| 
3122
 | 
     1  | 
<!-- $Id$ -->
  | 
| 
 | 
     2  | 
<HTML><HEAD><TITLE>HOL/Induct/README</TITLE></HEAD><BODY>
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
<H2>Induct--Examples of (Co)Inductive Definitions</H2>
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
<P>This directory is a collection of small examples to demonstrate
  | 
| 
 | 
     7  | 
Isabelle/HOL's (co)inductive definitions package.  Large examples appear on
  | 
| 
 | 
     8  | 
many other directories, such as Auth, IMP and Lambda.
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
<UL>
  | 
| 
5417
 | 
    11  | 
  | 
| 
3122
 | 
    12  | 
<LI><KBD>Comb</KBD> proves the Church-Rosser theorem for combinators (<A
  | 
| 
 | 
    13  | 
HREF="http://www.cl.cam.ac.uk/ftp/papers/reports/TR396-lcp-generic-automatic-proof-tools.ps.gz">paper
  | 
| 
 | 
    14  | 
available</A>).
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
<LI><KBD>Mutil</KBD> is the famous Mutilated Chess Board problem (<A
  | 
| 
 | 
    17  | 
HREF="http://www.cl.cam.ac.uk/ftp/papers/reports/TR394-lcp-mutilated-chess-board.dvi.gz">paper
  | 
| 
 | 
    18  | 
available</A>).
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
<LI><KBD>PropLog</KBD> proves the completeness of a formalization of
  | 
| 
 | 
    21  | 
propositional logic (<A
  | 
| 
 | 
    22  | 
HREF="http://www.cl.cam.ac.uk/Research/Reports/TR312-lcp-set-II.ps.gz">paper
  | 
| 
 | 
    23  | 
available</A>).
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
<LI><KBD>LFilter</KBD> is an inductive/corecursive formalization of the
  | 
| 
 | 
    26  | 
<EM>filter</EM> functional for infinite streams.
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
<LI><KBD>Exp</KBD> demonstrates the use of iterated inductive definitions to
  | 
| 
 | 
    29  | 
reason about mutually recursive relations.
  | 
| 
 | 
    30  | 
</UL>
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
<HR>
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
<ADDRESS>
  | 
| 
 | 
    35  | 
<A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A>
  | 
| 
 | 
    36  | 
</ADDRESS>
  | 
| 
 | 
    37  | 
</BODY></HTML>
  |