 | 87 |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
88 |
text {* the = relation between two chains is preserved by their lubs *} |
15563 | 89 |
|
35492 | 90 |
lemma lub_eq: |
91 |
"(\<And>i. X i = Y i) \<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)" |
|
92 |
by simp |
|
93 |
||
16203 | 94 |
lemma ch2ch_lub: |
95 |
assumes 1: "\<And>j. chain (\<lambda>i. Y i j)" |
|
96 |
assumes 2: "\<And>i. chain (\<lambda>j. Y i j)" |
|
97 |
shows "chain (\<lambda>i. \<Squnion>j. Y i j)" |
|
98 |
apply (rule chainI) |
|
25923 | 99 |
apply (rule lub_mono [OF 2 2]) |
16203 | 100 |
apply (rule chainE [OF 1]) |
101 |
done |
|
102 |
||
16201 | 103 |
lemma diag_lub: |
104 |
assumes 1: "\<And>j. chain (\<lambda>i. Y i j)" |
|
105 |
assumes 2: "\<And>i. chain (\<lambda>j. Y i j)" |
|
106 |
shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>i. Y i i)" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
107 |
proof (rule below_antisym) |
16201 | 108 |
have 3: "chain (\<lambda>i. Y i i)" |
109 |
apply (rule chainI) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
110 |
apply (rule below_trans) |
16201 | 111 |
apply (rule chainE [OF 1]) |
112 |
apply (rule chainE [OF 2]) |
|
113 |
done |
|
114 |
have 4: "chain (\<lambda>i. \<Squnion>j. Y i j)" |
|
16203 | 115 |
by (rule ch2ch_lub [OF 1 2]) |
16201 | 116 |
show "(\<Squnion>i. \<Squnion>j. Y i j) \<sqsubseteq> (\<Squnion>i. Y i i)" |
40500
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
117 |
apply (rule lub_below [OF 4]) |
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
118 |
apply (rule lub_below [OF 2]) |
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
huffman
parents:
40498
diff
changeset
|
119 |
apply (rule below_lub [OF 3]) |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
120 |
apply (rule below_trans) |
25922
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
huffman
parents:
25921
diff
changeset
|
121 |
apply (rule chain_mono [OF 1 le_maxI1]) |
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
huffman
parents:
25921
diff
changeset
|
122 |
apply (rule chain_mono [OF 2 le_maxI2]) |
16201 | 123 |
done |
124 |
show "(\<Squnion>i. Y i i) \<sqsubseteq> (\<Squnion>i. \<Squnion>j. Y i j)" |
|
25923 | 125 |
apply (rule lub_mono [OF 3 4]) |
16201 | 126 |
apply (rule is_ub_thelub [OF 2]) |
127 |
done |
|
128 |
qed |
|
129 |
||
130 |
lemma ex_lub: |
|
131 |
assumes 1: "\<And>j. chain (\<lambda>i. Y i j)" |
|
132 |
assumes 2: "\<And>i. chain (\<lambda>j. Y i j)" |
|
133 |
shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>j. \<Squnion>i. Y i j)" |
|
31071 | 134 |
by (simp add: diag_lub 1 2) |
16201 | 135 |
|
31071 | 136 |
end |
16201 | 137 |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
138 |
subsection {* Pointed cpos *} |
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
139 |
|
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
140 |
text {* The class pcpo of pointed cpos *} |
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
141 |
|
29614
1f7b1b0df292
simplified handling of base sort, dropped axclass
haftmann
parents:
29138
diff
changeset
|
142 |
class pcpo = cpo + |
1f7b1b0df292
simplified handling of base sort, dropped axclass
haftmann
parents:
29138
diff
changeset
|
143 |
assumes least: "\<exists>x. \<forall>y. x \<sqsubseteq> y" |
31071 | 144 |
begin |
25723 | 145 |
|
31071 | 146 |
definition UU :: 'a where |
25723 | 147 |
"UU = (THE x. \<forall>y. x \<sqsubseteq> y)" |
148 |
||
149 |
notation (xsymbols) |
|
150 |
UU ("\<bottom>") |
|
151 |
||
152 |
text {* derive the old rule minimal *} |
|
153 |
||
154 |
lemma UU_least: "\<forall>z. \<bottom> \<sqsubseteq> z" |
|
155 |
apply (unfold UU_def) |
|
156 |
apply (rule theI') |
|
157 |
apply (rule ex_ex1I) |
|
158 |
apply (rule least) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
159 |
apply (blast intro: below_antisym) |
25723 | 160 |
done |
161 |
||
162 |
lemma minimal [iff]: "\<bottom> \<sqsubseteq> x" |
|
163 |
by (rule UU_least [THEN spec]) |
|
164 |
||
31071 | 165 |
end |
166 |
||
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
29634
diff
changeset
|
167 |
text {* Simproc to rewrite @{term "\<bottom> = x"} to @{term "x = \<bottom>"}. *} |
16739 | 168 |
|
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
29634
diff
changeset
|
169 |
setup {* |
33523 | 170 |
Reorient_Proc.add |
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
29634
diff
changeset
|
171 |
(fn Const(@{const_name UU}, _) => true | _ => false) |
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
29634
diff
changeset
|
172 |
*} |
25723 | 173 |
|
33523 | 174 |
simproc_setup reorient_bottom ("\<bottom> = x") = Reorient_Proc.proc |
25723 | 175 |
|
31071 | 176 |
context pcpo |
177 |
begin |
|
178 |
||
25723 | 179 |
text {* useful lemmas about @{term \<bottom>} *} |
180 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
181 |
lemma below_UU_iff [simp]: "(x \<sqsubseteq> \<bottom>) = (x = \<bottom>)" |
25723 | 182 |
by (simp add: po_eq_conv) |
183 |
||
184 |
lemma eq_UU_iff: "(x = \<bottom>) = (x \<sqsubseteq> \<bottom>)" |
|
185 |
by simp |
|
186 |
||
187 |
lemma UU_I: "x \<sqsubseteq> \<bottom> \<Longrightarrow> x = \<bottom>" |
|
188 |
by (subst eq_UU_iff) |
|
189 |
||
40045 | 190 |
lemma lub_eq_bottom_iff: "chain Y \<Longrightarrow> (\<Squnion>i. Y i) = \<bottom> \<longleftrightarrow> (\<forall>i. Y i = \<bottom>)" |
191 |
by (simp only: eq_UU_iff lub_below_iff) |
|
192 |
||
25723 | 193 |
lemma chain_UU_I: "\<lbrakk>chain Y; (\<Squnion>i. Y i) = \<bottom>\<rbrakk> \<Longrightarrow> \<forall>i. Y i = \<bottom>" |
40045 | 194 |
by (simp add: lub_eq_bottom_iff) |
15563 | 195 |
|
16626 | 196 |
lemma chain_UU_I_inverse: "\<forall>i::nat. Y i = \<bottom> \<Longrightarrow> (\<Squnion>i. Y i) = \<bottom>" |
40045 | 197 |
by simp |
15563 | 198 |
|
16626 | 199 |
lemma chain_UU_I_inverse2: "(\<Squnion>i. Y i) \<noteq> \<bottom> \<Longrightarrow> \<exists>i::nat. Y i \<noteq> \<bottom>" |
31071 | 200 |
by (blast intro: chain_UU_I_inverse) |
15563 | 201 |
|
16626 | 202 |
lemma notUU_I: "\<lbrakk>x \<sqsubseteq> y; x \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> y \<noteq> \<bottom>" |
31071 | 203 |
by (blast intro: UU_I) |
15563 | 204 |
|
31071 | 205 |
end |
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
206 |
|
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
207 |
subsection {* Chain-finite and flat cpos *} |
15563 | 208 |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
209 |
text {* further useful classes for HOLCF domains *} |
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
210 |
|
31071 | 211 |
class chfin = po + |
212 |
assumes chfin: "chain Y \<Longrightarrow> \<exists>n. max_in_chain n Y" |
|
213 |
begin |
|
25814 | 214 |
|
31071 | 215 |
subclass cpo |
216 |
apply default |
|
217 |
apply (frule chfin) |
|
218 |
apply (blast intro: lub_finch1) |
|
219 |
done |
|
15563 | 220 |
|
31071 | 221 |
lemma chfin2finch: "chain Y \<Longrightarrow> finite_chain Y" |
222 |
by (simp add: chfin finite_chain_def) |
|
223 |
||
224 |
end |
|
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
225 |
|
31071 | 226 |
class flat = pcpo + |
227 |
assumes ax_flat: "x \<sqsubseteq> y \<Longrightarrow> x = \<bottom> \<or> x = y" |
|
228 |
begin |
|
15640
2d1d6ea579a1
chfin now a subclass of po, proved instance chfin < cpo
huffman
parents:
15588
diff
changeset
|
229 |
|
31071 | 230 |
subclass chfin |
231 |
apply default |
|
15563 | 232 |
apply (unfold max_in_chain_def) |
16626 | 233 |
apply (case_tac "\<forall>i. Y i = \<bottom>") |
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
234 |
apply simp |
15563 | 235 |
apply simp |
236 |
apply (erule exE) |
|
16626 | 237 |
apply (rule_tac x="i" in exI) |
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
238 |
apply clarify |
25922
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
huffman
parents:
25921
diff
changeset
|
239 |
apply (blast dest: chain_mono ax_flat) |
15563 | 240 |
done |
241 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
242 |
lemma flat_below_iff: |
25826 | 243 |
shows "(x \<sqsubseteq> y) = (x = \<bottom> \<or> x = y)" |
31071 | 244 |
by (safe dest!: ax_flat) |
25826 | 245 |
|
31071 | 246 |
lemma flat_eq: "a \<noteq> \<bottom> \<Longrightarrow> a \<sqsubseteq> b = (a = b)" |
247 |
by (safe dest!: ax_flat) |
|
15563 | 248 |
|
31071 | 249 |
end |
15563 | 250 |
|
40091
1ca61fbd8a79
make discrete_cpo a subclass of chfin; remove chfin instances for fun, cfun
huffman
parents:
40089
diff
changeset
|
251 |
subsection {* Discrete cpos *} |
26023 | 252 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31071
diff
changeset
|
253 |
class discrete_cpo = below + |
29614
1f7b1b0df292
simplified handling of base sort, dropped axclass
haftmann
parents:
29138
diff
changeset
|
254 |
assumes discrete_cpo [simp]: "x \<sqsubseteq> y \<longleftrightarrow> x = y" |
31071 | 255 |
begin |
26023 | 256 |
|
31071 | 257 |
subclass po |
29614
1f7b1b0df292
simplified handling of base sort, dropped axclass
haftmann
parents:
29138
diff
changeset
|
258 |
proof qed simp_all |
26023 | 259 |
|
260 |
text {* In a discrete cpo, every chain is constant *} |
|
261 |
||
262 |
lemma discrete_chain_const: |
|
31071 | 263 |
assumes S: "chain S" |
26023 | 264 |
shows "\<exists>x. S = (\<lambda>i. x)" |
265 |
proof (intro exI ext) |
|
266 |
fix i :: nat |
|
267 |
have "S 0 \<sqsubseteq> S i" using S le0 by (rule chain_mono) |
|
268 |
hence "S 0 = S i" by simp |
|
269 |
thus "S i = S 0" by (rule sym) |
|
270 |
qed |
|
271 |
||
40091
1ca61fbd8a79
make discrete_cpo a subclass of chfin; remove chfin instances for fun, cfun
huffman
parents:
40089
diff
changeset
|
272 |
subclass chfin |
26023 | 273 |
proof |
274 |
fix S :: "nat \<Rightarrow> 'a" |
|
275 |
assume S: "chain S" |
|
40091
1ca61fbd8a79
make discrete_cpo a subclass of chfin; remove chfin instances for fun, cfun
huffman
parents:
40089
diff
changeset
|
276 |
hence "\<exists>x. S = (\<lambda>i. x)" by (rule discrete_chain_const) |
1ca61fbd8a79
make discrete_cpo a subclass of chfin; remove chfin instances for fun, cfun
huffman
parents:
40089
diff
changeset
|
277 |
hence "max_in_chain 0 S" |
1ca61fbd8a79
make discrete_cpo a subclass of chfin; remove chfin instances for fun, cfun
huffman
parents:
40089
diff
changeset
|
278 |
unfolding max_in_chain_def by auto |
1ca61fbd8a79
make discrete_cpo a subclass of chfin; remove chfin instances for fun, cfun
huffman
parents:
40089
diff
changeset
|
279 |
thus "\<exists>i. max_in_chain i S" .. |
26023 | 280 |
qed |
281 |
||
31071 | 282 |
end |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
15563
diff
changeset
|
283 |
|
16626 | 284 |
end |